树枝状噻吩并吡嗪红光材料的合成及电致发光性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件(OLEDs)具有驱动电压低、颜色全、亮度高、响应快、柔性可卷曲等优点,在新型显示技术和半导体照明领域备受瞩目。目前,红色发光材料和器件的发展相对滞后,集发光和电荷传输功能于一身的主体型红光材料由于可用来制备非掺杂型OLEDs,是目前红光材料的重要研究趋势。在各类发光材料中,新兴的树枝状大分子兼具有机小分子和聚合物的优点,并可以通过工艺简单、成本低廉的溶液加工技术制备OLEDs,是发光材料领域的一个研究热点。
     本文的研究目标是制备可溶液加工的红光材料及其非掺杂型OLEDs。噻吩并吡嗪类化合物具有大的斯托克位移和较高的荧光量子效率,是一类非常有潜在应用价值的红光材料,但是需要通过分子设计抑制分子间的相互作用,从而使平面性噻吩并吡嗪能够成为良好的固态发光材料。针对现有的噻吩并吡嗪类红光材料都是只能利用真空蒸镀技术制备OLEDs这一现状,选择不同的电荷传输基团或不同的芳香结构作为外围基团或间隔基团,设计合成了未见文献报道的三种结构类型共十个树枝状噻吩并吡嗪衍生物,将其作为发光材料,通过溶液旋涂方法制备非掺杂型红光OLEDs,研究其电致发光性能。
     “发光核-电荷传输基团”型分子是把具有空穴传输功能的咔唑基或者芳胺基直接连接在噻吩并吡嗪发光核分子上。外围连接一代或二代咔唑基的C1-TP和C2-TP在溶液里发出饱和的红光,其溶解性比母体TP有所改善,且具有电荷传输性能,能用作发光层制备非掺杂OLEDs。但是,C1-TP和C2-TP的荧光量子效率ΦF较母体TP的下降较多,电致发光性能并不理想,其原因是咔唑或芳胺基团到发光核的分子内电荷转移(ICT)导致荧光淬灭。
     “发光核-间隔基团”型分子是间隔基团直接与发光核相连的分子。所选择的间隔基团为体积庞大、能对发光核提供足够空间隔离作用的芳香结构,包括四苯基苯(即聚苯类)和二苯基苯并芘两类。该类分子在稀溶液中和固态膜中都发射饱和的红光。由于苯并芘结构的刚性太强致使P-DTP和TP-DTP溶解性不好,其合成过程较复杂;含有聚苯类树枝的DTP和D2TP溶解性良好,合成过程较简单;通过溶液旋涂技术,以P-DTP、TP-DTP和DTP作为发光层制备的非掺杂OLEDs,的亮度和效率相似;含有二代聚苯树枝的D2TP器件性能不及一代聚苯树枝的DTP好,因此一代聚苯是较理想的隔离基团。
     DTP具有良好的溶解性和热稳定性,既可溶液旋涂,又可真空蒸镀,利用这两种技术分别制备其非掺杂的OLEDs,其中真空蒸镀技术制备的器件由于使用额外的空穴传输层达到更好的电荷平衡而获得了1753cd/m2的亮度和0.74cd/A的效率,是迄今噻吩并吡嗪类红光材料中的最高效率。
     在以上两类材料的基础上,进一步优化分子结构并设计“发光核-间隔基团-电荷传输基团”型分子,即将咔唑或芳胺作为空穴传输基团,以一代聚苯为间隔基团与发光核连接的C-DTP和N-DTP。在这些分子中,由于聚苯基团对空穴传输基团和发光核进行了有效的空间隔离,抑制了ICT过程,既保证分子具有较高的发光效率,又具有适当的空穴传输能力。以C-DTP和N-DTP作为非掺杂发光层,通过溶液旋涂技术制备的非掺杂OLEDs分别获得了925 cd/m2和1020 cd/m2的亮度和0.53 cd/A和0.58 cd/A的效率,是本文中溶液旋涂器件中的最好数据。这些红光的亮度和效率虽不能与磷光器件的相比,但在荧光材料的溶液加工型红光器件中,属于最好之列。C-DTP和N-DTP的亮度和效率等性能已经能与文献上真空蒸镀的噻吩并毗嗪衍生物的性能相媲美,但这些材料具有溶液加工、方法简单的优势。
     实验证明本文设计的一系列树枝状噻吩并吡嗪红光分子都具有大的斯托克位移;大部分分子溶解性优良,适合溶液加工;可以作为主体发光材料制备非掺杂OLEDs;除N-TP和F-DTP外都获得饱和纯正的红光;C-DTP和N-DTP的溶液加工器件的亮度和效率已经与文献中同类衍生物的真空蒸镀器件的亮度和效率相当;这是一系列很有潜在应用价值的红光材料。
Organic light-emitting diodes (OLEDs) have been receiving more and more research and industry attentions due to practical application in large-area flat-panel displays and solid-state lighting. Among the three primary colors, the red light-emitting materials and devices still lag behind in terms of efficiencies and stability. Red host emitters have currently emerged as a trend since they are capable of fabricating non-doped OLEDs, which are apparently much easier than the doping technique. In addition, to be solution-processible is one important merit for light-emitting materials nowadays. Dendritic molecules are a new type of solution-processible light-emitting materials besides the traditional polymers. Dendrimers combine the merits of both small molecules and polymers and have been accepted as the third type of light-emitting materials.
