锌配合物光电特性和铱配合物磷光敏化及光电特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光作为一个新兴的研究领域不断吸引着越来越多的人们,目前已成为平板显示领域的一个研究热点。而有机发光材料是有机电致发光的基础和核心。面对人们对显示设备提出越来越高要求的同时,促使科学界和企业界不断地寻找更新型、更高效的发光材料,深入研究其发光机理,从而制备出性能更高、成本更低廉的显示器件来满足人们不断提出的要求。这个方向本身是一个涉及化学、材料学、物理和电子等多学科的研究领域,这需要人们从材料的设计和合成、发光过程和机理的分析等多方面去研究。本论文旨在采用金属配合物(锌、铱)材料,利用锌金属配合物的光电特性和铱金属配合物的磷光敏化作用设计了不同结构的器件结构,分别对其性能进行系统的研究,探索和分析了实验参数对金属配合物光电特性的影响,得出一些有意义的结论。
     首先,研究了新型锌金属配合物发光材料FHQZn、BFHQZn、CzHQZn和MCzHQZn光电性能,验证了这四种锌金属配合物材料具有一定的空穴传输特性和发黄光特性。在此基础上,采用这四种发光材料分别制备了不同结构的器件。其中以CzHQZn材料制备了性能最好的WOLED,该器件结构为ITO/2T-NATA(22 nm)/ CzHQZn(18 nm)/NPBX(5 nm)/ADN(27 nm)/BCP(8 nm)/Alq3(20 nm)/LiF(0.5 nm)/Al。器件的最大亮度为6416 cd/m2(13V),最大发光效率为1.46 cd/A(10V),器件的色坐标由10V时的(0.30,0.31)到13V时的(0.28,0.30)几乎没变。另外,采用简单的水热法合成了一种新型配合物Zn(C19H12N4)2(C7H4O6S)H2O。研究发现,在晶体中晶胞之间通过氢键形成了三维超分子结构,芳环之间的π-π相互作用加固了晶体的结构。
     其次,研究了铱金属配合物Ir(ppy)3的磷光敏化作用,详细地讨论了其磷光敏化作用对有机发光器件光电特性的改善。利用Ir(ppy)3分别敏化rubrene、ADN、CzHQZn而制作了白光或黄光器件。研究发现,敏化剂Ir(ppy)3能有效地提高材料的发光效率和亮度,磷光敏化作用的机理是通过磷光敏化剂从母体获得的能量通过共振转移的Forster机制传递给了荧光受主,使其被激发并辐射失活发射出荧光。
     第三,研究了铱金属配合物Ir(piq)3的光电性能,采用Ir(piq)3为客体材料,使母客体能级匹配,载流子同时通过母体和客体进行传输,从而制备了具有混合母体结构的红色磷光器件。这种结构的器件使其启亮电压得到显著降低,发光效率得到有效提高。另外,采用物理共混方法来制备器件,研究发现随着rubrene共混比例的增加,器件的色度发生相应的改变,由蓝光经过白光变化到黄光,器件的亮度和电流效率也随电压呈现规律性的变化。该方法有利于简化有机电致发光器件的制备工艺,为实现产业化奠定了一定的基础。
     有机电致发光存在生产工艺复杂、寿命不长、成品率较低等问题,通过研究可知,利用这种锌配合物材料制备的发光器件其发光特性较好,本身它也是集空穴传输和发光特性于一体的发光材料,这种多功能于一身的发光材料的开发和研制吸引更多的科技工作者。我们自己也尝试着通过水热法合成了一种锌配合物。另外,为了进一步提高器件的整体性能,利用铱配合物的磷光敏化作用及混合母体、物理共混等方法来提高器件的各项参数,这也是论文研究意义所在。
Organic electroluminescence, as new research field, has been a hot subject in flat panel displays and attracted more and more people. The organic luminous materials are the basis and core of the organic electroluminescence. Now, the new and high efficient organic luminous materials and their mechanisms are required as a result of the higher and higher technology for information display. Organic electroluminescence is by itself a subject relate to chemistry, material, physics, electronics etc., and need people to investigate it from material design and synthesis, luminescence process and mechanism, etc. The main points for this thesis are to research the photoelectric performance and phosphorescent sensitization of metal complexes (Zn and Ir), and analyse the effect of experiment parameter on the photoelectric performance. Finally, the significant results are given in the dissertation.
