基于溶液法的有机电致发光器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了一系列适用于溶液法器件制备的新型有机电致发光材料的器件性质。获得了高效的绿光、蓝绿、蓝光、橙光和白光聚合物电致磷光器件。另外,还在溶液法小分子电致磷光、荧光器件领域进行了探索性的研究。具体研究结果如下:
     (1)将绿光Ir(pppy)3掺杂于PVK和PBD的混合物中,通过器件结构的合理优化,制备了高性能的单层高分子电致磷光器件。器件最大电流效率为33.7 cd/A,开启电压低于4V,最大亮度为30,100cd/m2。是目前溶液法高分子电致磷光单层器件中最好的结果之一。
     (2)将一系列新型的Ir(pppy)3衍生物应用到高分子电致磷光器件中,利用吸热的能量转移实现了高效的蓝光和蓝绿色发光的电致磷光,以Ir(F-pppy)3掺杂的器件获得了32.8 cd/A的最大效率,最大亮度为11,500 cd/m2,CIE坐标为(0.18, 0.46);以Ir(F2-pppy)3掺杂的器件最大效率为12.3cd/A,CIE坐标为(0.19, 0.36),该器件为当今效率最高的基于吸热能量转移的蓝光和蓝绿光器件之一。
     (3)用小分子磷光主体材料和Ir(pppy)3磷光客体,成功的制备了溶液法和真空蒸镀法相结合的多层小分子电致磷光器件,器件最大电流效率22.0cd/A,最大亮度26,600 cd/m2,器件性能可与基于真空蒸镀法的小分子或基于溶液法的高分子电致磷光器件相媲美。该方法的提出对简化器件制备工艺、降低器件制备的成本、扩展溶液法电致磷光器件中主体材料的选择范围起到了积极的作用。
     (4)成功的制备了基于溶液法的小分子蓝光单层和双层电致发光器件,非掺杂的单层器件最大效率达到0.7 cd/A,掺杂的单层器件最大效率1.3 cd/A。该工作的开展为溶液法器件制备技术提出新的研究思路。
In this thesis a series of new electroluminescent materials which are suitable for solution processible device preparation have been studied. Highly efficient polymeric green, blue, orange and white emitting electrophosphorescent diodes have been obtained. In addition, exploring work has also been carried out in the area of solution processible small molecular OLEDs. The main results of the thesis are summarized as follows:
     (1) By doping green emitting Ir(pppy)_3 into the PVK and PBD matrix, highly efficient single layer polymeric electrophosphorescent have been obtained in the proper optimized devices. The maximum luminance efficiency of 33.7 cd/A and the maximum luminance of 30,100cd/m2 have been obtained with a low turn on voltage of less than 4V, which is one of the best polymeric electrophosphorescent diodes reported to date.
     (2) Applying a serial of new Ir(pppy)_3 derivates to PLEDs, highly efficient greenish blue and light blue electrophosphorescent diodes have been obtained through endothermic energy transfer. In Ir(F-pppy)_3 doped devices, a peak luminance efficiency of 32.8 cd/A and a maximum luminance of 11,500 cd/m~2 have been obtained, and the corresponding CIE coordination is (0.18, 0.46). In Ir(F_2-pppy)_3 doped devices, a maximum luminance efficiency 12.3cd/A and the CIE coordination(0.19, 0.36) have been obtained. These devices are among the best greenish blue and blue electrophosphorescent diodes based on endothermic energy transfer.
     (3) Multi-layer small molecular electrophosphorescent diodes have been successfully fabricated, by combining spinning-coating and vacuum deposition method in device fabrication, using small molecular phosphorescent host and pinene group substituted Ir(pppy)_3 guest. The maximum luminance efficiency 22.0cd/A, and the maximum luminance 26,600 cd/m~2 have been obtained, which are comparable with the state of the art electrophosphorescent devices. Our work is essentially important for reducing the cost of organic light-emitting displays, and expanding the host selection range for solution-processed OLEDs preparation.