     Solution-processible red hose light-emitting material and its non-doped red OLEDs are researched in this paper. Thieno-[3,4-b]-pyrazine and its derivatives are a groups of promising red fluorophores with extra large Stokes' shifts and high fluorescence quantum yields (ΦF). However, thieno-[3,4-b]-pyrazine is a planar chromophore. It is necessary to eliminate the strong intermolecular interaction and the consequent fluorescence-quenching by intelligent structure modification if efficient solid-state emission is desired for thieno-[3,4-b]-pyrazine derivatives. In addition, there have been only few reports on small molecular thieno-[3,4-b]-pyrazine based red emitters that were used for OLEDs by vacuum evaporation technique. The solution-processible thieno-[3,4-b]-pyrazine based red emitting materials and their application in OLEDs are still absent so far. Therefore, it is the aims of this paper to develop novel solution-processible thieno-[3,4-b]-pyrazine molecules and to fabricate their efficient non-doped red OLEDs via solution methods. Three types ten novel thieno-[3,4-b]-pyrazine-cored dendrimers were designed and synthesized. These dendritic materials were used as host emitting layer to fabricate non-doped OLEDs by spin coating technique, and the electroluminescent properties were investigated.
     "Emissive core-charge transporting groups" type, in which the hole transporting arylamino or carbazolyl groups are linked directly to the thieno-[3,4-b]-pyrazine core. C1-TP and C2-TP exhibit saturated red fluorescence and have better solubility than the parent molecule TP. The peripheral carbazole units facilitate the hole transporting ability in the neat films of C1-TP and C2-TP. Non-doped OLEDs are fabricated by spin coating technique using these dendritic materials as host emitting layer. However, both theΦF of C1-TP and C2-TP and their electroluminescent performance were rather than ideal. This is because the intramolecular charge transfer (ICT) from the carbazole or amino groups to the thieno-[3,4-b]-pyrazine core severely quenched the light-emission of the core.
     "Emissive core-spacers" type, in which the polyphenyl or diphenyl-benzopyrene spacers are connected to the thieno-[3,4-b]-pyrazine emissive core. The bulky aromatic spacers groups provide efficient site-isolation effect on the planar emissive core and significant molecular weight. These compounds exhibit pure saturated red fluorescence in solution and solid film. Compared with the diphenyl-benzopyrene based P-DTP and TP-DTP, the polyphenyl based DTP has better solubility and can be synthesized via easier procedure. They exhibited similar EL performance in their non-doped OLEDs. In addition, DTP performed better in OLEDs than its second-generation counterpart D2TP.
     In particular, DTP has both excellent solubility and thermal stability. Therefore, two types of non-doped OLEDs were successfully fabricated either by spin coating or vacuum evaporating DTP layer. Due to introduction of the hole transporting layer and the improved charge balance in the evaporated device, a maximum brightness of 1753 cd m-2 and a peak current efficiency of 0.74 cd A-1 were obtained, which represents the best efficiency of thieno-[3,4-b]-pyrazine-based red emitting materials reported so far.