     Firstly, we researched the luminescence performances of metal complexes FHQZn, BFHQZn, CzHQZn and MCzHQZn. The results showed that these metal complexes were yellow luminescence material with a certain hole-transporting characteristics. Base on above research, we finally fabricated the OLEDs with the four metal complexes materials. Among of them, the OLED with the structure of ITO/2T-NATA (22 nm)/CzHQZn (18 nm)/NPBX (5 nm)/ADN (27 nm)/BCP (8 nm)/Alq3(20 nm)/LiF (0.5 nm)/Al had the best luminescence performance with the CzHQZn material. The results showed the WOLED with a maximum luminous efficiency of 1.46 cd/A (at 10 V) and a maximum luminance of 6416 cd/m2 (at 13 V) was achieved. The CIE coordinates of device were from (0.30,0.31) for 10 V to (0.28,0.30) for 13 V, and they were stable on the voltages. In addition, we synthesized a new metal compoud of Zn(C19H12N4)2(C7H4O6S)H2O. The results showed the 3 d supramolecular structure was formed by hydrogen bonding by the unit cells, and theπ-πinteraction was strengthened the crystal structure.
     Secondly, we researched the phosphorescent sensitization of the metal complexes Ir(ppy)3. And we mainly discussed the effect of phosphorescent sensitization on the luminescence performance of the OLEDs. At the first, the phosphorescent sensitizer of Ir(ppy)3 sensitized rubrene, ADN and CzHQZn materials were researched. The results showed the phosphorescent sensitizer of Ir(ppy)3 could improved the luminous efficiency and luminance of the luminescence materials. The energy of Ir(ppy)3, which from the host, had been transferred to acceptor by the Forster mechanism. Then it would be excitated and radiation deactivation in order to emit the fluorescence.
     Thirdly, we researched the photoelectric performance of the metal complex Ir(piq)3. In the system, the carriers transport via Ir(piq)3 dopant molecules in the emitting layer with single host, while, via both dopant and host molecules when their energy levels were well aligned. Conditions for reduction of driving voltage and enhanced efficiency of red PHOLED were obtained with mixed host structure. In the end, we fabricated the OLEDs by the physical blending method. The device had a corresponding color change from blue through white change to yellow with the increase in the proportion of rubrene blend, and the brightness and current efficiency of the devices also showed regular changes with the voltage. The method can be simplified the preparation technology of the OLEDs.
     OLEDs have some disadvantages, such as complex production process, shorter life, lower rate, etc. We find that OLEDs based on the Zn metal complexes have good photoelectric performance by the experiments. And Zn metal complexes we used are not only the hole-transporting materials but also the luminescence materials. These multi-functional organic electroluminescent materials have been attracted more and more people. We also attempt to synthesis the Zn metal complex in the dissertation. In addition, we use the phosphorescent sensitization of the Ir metal complex and different methods, such as the mixed host method and physical blending method to further improve the photoelectric performance of the OLEDs. They are the significance of the dissertation.
引文
[1]黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005.
    [2]黄剑.有机电致发光材料研究进展[J].化工新型材料,2001,29(9):10-14.
    [3]尹盛.有机电致发光材料的研发现状[J].化工新型材料,2003,31(1):1-5.
    [4]SUO Fan, YU Jun-sheng, LI Wei-zhi, et al. Study of the Effect of Film Thickness on the Performance of NPB/Alq3 Double Layer Organic Light-Emitting Diodes [J]. Acta Electronica Sinica,2007,35(11):2050-2054.
    [5]Parthasarathy G, Adaehi C, Burrows P E, et al. High-effieieney transparent organic light-emitting devices [J]. Appl. Phys. Lett.,2000,76(15):2128-2130.
    [6]Burrows P E, Gu G, Forrest S R, et al. Semitransparent cathodes for organic light emitting devices [J]. J. Appl. Phys.,2000,87(6):3080-3085.
    [7]黄春辉,李富友,黄岩谊.光电功能超薄膜[M].北京:北京大学出版社,2001.
    [8]Lamansky S, Djurovich P, Murphy D, et al. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes:Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes [J]. J. Am. Chem. Soc.,2001,123(18):4304-4312.
    [9]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al. Light-emitting diodes based on conjugated polymers [J]. Nature,1990,347:539-541.
    [10]Woo Jong Jo, Kwon-Hyeon Kim, Hyeon Chang No, et al. High efficient organic light emitting diodes using new 9,10-diphenylanthracene derivatives containing bulky substituents on 2, 6-positon [J]. Synth. Met.,2009,159(13):1359-1364.
    [11]Xue-Wen Chen, Wallace C. H. Choy, Sailing He. Efficient and Rigorous Modeling of Light Emission in Planar Multilayer Organic Light-Emitting Diodes [J]. Journal of Display Technology,2007,3(2):110-117.
    [12]Hyunsu Cho, Changhun Yun, Seunghyup Yoo. Multilayer transparent electrode for organic light-emitting diodes:tuning its optical characteristics [J]. Optics Express,2010,18(4): 3404-3414.
    [13]Carlos A. Zuniga, Stephen Barlow, Seth R. Marder. Approaches to Solution-Processed Multilayer Organic Light-Emitting Diodes Based on Cross-Linking [J]. Chem. Mater.,2011, 23(3):658-681.
    [14]D'Andrade B W, Brooks J, Adamovich V, et al. White Light Emission Using Triplet Excimers in ElectroPhosphorescent Organic Light-Emitting Devices [J]. Adv. Mater.,2002,14: 1032-1034.