     (4) Solution processed small molecular single layer and two layer devices have been successfully fabricated. The single layer device obtains a maximum luminance efficiency of 0.7 cd/A; the doped device obtains the maximum luminance efficiency of 1.3 cd/A, which brings forward a new idea for solution processed device fabrication and may profoundly promote the research in solution processed small molecular OLEDs.
引文
[1] C. W. Tang, USA Patent-4, 1982, 356
    [2] S. A. Vanslyke, C. W. Tang, USA Patent-4, 1985, 539, 507
    [3] C. W. Tang, S. A. Vanslyke, Organic electroluminescent diodes, Appl. Phys. Lett., 1987, 51:913-915
    [4] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, Nearly 100% internal phosphorescence efficiency in an organic light emitting device, J. Appl. Phys., 2001,90:5048-5051
    [5] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer, Appl. Phys. Lett., 2001, 79: 156-158.
    [6] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 1998, 395, 151-154.
    [7] Lee Chang-Lyoul,Lee Kyung Bok,Kim Jang-Jo. Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine)iridium as a triplet emitter[J].App1.Phys.Lett., 2000, 77: 2280-2282.
    [8] Gong X, Robinson M R, Ostrowski J C, et a1. High-efficiency polymer-based electmphosphorescent devices Adv. Mater., 2002, 14: 581-585.
    [9] Liu H M, He J, Wang P F, et a1. High-efficiency polymer electrophosphorescent diodes based on an Ir (III)-complex Appl. Phys. Lett., 2005, 87: 221103-221105.
    [10] C. H. Chen, J. Shi, C. W. Tang, Recent developments in molecular organic electroluminescent materials, Macromol. Symp. 1997, 125, 1-48.
    [11] E. Aminaka, T. Tsutsui, S. Saito, Electroluminescent behaviors in multiplayer thin-film electroluminescent devices using 9,10-bisstyrylanthracene derivatives, Jpn. J. Appl. Phys., Part 1, 1994, 33, 1061-1068.
    [12] 黄春辉,李富友,黄维,有机电致发光材料与器件导论,上海,复旦大学出版社,2005.
    [13] P. E. Burrows, S. R. Forrest, Electroluminescence from trap-limited current transport in vacuum deposited organic light emitting devices, Appl. Phys. Lett. 1994, 64(17), 2285-2287.
    [14] H. Vestweber, J. Pommerehne, R. Sander, R. F. Mahrt, A. Greiner, W. Heitz and H. B?ssler, Majority carrier injection from ITO anodes into organic light-emitting diodes based upon polymer blends, Synth. Met. 1995, 68(3), 263-268.
    [15] C. W. Tang, S. A. VanSlyke, C. H. Chen, Electroluminescence of doped organic thin films, J. Appl. Phys. 1989, 65(9), 3610-3616.
    [16] J. Feng, F. Li, W. Gao, S. Liu, Y. Liu, Y. Wang, White light emission from exciplex using tris-(8-hydroxyquinoline)aluminum as chromaticity-tuning layer, Appl. Phys. Lett. 2001, 78(3), 3947-3949.
    [17] M. A. Baldo, D. F. O’Brien, M. E. Thompson, and S. R. Forrest, Excitonic singlet-triplet ration in a semiconducting organic thin film, Phys. Rev. B. 1999, 60, 14422-14428.
    [18] A. A. Shoustikov, Y. You, M. E. Thompson, Electroluminescence Color Tuning by Dye Doping in Organic Light Emitting Diodes, IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1998, 4 (1):3一13
    [19] 樊美公,王利祥,景遐斌,王佛松等,光化学基本原理与光子学材料科学,科学出版社,2001:p.30-36
    [20] D. L. Dexter, A Theory of Sensitized Luminescence in Solids, J. Chem. Phys.1953,21:836-850
    [21] M. Inokuti, F. Hirayama, Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence, J. Chem. Phys., 1965, 43:1978-1989
    [22] F. C. Chen, S. C. Chang, G. F. He, S. Pyo, Y. Yang, M. Y. Kurotaki, J. Kido, Energy transfer and triplet exciton confinement in polymericelectrophosphorescent devices, J. Poly. Sci. B, 2003, 41:2681
    [23] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. Thompson, S. R. Forrestc, Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organicmaterials, Appl. Phys. Lett., 2001, 79: 2082-2084
    [24] J. Kalinowski, W. Stampor, M. Cocchi, D. Virgili, V. Fattori, P. D. Marco, Triplet energy exchange between fluorescent and phosphorescent organic molecules in a solid state matrix, Chem. Phys., 2004, 297: 39-48
    [25] S. A. VanSlyke, C. H. Chen, and C. W. Tang,Organic electroluminescent devices with improved stability,Appl. Phys. Lett. 1996, 69, 2160-2162.