     "Emissive core-spacers-charge transporting groups" type molecules were designed and synthesized, in which the hole transporting arylamino or carbazolyl groups are connected through the pentaphenylphenyl spacers to the thieno-[3,4-b]-pyrazine core. In this configuration, the ICT effect was effectively decreased by the bulky spacers and the target dendrimers N-DTP and C-DTP have higherΦF and proper hole transporting ability. The solution processed OLEDs containing C-DTP and N-DTP as non-doped emitting layer exhibited a maximum luminance of 925 cd m-2 and 1020 cd m-2 and a current efficiency of 0.53cd/A and 0.58 cd/A, respectively. These are the best performance for spin coated OLEDs in this paper. N-DTP and C-DTP are already comparable in EL efficiency with the vacuum evaporated thieno-[3,4-b]-pyrazine analogues reported in literatures, however, they are superior in the merit of being solution-processible.
     In summary, the synthesis and application of the solutin-processible thieno-[3,4-b]-pyrazine based red emitting dendrimers were reported for the first time in this paper. They have merits of large Stokes'shifts, good solubility and saturated red emission in their non-doped OLEDs. They are superior to their reported analogues in terms of solution-processible merit and comparable or better EL performance.
引文
[1]Pope M, Kallmann H P. Magnante P. Electroluminescence in organic crystals [J]. Journal of Chemical Physics,1963,38:2042-2043.
    [2]Vincett P S, Barlow W A, Hann R A, et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films [J]. Thin Solid Films,1982,94:171-174.
    [3]Partidge R H. Electroluminescence from polyvinylcarbazole films:Electroluminescent devices [J]. Polymer,1983,24:746-752.
    [4]Tang C W, VanSlyke S A. Organic electroluminescent diodes [J]. Applied Physics Letters,1987,51(12): 913-915.
    [5]Tang C W, Vanslyke S A, Chen C H. Electroluminescence of doped organic thin films [J]. Journal of Applied Physics,1989,65:3610-3616.
    [6]Adachi C, Sutsui T, Saito S. Blue light-emitting organic electroluminescent devices [J]. Applied Physics Letters,1990,56:799-78.
    [7]Burroughes J H, Bradley D D, Brown A R, et al. Light-emitting diodes based on conjugated polymer [J]. Nature,1990,347:539-542.
    [8]Kido J, Y Iizumi. Fabrication of highly efficient organic electroluminescent devices [J]. Applied Physics Letters,1998,73:2721-2723.
    [9]徐清,王丽,余兴莲等.有机电致磷光材料的研究新进展[J].光谱实验室,2006,23:772-777.
    [10]Sun Y, Giebink N C, Kanno H, Forrest, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices [J]. Nature,2006,440:908-912.
    [11]Imaizumi K, Kaneko K, Mori T, et al., Analysis of electroluminescence mechanisms in N,N'-disphenyl-N,N'-bis(3-methylphenyl)-1,1'-disphenyl-4,4'-diamine/hydroxyl quinoline aluminum bilayer organic light-emitting diode by bipolar hopping conduction [J]. Journal of Applied Physics,2002,41(1): 366-373.
    [12]Mort J, Prister G, Photoelectronic properties of disordered organic solids:molecularly-doped polymers [J]. Polymer-Plastics Technology and Engineering,1979,12(2):89-140.
    [13]李向东,杨家德有机电致发光显示器件的研制及产品开发现状[J].半导体光电2000,21(2):153-158.
    [14]Kikuchi H, Negishi T. Organic EL element manufacturing technologies [M]. OLED 2000, San Diego, USA,1999.
    [15]柏原泉,长岛直树等.最新薄膜技术:有机EL制作装置[J], Ulvac Technical Journal.1997,46,31-35.
    [16]李亨.颜色技术原理及其应用[M].北京:科学出版社,1994.
    [17]王丽辉,徐征,孙力等.有机电致发光器件载流子注入效率的研究[J].半导体光电,1999,20(6):409-412.