    [15]Ego C., Grimsdale A.C., Uckert F., et al. Triphenylamine-Substituted Polyfluorene-A Stable Blue-Emitter with Improved Charge Injection for Light-Emitting Diodes [J]. Adv. Mater.,2002, 14(11):809-813.
    [16]郑新友.两种蓝色有机电致发光材料[J].发光学报,2002,23(4):357-360.
    [17]Lee M T, Yen C K, Yang W P, et al. Efficient Green Coumarin Dopants for Organic Light-Emitting Devices [J]. Org. Lett.,2004,6(8):1241-1244.
    [18]Tianzhi Yu, Peng Zhang, Yuling Zhao, et al. Photoluminescence and electroluminescence of a tripodal compound containing 7-diethylamino-coumarin moiety [J]. J. Phys. D:Appl. Phys., 2008,41(23):235406-1-7.
    [19]Lee J H, Liu Q D, Motala M, et al. Photoluminescence, Electroluminescence and Complex Formation of Novel N-7-azaindoyl and 2,2'-dipyridylamino Functionalized Siloles [J]. Chem. Mater.,2004,16:1869-1877.
    [20]Chen C T. Evolution of Red Organic Light-Emitting Diodes:Materials and Devices [J]. Chem. Mater.,2004,16 (23):4389-4400.
    [21]Hamada Yuji, Kanno Hiroshi, Tsujioka Tsuyoshi, et al. Red organic light-emitting diodes using an emitting assist dopant [J]. Appl. Phys. Lett.,1999,75(12):1682-1684.
    [22]LI Xin-bei, ZHANG Fang-hui, ZHANG Mai-li. Red Doped Organic Light-emitting Diodes [J]. Chin. J.Lumin.,2006,27(5):689-694.
    [23]SHEN Lin, XU Hao, YE Dan-qin, et al. High Efficiency and High Color Purify Red Organic Electrophosphrescent Devices Using BAlq as Host Material [J]. Chin. J.Lumin.,2008,29(1): 23-26.
    [24]欧谷平,桂文明,金世超,等.掺杂对OLED发光效率的影响[J].科学技术与工程,2004,4(11):960-965.
    [25]Denghui Xu, Zhenbo Deng, Xiufang Li, et al. Non-doped red to yellow organic light-emitting diodes with an ultrathin 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) layer [J]. Physica E,2008,40(9):2999-3003.
    [26]Fred W, Billmeyer J. Text book of Polymer Seience,3ed Edition [M]. Singapore:John wiley & Sons,2000.
    [27]Chung-Wen Ko, Hong-Cheu Lin. Doped LED polymers containing novel luminescent bispyridyl compounds [J]. Thin Solid Films,2000,363:81-85.
    [28]Chao-Hui Kuo, Kang-Chun Peng, Li-Chung Kuo, et al. High-Performance Hole-Transport Polyurethanes for Light-Emitting Diodes Applications [J]. Chem. Mater.,2006,18:4121-4129.
    [29]樊美公.光化学基本原理与光子学材料科学[M].北京:科学出版社,2001.
    [30]Brooks J, Babayan Y, Lamansky S, et al. Synthesis and Charaeterization of Phosphorescent Cyclometalated Platinum Complexes [J]. Inorg. Chem.,2002,41:3055-3057.
    [31]Adaehi C, Kwong R C, Djurovich P, et al. Endothermic energy transfer:A mechanism for generating very efficient high-energy Phosphorescent emission in organic materials [J]. Appl. Phys. Lett.,2001,79:2082-2085.
    [32]Baldo M A, Forrest 5 R. Transient analysis of organic electrophosphorescence 1.Transient analysis of triplet energy transfer [J]. Phys. Rev.,2000,62(16):10958-10966.
    [33]Colle M, Gmeiner J, Milius W, et al. Preparation and Characterization of Blue-Luminescent Tris(8-hydroxyquinoline)-aluminum (Alq3) [J]. Adv. Funct. Mater.,2003,13:108-112.
    [34]Brinkmann M, Gadret G, Muccini M, et al. Correlation Between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinoline)aluminum(Ⅲ) [J]. J. Am. Chem. Soc.,2000,122(21):5147-5157.
    [35]Joseph M, Tabata H, Saeki H, et al. Preparation and Characterization of Alq3 Crystal [J]. Journal of Hubei Automotive Industries Institute,2010,24(2):51-53.
    [36]Chen Tao, Xu Shen-gang, Wang Yan-rong, et al. Recent Progress of Metal Containing Conjugated Polymers [J]. CHINESE POLYMER BULLETIN.,2010,2:27-40.
    [37]黄春辉.稀土配位化学[M].北京:科学出版社,1997.