    [26] Yasuhiko Shirota, Yoshiyuki Kuwabara, Hiroshi Inada, Takeo Wakimoto, Hitoshi Nakada, Yoshinobu Yonemoto, Shin Kawami, and Kunio Imai, Multilayered organic electroluminescent device using a novel starburst molecule, 4,4,4-tris(3-methylphenylphenylamino)triphenylamine as a hole transport material, Appl. Phys. Lett. 1994, 65, 807-809.
    [27] Y. Yang and A. J. Heeger, Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency, Appl. Phys. Lett. 1994, 64, 1245-1247.
    [28] Y. Cao, G. Yu, C. Zhang, R. Menon and A. J. Heeger, Polymer light-emitting diodes with polyethylene dioxythiophene–polystyrene sulfonate as the transparent anode, Synthetic Metals, 1997, 87, 171-174.
    [29] A. Elschner, F. Bruder, H. -W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm and R. Wehrmann, PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes, Synth. Metals, 2000, 111, 139-143.
    [30] T. M. Brown, J. S. Kim, R. H. Friend, and F. Cacialli, R. Daik and W. J. Feast, Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly (3, 4-ethylene dioxythiophene) hole injection layer, Appl. Phys. Lett. 1999, 75, 1679-1681.
    [31] Cui J., Huang Q., Veinot J. C. G., Yan H., Wang Q., Hutchison G. R., Richter A. G., Evmenenko G., Dutta P., Marks T. J., Anode Interfacial Engineering Approaches to Enhancing Anode/Hole Transport Layer Interfacial Stability and Charge Injection Efficiency in Organic Light-Emitting Diodes, Langmuir 2002, 18(25), 9958-9970.
    [32] Huang Q., Evmenenko G., Dutta P., Marks T. J., Molecularly "Engineered"Anode Adsorbates for Probing OLED Interfacial Structure-Charge Injection/Luminance Relationships: Large, Structure-Dependent Effects, J. Am. Chem. Soc. 2003, 125(48), 14704-14705.
    [33] Cui J., Huang Q., Wang Q., Marks, T. J., Nanoscale Covalent Self-Assembly Approach to Enhancing Anode/Hole-Transport Layer Interfacial Stability and Charge Injection Efficiency in Organic Light-Emitting Diodes, Langmuir 2001, 17(7), 2051-2054.
    [34] Yan H., Lee P., Armstrong N. R., Graham A., Evmenenko G. A., Dutta P., Marks T. J., High-Performance Hole-Transport Layers for Polymer Light-Emitting Diodes. Implementation of Organosiloxane Cross-Linking Chemistry in Polymeric Electroluminescent Devices, J. Am. Chem. Soc. 2005; 127(9), 3172-3183.
    [35] Jonathan G. C. Veinot, Andtobin J. Marks, Toward the Ideal Organic Light-Emitting Diode. The Versatility and Utility of Interfacial Tailoring by Cross-Linked Siloxane Interlayers, Acc. Chem. Res. 2005, 38, 632-643.
    [36] M. S. Lo , Thomas Braig, Oskar Nuyken, D. C. Müller, Markus Graoβ, K. Meerholz, Crosslinkable hole-transporting materials for preparation of multilayer organic emitting devices by spin-coating, Macromol. Rapid Commun. 1999, 20, 224-228.
    [37] L. S. Hung, C.H. Chen, Recent progress of molecular organic electroluminescent materials and devices, Materials Science and Engineering R 2002, 39, 143–222.