    [18]Mitschke U, Buerle P. The electroluminescence of organic materials [J].Journal of Materials Chemistry, 2000,10:1471-1507.
    [19]Shirota Y. Organic materials for electronic and optoelectronic devices [J].Journal of Materials Chemistry, 2000,10:1-25.
    [20]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社.2005.
    [21]Shirota Y, Kuwabara Y, Inada H. Multilayered organic electroluminescent device using a novel starburst molecule,4-4'-4"tris(3-methylphenylphenylamino)triphenylamine,as a hole transport material [J]. Applied Physics Letters,1994,65:807-809.
    [22]Adachi C, Tokito S, T.Tsutsui. Electroluminescence in organic films with three-layer structure [J]. Journal of Applied Physics,1988,27:269-271.
    [23]Ko C W, Tao Y T.9,9-Bis{4-[di-(p-biphenyl)aminophenyl]}fluorene:a high Tg and efficient hole-transporting material for electroluminescent devices [J]. Synthetic Metals,2002,126:37-41.
    [24]Kido J, Y Iizumi. Fabrication of highly efficient organic electroluminescent devices [J]. Applied Physics Letters,1998,73:2721-2723.
    [25]Katz H E, Lovinger A K, Hohnson J, et al. A soluble and air-stable organic semiconductor with high electron mobility [J]. Nature,2000,404:478-480.
    [26]Jiang X Z, Liu Y Q, Liu S G, et al. Reddish orange light-emitting diodes made with N,N-bis-(1-naphehyl)-3,4,9,10-perylenbis(dicarboximide) [J]. Synthetic Metals,1997,91(1-3):253-256.
    [27]Brinkmann M, Gadret G, Muccini M, et al., Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-Tris(8-hydroxyquinoline)aluminum [J]. Journal of the American Chemical Society,2000,122:5147-5157.
    [28]Strohriegl P, Grazulevicius J V. Charge-transporting molecular glasses [J]. Advanced Materials,2002,14: 1439-1452.
    [29]Chen C H, Shi J, Tang C W. Recent developments in molecular organic electroluminescent materials [J]. Macromolecular Symposia,1997,125:1-48.
    [30]Campos R A, Kovalev I P. Red electroluminescence from a thin organometallic layer of europium [J]. Journal of Applied Physics,1996,80:7144-7150.
    [31]Baldo M A, O'Brien D F, You Y, et al. High efficiency phosphorescent emission from organic electroluminescent devices [J]. Nature,1998,395:151-154.
    [32]Duan J P, Sun P P, et al. New iridium complexes as highly efficient orange-red emitters in organic light-emitting diodes [J]. Advanced Materials,2003,15:224-228.
    [33]Bernhard S, Barron J A, et al. Electroluminescence in ruthenium(Ⅱ) complexes [J]. Journal of the American Chemical Society.,2002,124:13624-13628.
    [34]Carlson B, Phelan G D, et al. Divalent osmium complexes:synthesis,characterization, strongred phosphorescence and electrophosphorescence [J].Journal of the American Chemical Society,2002,124: 14162-14172.
    [35]Greenham N C, Moratti S C, Friend R H, et al. Effieient light-emitting diodes based on polylmers with high electron affinities [J]. Nature,1993,365:628-630.
    [36]J-Thomas K R, Lin J T, Tao Y T, et al. Star-shaped thieno-[3,4-b]-pyrazines:a new class of red-emitting electroluminescent materials [J]. Advanced Materials,2002;14(15):822-826.
    [37]Chen X W, Liao J L, Liang Y M, et al. High-efficiency red-light emission from poly fluorenes grafted with cyclometalated iridium complexes and charge transport moiety [J]. Journal of the American Chemical Society,2003,125,636-637.
    [38]Chen X W, Liao J L, Liang Y M, et al. High-efficiency red-light emission from poly fluorenes grafted with cyclometalated iridium complexes and charge transport moiety [J].Journal of the American Chemical Society,2003,125,636-637.
    [39]Morin J F, Leclerc M.7-Carbazole-based conjugated Polylmers for blue, green, and red light emission [J]. Macromolecules,2002,35,8413-8417.