    [38]Dongyu Zhang, Wenlian Li, Bei Chu, et al. Exciplex emission and Auger process assistant green organic electrophosphorescence devices with very low doped level of iridium complex [J]. J. Phys. D:Appl. Phys.,2008,41:245102-1-4.
    [39]Yuanhong Liu, Jianhua Hao, Weidong Zhuang, et al. Structural and luminescent properties of gel-combustion synthesized green-emitting Ca3Sc2Si3O12:Ce3+phosphor for solid-state lighting [J]. J. Phys. D:Appl. Phys.,2009,42:245102-1-6.
    [40]Mathew K. Mathai, Vi-En Choong, Stelios A. Choulis, et al. Highly efficient solution processed blue organic electrophosphorescence with 141m/W luminous efficacy [J]. Appl. Phys. Lett., 2006,88:243512-1-3.
    [41]Sebastien Forget, Sebastien Chenais, Denis Tondelier, et al. Red-emitting fluorescent Organic Light emitting Diodes with low sensitivity to self-quenching [J]. J. Appl. Phys.,2010,108 (6): 064509-1-6.
    [42]Meerheim Rico, Walzer Karsten, Pfeiffer Martin, et al. Ultrastable and efficient red organic light emitting diodes with doped transport layers [J]. Trans. Faraday Soc.,2006,89(6): 061111-1-3.
    [43]Yu W L, Pei J, Ca Y, et al.. Hole-injection enhancement by copper Phthalocyanine (CuPc) in blue polymer light-emitting diodes [J]. J. Appl. Phys.,2001,89:2343-2350.
    [44]Strohriegl P, Grazulevicius J V. Charge-transporting molecular glasses [J]. Adv. Mater.,2002, 14:1439-1452.
    [45]Hughes G, Bryce M R. Electron-transporting materials for organic electrolum-niscent and electrophosphorescent devices [J]. J. Mater. Chem.,2005,15:94-107.
    [46]J. V. Grazulevicius. Charge-transporting polymers and molecular glasses for optoelectronic applicationsy [J]. Polym. Adv. Technol.,2006,17:694-696.
    [47]Ono K, Yanase T, Ohkita M, et al. Synthesis and Properties of 9,9'-Diaryl-4,5-diazafluorenes. A New Type of Electron-Transporting and Hole-Blocking Material in EL Device [J]. Chem. Lett.,2004,33:276-277.
    [48]Xin H, Li F Y, Shi M, et al. Efficient Electroluminescence from a New Terbium Complex [J]. J. Am. Chem. Soc.,2003,125:7166-7177.
    [49]Jia W L, Feng X D, Bai D R, et al. Mes2B (p-4,4'-biphenyl-NPh (1-naphthyl)):A Novel Multi-functional Molecule for Electroluminescent Devices [J]. Chem. Mater.,2005,17: 164-170.
    [50]Thomas K R J, Lin J T, Tao Y T, et al. Quinoxalines Incorporating Triarylamines:Potential Electroluminescent Materials with Tunable Emission Characteristics [J]. Chem. Mater.,2002, 14:2796-2802.
    [51]Adaehi C, Tokito S, Tsutsui T, et al. Eleetroluminescence in Organic Films with Three-Layer Structure [J]. Jpn. J. Appl. Phys.,1988,27:L269-L271.
    [52]Chen C H, Tang C W, Shi J, et al. Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence [J]. Thin Solid Film,2000,363(1-2):327-331.
    [53]Liu H, Gao W, Yang K, et al. Effect of rubrene on characteristic of red organic electroluminescent device doped with rubrene [J]. Chem. Phys. Lett.,2002,352(5-6):353-356.
    [54]Parthasarathy G, Gu G, Forrest S R. A Full-Color Transparent Metal-Free Stacked Organic Light Emitting Device with Simplified Pixel Biasing [J]. Adv. Mater.,1999,11(08):907-910.
    [55]Burrows P E, Khalfin V, Gu G, et al. Control of Microcavity Effects in Full Color Stacked Organic Light Emitting Devices [J]. Appl. Phys. Lett.,1998,73(4):435-437.
    [56]Liao L S, Klubek K P, Tang C W. High-efficiency tandem organic light-emitting diodes [J]. Appl. Phys. Lett.,2004,84(2):167-169.
    [57]Ohmori Y, Fujii A, Uchida M. Fabrication and characteristics of 8-hydroxyquinoline aluminum/aromatic diamine organic multiple quantum well and its use for electroluminescent diode [J]. Appl. Phys. Lett.,1993,62(25):3250-3252.
    [58]Mark P, Helfrich W. Space-charge-limited currents in organic crystals [J]. J. Appl. Phys.,1962, 33:205-215.
    [59]Dunlap D H, Parris P E, Kenkre V M. Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers [J]. Phys. Rev. Lett.,1996,77(3):542-545.
    [60]李亨.颜色技术原理及其应用[M].北京:科学出版社,1994.