    [38] Gregory Hughes and Martin R. Bryce, Electron-transporting materials for organic electroluminescent and electrophosphorescent devices, J. Mater. Chem., 2005, 15, 94–107.
    [39] Abhishek P. Kulkarni, Christopher J. Tonzola, Amit Babel, and Samson A. Jenekhe, Electron Transport Materials for Organic Light-Emitting Diodes, Chem. Mater. 2004, 16, 4556-4573.
    [40] Chin-Ti Chen, Evolution of Red Organic Light-Emitting Diodes: Materials and Devices, Chem. Mater. 2004, 16, 4389-4400.
    [41] Satoru Toguchi, Yukiko Morioka, Hitoshi Ishikawa, Atsushi Oda and Etsuo Hasegawa, Novel red organic electroluminescent materials including perylene moiety, Synth. Metal. 2000, 111-112, 57-61.
    [42] Dong Uk Kim, Seoung Hey Paik, Sung-Hoon Kim and Tetsuo Tsutsui, Design and synthesis of a novel red electroluminescent dye, Synth. Metal. 2001, 123, 43-46.
    [43] Hsiu-Chih Yeh, Shi-Jay Yeh and Chin-Ti Chen, Readily synthesised arylamino fumaronitrile for non-doped red organic light-emitting diodes, Chem. Commun., 2003, 2632-2633.
    [44] K. R. Justin Thomas, J. T. Lin, M. Velusamy, Y.-T. Tao, C.-H. Chuen, Color Tuning in Benzo [1,2,5] thiadiazole-Based Small Molecules by Amino Conjugation/ Deconjugation: Bright Red-Light-Emitting Diodes, Adv. Funct. Mater. 2004, 14, 83-90.
    [45] C.-L. Chiang, M.-F. Wu, D.-C. Dai, Y.-S. Wen, J.-K. Wang, C.-T. Chen, Red-Emitting Fluorenes as Efficient Emitting Hosts for Non-Doped, Organic Red-Light-Emitting Diodes, Adv. Funct. Mater. 2005, 15, 231-238.
    [46] P. E. Burrows and S. R. Forrest, S. P. Sibley and M. E. Thompson, Color-tunable organic light-emitting devices, Appl. Phys. Lett. 1996, 69, 2959-2961.
    [47] Zilan Shen, Paul E. Burrows, Vladimir Bulovic, Stephen R. Forrest, and Mark E. Thompson, Three-Color, Tunable, Organic Light-Emitting Devices, Science 1997, 276, 2009-2011.
    [48] Y. Sakakibara, S. Okutsu, T. Enokida, T. Tani, Red organic electroluminescence devices with a reduced porphyrin compound, tetraphenylchlorin, Appl. Phys. Lett. 1999, 74, 2587-2589.
    [49] G. Gigli, G. Barbarella, L. Favaretto, F. Cacialli, R. Cingolani, High-efficiency oligothiopene-based light-emitting diodes, Appl. Phys. Lett. 1999, 75, 439-441.
    [50] G. Barbarella, L. Favaretto, G. Sotgiu, M. Zambianchi, V. Fattori, M. Cocchi, F. Cacialli, G. Gigli, R. Cingolani, Modified Oligothiophenes with High Photo- and Electroluminescence Efficiencies, Adv. Mater. 1999, 11, 1375-1379.
    [51] Fox; John L., Chen; Chin H., Benzopyrano[6,7,8-i,j]quinolizine-11-one lasing dyes and intermediates for their preparation, U. S. Patent, 1998, 4736032.
    [52] Chen Chin H., Tang Ching W., Shi Jianmin, Klubek Kevin P., Green organicelectroluminescent devices, U. S. Patent, 2000, 6020078.
    [53] Takeo Wakimoto, Yoshinobu Yonemoto, Jun Funaki, Masami Tsuchida, Ryuji Murayama, Hitoshi Nakada, Hiroyuki Matsumoto, Shigeo Yamamura and Masaharu Nomura, Stability characteristics of quinacridone and coumarin molecules as guest dopants in the organic LEDs, Synth. Met. 1997, 91, 15-19.