    [40]朱道本.功能材料化学进展[M].北京:化学工业出版社.2005.
    [41]陈亮,邱勇.白光OLED近期发展[J].现代显示.2007,71:7-10.
    [42]Kim G W, Cho M J, Yu Y-J, et al. Red emitting phenothiazine dendrimers encapsulated 2-{2-[2-(4-Dimethylaminophenyl)vinyl]-6-methylpyran-4-ylidene}malononitrile Derivatives [J]. Chemistry of Materials,2007,19(1):42-50.
    [43]Wang J L, Zhou Y, Li Y F, Pei J. Solution-processable gradient red-emitting π-conjugated dendrimers based on benzothiadiazole as core:synthesis, characterization, and device performances [J]. Journal of Organic Chemistry,2009,74:7449-7456.
    [44]任辉彩.全氟代花酰亚胺类树枝状分子的合成及表征:(硕士学位论文)[D].大连:大连理工大学,2008.
    [45]Qu J Q, Pschirer N G, Liu D J, et al. Dendronized perylenetetracarboxdiimides with peripheral triphenylamines for intramolecular energy and electron transfer [J]. Chemistry-A European Journal,2004, 10(2):528-537.
    [46]Ohkita H, Benten H, Anada A, et al. Photoinduced electron transfer of carbazole-acceptor dyads in solution and in a polymer solid [J]. Physical Chemistry Chemical Physics,2004,6(15):3977-3984.
    [47]Wen L, Rasmussen S C. Synthesis and structural characterization of 2,5-dihalo-3,4-dinitrothiophenes [J]. Journal of Chemical Crystallography,2007,37(6):387-398.
    [48]冯福玲.苝酰亚胺类电致发光材料的合成:(博士学位论文)[D].大连:大连理工大学,2008.
    [49]Chao C C, Leung M K. Photophysieal and eleetroehemieal properties of 1,7-diaryl-substituted perylene diimides [J]. Journal of Organic Chemistry,2005,70:4323-4331.
    [50]Chen S, Xu X J, Liu Y Q, et al. Synthesis and characterization of n-type materials for non-doped organic red-light-emitting diodes [J]. Advanced Functional Materials,2005,15:1541-1546.
    [51]Kwong R C, Sibley S, Dubovoy T, et al. Efficient, saturated red organic light emitting devices based on phosphorescent platinum(Ⅱ) porphyrins [J]. Chemistry of Materials,1999,11:3709-3713.
    [52]Yong R H, Tang C W, Marchetti A P. Current-induced fluorescence quenching in organic light-emitting diodes [J]. Applied Physics Letters,2002,80(5):874-876.
    [53]Hu W P, Matsumura M, Wang M Z, et al. [J].Applied Physics Letters,2000,77:4271.
    [54]Adachi C, Baldo M A, Forrest S R, et al. Hightly-efficiency red electroluminescence devices [J]. Applied Physics Letters,2001,78(11):1622-1624.
    [55]Zhao S B, Wucher P, Hudson Z M, et al. Impact of the linker on the electronic and luminescent properties of diboryl compounds:molecules with two BMes2 groups and the peculiar behavior of 1,6-(BMes2)2pyrene [J]. Organometallics,2008,27(24):6446-6456.
    [56]Wu K-C, Ku P-J, Lin C-S, et al. The photophysical properties of dipyrenylbenzenes and their application as exceedingly efficient blue emitters for electroluminescent devices [J]. Advanced Functional Materials, 2008,18(1):67-75.
    [57]Thomas K R J, Velusamy M, Lin J T, et al. Hexaphenylphenylene dendronized pyrenylamines for efficient organic light-emitting diodes [J]. Journal of Materials Chemistry,2005,15(41):4453-4459.
    [58]Suzuki K, Yamada N, Ueno K. Pyrene compound and organic light emitting device. U.S. Pat. Appl.2008, US 2080119671 A 1[P],20080522.
    [59]Hu J. Zhang D, Harris F W. Ruthenium(III) chloride catalyzed oxidation of pyrene and 2,7-disubstituted pyrenes:an efficient, one-step synthesis of pyrene-4,5-diones and pyrene-4,5,9,10-tetraones [J]. Journal of Organic Chemistry,2005,70(2):707-708.