    [61]S. A. VanSlyke, C. H. Chen, C. W. Tang. Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett.,1996,2160:878-880.
    [62]Pope M, Kallmann H P, Magnante P. Electroluminescence in organic crystals [J]. J. Chem. Phys.,1963,38:2042-2043.
    [63]Tang C W, Vanslyke S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett.,1987, 51(12):913-915.
    [64]Shirakawa H, Louis E J, MacDiarmid A G, et al. Synthesis of electrically conducting organic polymers:halogen derivatives of polyacetylene, (CH)x [J]. J. Chem. Soc. Chem. Commun., 1977,16:578-580.
    [65]Braun D, Heeger A J. Visible light emission from semiconducting polymer diodes [J]. Appl. Phys. Lett.,1991,58(18):1982-1984.
    [66]M. A. Baldo, D. F. Brien, Y. You, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature,1998,395:151-154.
    [67]C.Adachi, M.A.Baldo, M.E.ThomPson, et al. Nearly 100% intenal phosphorescence efficiency in an organic light emitting device [J]. J. Appl. Phys.,2001,90(10):5048-5051.
    [68]Sandee A J, Williams C K, Evans N R, et al. Solution-processible conjugated electrophosphorescent polymers [J]. J. Am. Chem. Soc.,2004,126(22):7041-7048.
    [69]Sun Y, Giebink N C, Kanno H, et al. Management of singlet and triplet excitons for efficient white organic light-emitting devices [J]. Nature,2006,440:908-912.
    [70]杨少鹏,赵方超,邱晓丽,等.掺磷光材料有机电致发光器件的能量传递[J].应用光学,2009,30(2):220-224.
    [71]M. V. Madhava Rao, Yan Kuin Su, T. S. Huang, et al. White organic light emitting devices based on multiple emissive nanolayers [J]. Nano-Micro Lett.,2010,2:242-246.
    [72]李善君,纪才圭.高分子光化学原理及应用[M].上海:复旦大学出版社,1993.
    [73]E. Aminaka, T. Tsutsui, S. Saito. Electroluminecent behaviors in multi-layer thin-filmelectroluminescent devices using 9,10-bissty rylanthracene deriratives [J]. Jpn. J. Appl. Phys.,1994,33:1061-1068.
    [74]I. D. Parker. Carrier tunneling and device characteristics in polymer light-emitting diodes [J]. J. Appl. Phys.,1994,75(3):1656-1666.
    [75]P. E. Burrows, S. R. Forrest. Electroluminescent from trap-limited current transport in vacuum deposited organic light emitting devices [J]. Appl. Phys. Lett.,1994,64(17):2285-2287.
    [76]S. Karg, M. Meier, W. Riess. Light-emitting diodes based on poly-p-phenylene-vinylene Charge-carrier injection and transport [J]. J. Appl. Phys.,1997,82(4):1951-1960.
    [77]P. E. Burrows, Z. Shen, V. Bulovic, et al. Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices [J]. J. Appl. Phys.,1996, 79(10):7991-8006.
    [78]J. R. Sheats, H. Antoniadis, M. Hueschen. Organic electroluminescence devices [J]. Science, 1996,273:884-888.
    [79]C. F. Madigan, M. H. Lu, J. C. Sturm. Improvement of output coupling efficiency of organic light-emitting diodes by backside substrate modification [J]. Appl. Phys. Lett.,2000,76(13): 1650-1652.
    [80]K. Han, Y. Yi, W. J. Song, et al. Dual enhancing properties of LiF with varying positons inside organic light-emitting devices [J]. Org. Electron.,2008,9:30-38.
    [81]Shumei Liu, Bin Li, Liming Zhang, et al. Enhanced efficiency and reduced roll-off in nondoped phosphorescent organic light-emitting devices with triplet multiple quantum well structures [J]. Appl. Phys. Lett.,2010,97:083304-1-3.
    [82]P. Desai, P. Shakya, T. Kreouzis, et al. Magnetoresistance and efficiency measurements of Alq3-based OLEDs [J]. Phys. Rev. B,2007,75(9):094423-1-5.
    [83]P. Shakya, P. Desai, M. Somerton, et al. The magnetic field effect on the transport and efficiency of group Ⅲ tris (8-hydroxyquinoline) organic light emitting diodes [J]. J. Appl. Phys., 2008,103(10):103715-1-5.
    [84]Feng Li, Linyuan Xin, Shiyong Liu. Direct measurement of the magnetic field effects on carrier mobilities and recombination in tri-(8-hydroxyquinoline)-aluminum based light-emitting diodes [J]. Appl. Phys. Lett.,2010,97:073301-1-3.
    [85]Zhang Yong, Liu Rong, Lei Yanlian, et al. Magnetoconductance in Alq3-based organic light-emitting diodes [J]. Acta Phys. Sin.,2010,59(8):5817-4289.
    [86]Liu R, Zhang Y, Lei Y L, et al. Magnetic field dependent triplet-triplet annihilation in Alq3-based organic light emitting diodes at different temperatures [J]. J. Appl. Lett.,2009,105 (9): 093719-1-5.
    [87]Kido J., Ohtaki C., Hongawa K., Okuyama K., Nagai K.1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices [J]. Jpn. J. Appl. Phys.,1993, 32:917-920.
    [88]Hamada Y, Sano T, Fujita M, et al. Electrically switchable mesoscale Penrose quasierystal structure [J]. Jpn. J. Appl. Phys.,1993,32:514-520.
    [89]Hamada Y, Sano T, Fujii T, et al. White light-emitting material for organic electro-luminesecent devices [J]. Jpn. J. Appl. Phys.,1996,35:1339-1341.
    [90]ZENG He-ping, OUYANG Xin-hua, WANG Ting-ting, et al. Synthesis, crystal structure and prediction of hole mobilities of 2,7'-2(ethylene)-bis-8-hydroxyquinoline [J]. Crystal Grown & Design,2006,6 (7):1697-1702.
    [91]Sharma A, Singh D, Makrandi J K, et al. Electroluminescent characteristics of OLEDs fabricated with bis (5,7-dichloro-8-hydroxyquinolinato) zinc (Ⅱ) as light emitting material [J]. Mater. Lett.,2007,61 (23-24):4614-4617.
    [92]Barberis V P, Mikroyannidis J A. Synthesis and optical properties of aluminum and zinc quinolates through styryl subsituent in 2-position [J]. Synth. Met.,2006,156 (11-13):865-871.
    [93]WANG Yu, HUA Yu-lin, WU Xiao-ming, et al. Effects of emitting and hole transporting layers on the performance of white organic light-emitting device [J]. Acta Phys. Sin.,2007,56 (12): 7213-7218.
    [94]Yan H, Huang Q, Cui J, et al. High-brightness blue light-emitting polymer diodes via anode modification using a self-assembled monolayer [J]. Adv. Mater.,2003,15:835-838.
    [95]Yeh Hsiu-Chih, Chan Li-Hsin, Wu Wei-Ching, et al. Non-doped red organic light-emitting diodes [J]. J. Mater. Chem.,2004,14:1293-1298.
    [96]JIANG Wen-long, WANG Hong-mei, DING Gui-ying, et al. Fabricating the blue OLED with highly efficiency by adjusting organic layers thickness [J]. Journal of Optoeiectronics-Laser, 2008,19(10):1315-1318.
    [97]M. A. Baldo, D. F. O'Brien, Y. You, et al. Thompson and S. R. Forrest. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature (London),1997, 395:151-154.
    [98]Adachi Chihaya, Baldo Marc A., Forrest Stephen R., et al. High-efficiency red electrophosphorescence devices [J]. Appl. Phys. Lett.,2001,78:1622-1624.
    [99]Kondakova, Marina E. Pawlik, Thomas D. Young, et al. High-efficiency, low-voltage phosphorescent organic light-emitting diode devices with mixed host [J]. J. Appl. Phys.,2008, 104:094501-1-17.
    [100]Sang-Hyun Eom, Ying Zheng, Neetu Chopra, et al. Low voltage and very high efficiency deep-blue phosphorescent organic light-emitting devices [J]. Appl. Phys. Lett.,2008,93: 133309-133311.
    [101]Wang Q, Ding J Q, Ma D G, et al. Highly efficient single-emitting-layer white organic light-emitting diodes with reduced efficiency roll-off [J]. Appl. Phys. Lett.,2009,94(10): 103503-1-3.
    [102]Li Hong-Jian, Peng Jing-Cui, Xu Xie-Mei, et al. Transport and recombination of charge carriers in organic electroluminescent devices [J]. Acta Phys. Sin.,2002,51(2):430-433.
    [103]Wang Q, Ding J Q, Ma D G, et al. Manipulating charges and excitons within a single-host system to accomplish efficiency/CRI/color-stability trade-off for high-performance OWLEDs [J]. Adv. Mater.,2009,21(2):2397-2401.
    [104]R. P. Groff, R. E. Merrifield, A. Suna, et al. Electroluminescent characteristics of white organic light-emitting diodes using two different red dopants [J]. J. Phys. Chem. Solids.,2008,69(5-6): 1310-1313.
    [105]刘恩科,朱秉升,罗晋生,等.半导体物理学(第六版)[M].北京:电子工业出版社,2003.
    [106]陈金鑫,黄孝文,等OLED有机电致发光材料与器件[M].北京:清华大学出版社,2007.
    [107]K. W. Ihm, T. H. Kang, K. J. Kim, et al. Band bending of LiF/Alq3 interface in organic light-emitting diodes [J]. Appl. Phys. Lett.,2003,83(14):2949-2951.