    [60]R. A. Pascal, Jr., W. D. McMillan, D. V. Engen, R. G. Eason [J], Journal of the American Chemical Society 1987,109,4660.
    [61]Duong H M, Bendikov M, Steiger D, et al. Efficient Synthesis of a novel, twisted and stable, electroluminescent "Twistacene" [J]. Organic Letters,2003,5(23):4433-4436.
    [62]Trecourt F, Mongin F, Mallet M, et al. Synthesis of 7H-pyrido[2,3-c]carbazoles from 5-bromo-8-methoxyquinolines via coupling and azide cyclization reactions [J]. Journal of Heterocyclic Chemistry,1995,32(4):1261-1267.
    [63]Okumoto K, Ohara T, Noda T, et al. A thermally stable greenish blue organic electroluminescent device using a novel emitting amorphous molecular material [J]. Synthetic Metals,2001,121(1-3):1655-1656.
    [64]Ollagnier C M A, Perera S D, Fitchett C M, Draper Sylvia M. Rhodium and palladium complexes of a pyridyl-centered polyphenylene derivative [J]. Dalton Transactions,2008,2:283-290.
    [65]Iwasawa T, Tokunaga M, Yasushi T. et al. Homogeneous palladium catalyst suppressing Pd blaek formation in air oxidation of aleohols [J]. Journal of the American Chemical Society,2004,126(21): 6554-6555.
    [66]Safarzadeh-Amiri A, Thompson M, Krull U J. Trans-4-dimethylamino-4'-(1-oxobutyl)stilbene:a new fluorescent probe of the bilayer lipid membrane [J]. Journal of Photochemistry and Photobiology, A: Chemistry,1989,47:299.
    [67]赵祖金.有机荧光小分子、寡聚物和树枝状大分子的合成及光电性能:(博士学位论文)[D].浙江:浙江大学,2008.
    [68]Bauer R, Liu D, Heyen A V,et al. Polyphenylene dendrimers with pentafluorophenyl units:synthesis and self-assembly [J]. Macromolecules,2007,40:4753-4761.
    [69]Liu D, Ren H C, Li J Y, Tao Q, Gao Z X. Novel perylene bisimide derivative with fluorinated shell:a multifunctional material for use in optoelectronic devices [J]. Chemical Physics Letters,2009; 482: 72-76.
    [70]Zhang X-F, Zhang I, Liu L H. Photophysics of halogenated fluoresceins:involvement of both intramolecular electron transfer and heavy atom effect in the deactivation of excited states [J]. Photochemistry and Photobiology,2010,86(3):492-498.
    [71]Healy E F, Manzer S, Gorman J, et al. A dramatic heavy-atom effect in the quenching of dichlorosubstituted lucigenin fluorescence [J]. Chemical Physics Letters,2010,485(1-3):258-261.
    [72]梁晓琴,廖显威.萘的卤素取代“重原子效应”的红外及荧光光谱的理论研究[J].四川师范大学学报(自然科学版).2001,24(3):274-276.
    [73]Wang J L, Zhou Y, Li Y F, Pei J. Solution-processable gradient red-emitting π-conjugated dendrimers based on benzothiadiazole as core:synthesis, characterization, and device performances [J].Journal of Organic Chemistry,2009,74:7449-7456.
    [74]Chen C-H, Lin J T, Yeh M-C P. Nonconjugated red-emitting dendrimers with p-type and/or n-type peripheries [J]. Organic Letters,2006,8(11):2233-2236.
    [75]Kim G W, Cho M J, Yu Y-J, et al. Red emitting phenothiazine dendrimers encapsulated 2-{2-[2-(4-Dimethylaminophenyl)vinyl]-6-methylpyran-4-ylidene}malononitrile Derivatives [J]. Chemistry of Materials,2007,19(1):42-50.
    [76]Pan J F, Zhu W H, Li S F, et al. Dendron-functionalized perylene diimides with carrier-transporting ability for red luminescent materials [J].Polymer,2005,46(18):7658-7669.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700