    [108]Jiang Wen-Long, Cong Lin, Meng Zhao-Hui, et al. The magnetic field effects on Organic Light-Emitting Diodes Based on Alq3 at room temperature [J]. Acta Phys. Sin.,2010,59: 645-647.
    [109]Gang Cheng, Yingfang Zhang, Yi Zhao, et al. Improved efficiency for white organic light-emitting devices based on phosphor sensitized fuorescence [J]. Appl. Phys. Lett.,2006,88: 083512-1-3.
    [110]Ye Tengling, Shao Shiyang, Chen Jiangshan, et al. Detailed studies on energy loss mechanism in phosphor-sensitized fluorescent polymer light-emitting devices [J]. J. Appl. Phys.,2010,107: 054515-1-6.
    [111]Musubu Ichikawa, Tomoya Aoyama, Junko Amagai, et al. Dynamic Behavior of Electroluminescence from Phosphor-Sensitized Red Fluorescent Organic Light-Emitting Diodes [J]. J. Phys. Chem. C,2009,113(27):11520-11523.
    [112]Liudong Hou, Lian Duan, Juan Qiao, et al. Efficient solution-processed phosphor-sensitized single-emitting-layer white organic light-emitting devices:fabrication, characteristics, and transient analysis of energy transfer [J]. J. Mater. Chem.,2011,21:5312-5318.
    [113]Chih-HaoChang, Yin-JuiLu, Chih-CheLiu. Effcient White OLEDs Employing Phosphorescent Sensitization [J]. Journal of Display Technology,2007,3(2):193-199.
    [114]Wen Wen, JunSheng Yu, Yuan Hu, et al. Red organic light emitting device with improved performance using a novel fluorescent dye codoped with phosphor-sensitizer [J]. Chinese Science Bulletin,2010,55(24):2738-2743.
    [115]Gufeng He, Shun-Chi Chang, Fang-Chung Chen, et al. Highly efficient polymer light-emitting devices using a phosphorescent sensitizer [J]. Appl. Phys. Lett.,2002,81(8):1509-1511.
    [116]Highly Efficient and Unusual Structure White Organic Light-Emitting Devices Based on Phosphorescence Sensitized 5,6,11,12-Tetraphenylnaphthacene [J]. Key Engineering Materials,2007,364-366:1095-1099.
    [117]DAndrade, Brian W. Baldo, Marc A. Adachi, et al. High-efficiency yellow double-doped organic light-emitting devices based on phosphor-sensitized fluorescence [J]. Appl. Phys. Lett., 2001,79:1045-1047.
    [118]Chopra Neetu, Swensen James S., Polikarpov, Evgueni, et al. High efficiency and low roll-off blue phosphorescent organic light-emitting devices using mixed host architecture [J]. Appl. Phys. Lett.,2010,97:033304-1-3.
    [119]Neetu Chopra, Jaewon Lee, Ying Zheng, et al. Effect of the Charge Balance on High-Efficiency Blue-Phosphorescent Organic Light-Emitting Diodes [J]. ACS Appl. Mater. Interfaces,2009, 1(6):1169-1172.
    [120]Ganzorig C, Fujihira M. A possible mechanism for enhanced electrofluorescence emission through triplet-triplet annihilation in organic electroluminescent devices [J]. Appl. Phys. lett., 2002,81(17):3137-3139.
    [121]Baldo M A, Thompson M E, Forrest S R. High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer [J]. Nature,2000,403:750-753.
    [122]Murata H, Merritt C D, Kafafi Z H. Emission mechanism in rubrene-doped molecular organic light-emitting diodes:direct carrier recombination at luminescentcenters [J]. IEEE J. Selected Topics in Quantum Electron.,1998,4(1):119-124.
    [123]JIANG Wen-long, DING Gui-ying, WANG Jin, et al. Highly efficient white phosphorescent organic light-emitting devices using an electron/exciton blocker [J]. Journal of Optoeiectronics·Laser,2008,19(5):595-598.
    [124]Parthasarathy G, Shen C, Kahn A, et al. Lithium doping of semiconducting organic charge transport materials [J]. J. Appl. Phys.,2001,89:4986-4992.
    [125]Naka S, Okada H, Onnagawa H, et al. High electron mobility in bathophenanthroline [J]. Appl. Phys. Lett.,2000,76:197-199.
    [126]Wang Q, Ding J Q, Ma D G, et al. Harvesting excitons via two parallel channels for efficient white organic LEDs with nearly 100% internal quantum efficiency:Fabrication and emission-mechanism analysis [J]. Adv. Funct. Mater.,2009,19(1):84-95.
    [127]Wang Q, Ding J Q, Ma D G, et al. A high-performance tandem white organic LED combining highly effective white units and their interconnection layer [J]. J. Appl. Phys.,2009,105(7): 076101-1-3.
    [128]DING Gui-Ying, JIANG Wen-Long, CHANG Xi, et al. Properties of Yellow-Green Organic Light-Emitting Devices Based on (E)-2-(2-(9-ethyl-9H-carbazol-3-yl) vinyl) Quinolato-Zinc [J]. Acta Phys. Chim. Sin.,2009,25(5):958-962.
    [129]TANG Xiao-Qing, YU Jun-Sheng, LI Lu, et al. Polymer doped high brightness phosphorescent organic light-emitting diodes [J]. Acta Phys. Chim. Sin.,2008,24(6):1012-1016.
    [130]Fowler R H, Nordheim L W. Electron emission in intense electric fields [J]. Proc. R. Soc, London Ser. A,1928,119:173-181.
    [131]MU Qiang, ZHANG Mai-li, ZHANG Fang-hui. Effect of Thickness and Deposit Speed on the Performance of OLED [J]. Chinese Journal of Liquid Crystals and Displays,2005,20(6): 508-511.
    [132]DING Gui-ying, WANG Jin, JIANG Wen-long, et al. White organic light-emitting devices based on fac tris (2-phenylpyridine) iridium sensitized 5,6,11,12-tetraphenylnaphthacene [J]. Journal of Optoeiectronics-Laser,2008,19(7):895-898.
    [133]DUAN J P, SUN P P, C.H. Cheng. New Iridium Complexes as Highly Efficient Orange-Red Emitters in Organic Light-Emitting Diodes [J]. Adv. Mater.,2003,15:224-228.
    [134]Ramchandra Pode, Jeung-Sun Ahn, Woo Sik Jeon, et al. Efficient red light phosphorescence emission in simple bi-layered structure organic devices with fluorescent host-phosphorescent guest system [J]. Curr. Phys. Lett.,2009,9:1151-1154.
    [135]MEERHEIM R., LUSSEM B., LEO K. Efficiency and Stability of p-i-n Type Organic Light Emitting Diodes for Display and Lighting Applications [J]. Proceedings of the IEEE,2009,97: 1606-1626.
    [136]Reineke Sebastian, Schwartz Gregor, Walzer Karsten, et al. Highly phosphorescent organic mixed films:The effect of aggregation on triplet-triplet annihilation [J]. Appl. Phys. Lett.,2009, 94:163305-1-3.
    [137]Kawamura Y, Brooks J, Brown J J, et al. Intermolecular Interaction and a Concentration-Quenching Mechanism of Phosphorescent Ir (Ⅲ) Complexes in a Solid Film [J]. Phys. Rev. Lett.,2006,96:017404-1-4.
    [138]Y. Duan, M. Mazzeo, V. Maiorano, et al. Extremely low voltage and high bright p-i-n fluorescent white organic light-emitting diodes [J]. Appl. Phys. Lett.,2008,92:113304-1-3.
    [139]Suijun Liu, Feng Li, Quan Diao, et al. Aggregation-induced enhanced emission materials for efficient white organic light-emitting devices [J]. Org. Electron.,2010,11(4):613-617.
    [140]Tae Jin Park, Woo Sik Jeon, Jung Joo Park, et al. Efficient simple structure red phosphorescent organic light emitting devices with narrow band-gap fluorescent host [J]. Appl. Phys. Lett., 2008,92:113308-113310.
    [141]MATSUSHIMA T, ADACHI C. Suppression of exciton annihilation at high current densities in organic light-emitting diode resulting from energy-level alignments of carrier transport layers [J]. Appl. Phys. Lett.,2008,92:063306-1-3.
    [142]SUN Y R, FORREST S R. High-efficiency white organic light emitting devices with three separate phosphorescent emission layers [J]. Appl. Phys. Lett.,2007,91:263503-1-3.
    [143]Woo Sik Jeon, Tae Jin Park, Sun Young Kim, et al. Ideal host and guest system in phosphorescent OLEDs [J]. Org. Electron.,2009,10:240-246.
    [144]Chen B J, Sun X W, Sarma K R. Phosphorescent organic light-emitting devices with in situ post-growth annealed organic layers [J]. Materials Science and Engineering:B,2007,139(2-3): 192-196.
    [145]Wu C C, Chen C W, Lin Y T, et al. Programmable organic light-emitting devices [J] Appl. Phys. Lett.,2001,79(19):3023-3025.
    [146]Li G, Shinar J. Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 4,4'-bis (2,2'-diphenylvinyl)-1,1'-biphenyl [J] Appl. Phys. Lett.,2003,83(26):5359-5361.
    [147]Haskal E I. Characterization of blue-light-emitting organic electroluminescent devices [J]. Synth. Met.,1997,91(1-3):187-190.
    [148]Xie W, Wu Z, Liu S, et al. Non-doped-type white organic light-emitting devices based on yellow-emitting ultrathin 5,6,11,12-tetraphenylnaphthacene and blue-emitting 4,4′-bis (2,2′-diphenyl vinyl)-1,1′-biphenyl [J]. J. Phys. D:Appl. Phys.,2003, 36(19):2331-2334.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700