    [54] VanSlyke, Steven A., Blue emitting internal junction organic electroluminescent device, U. S. Patent, 1992, 5151629.
    [55] B. X. Mi, Z. Q. Gao, C. S. Lee, S. T. Lee, H. L. Kwong, N. B. Wong, Reduction of molecular aggregation and its application to the high-performance blue perylene-doped organic electroluminescent device, Appl. Phys. Lett. 1999, 75, 4055-4057.
    [56] Jianmin Shi, Ching W. Tang, Anthracene derivatives for stable blue-emitting organic electroluminescence devices, Appl. Phys. Lett., 2002, 80, 3201-3203.
    [57] Meng-Ting Lee, Hsian-Hung Chen, Chi-Hung Liao, Chih-Hung Tsai, Chin H. Chen, Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9,10-di(2-naphthyl)anthracene, Appl. Phys. Lett. 2004, 85, 3301-3303.
    [58] Ying Kan, Liduo Wang, Lian Duan, Yuanchuan Hu, Guoshi Wu, and Yong Qiu, Highly-efficient blue electroluminescence based on two emitter isomers, Appl. Phys. Lett. 2004, 84, 1513-1515.
    [59] Chi-Hung Liao, Meng-Ting Lee, and Chih-Hung Tsai, Chin H. Chen, Highly efficient blue organic light-emitting devices incorporating a composite hole transport layer, Appl. Phys. Lett. 2005, 86, 203507-203509.
    [60] S. Y. Ni, X. R. Wang, Y. Z. Wu, H. Y. Chen, W. Q. Zhu, X. Y. Jiang, and Z. L. Zhang, R. G. Sun, Decay mechanisms of a blue organic light emitting diode, Appl. Phys. Lett. 2004, 85, 878-880.
    [61] Yu-Hua Niu, Baoquan Chen, Tae-Dong Kim, Michelle S. Liu, Alex K.-Y. Jen,Efficient and stable blue light-emitting diodes based on an anthracene derivative doped poly (N-vinylcarbazole), Appl. Phys. Lett. 2004, 85, 5433-5435.
    [62] Yun-Hi Kim, Hyun-Cheol Jeong, Sung-Han Kim, Kiyull Yang, Soon-Ki Kwon, High-Purity-Blue and High-Efficiency Electroluminescent Devices Based on Anthracene, Adv. Funct. Mater. 2005, 15, 1799-1805.
    [63] H. Benmansour, T. Shioya, Y. Sato, G.C. Bazan, Anthracene -Containing Binaphthol Chromophores for Light-Emitting Diode (LED) Fabrication, Adv. Funct. Mater. 2003, 13, 883-886.
    [64] SiLu Tao, Ziruo Hong, Zaokuai Peng, Weigang Ju, Xiaohong Zhang*, Pengfei Wang, Shikang Wu, Shuit-Tong Lee, "Anthracence derivative for a non-doped blue emitting organic eletroluminescence device with both excellent color purity and high efficiency " Chem. Phys. Lett, 2004, 397, 1-4.
    [65] Silu Tao, Shandong Xu, Xiaohong Zhang, Efficient Blue Organic Light-Emitting Devices Based on Novel Anthracence Derivatives with Pronounced Thermal Stability and Excellent Film-Forming Property, Chemical Physics Letters, 2006, 429, 622-627
    [66] Chung-Chih Wu, Yu-Ting Lin, Ken-Tsung Wong, Ruei-Tang Chen, Yuh-Yih Chien., Efficient Organic Blue-Light-Emitting Devices with Double Confinement on Terfluorenes with Ambipolar Carrier Transport Properties, Adv. Mater. 2004, 16, 61-65.
    [67] Ken-Tsung Wong, Yuh-Yih Chien, Ruei-Tang Chen, Chung-Chih Wu, Ter(9,9-diarylfluorene)s: Highly Efficient Blue Emitter with Promising Electrochemical and Thermal Stability, J. Am. Chem. Soc. 2002, 124, 11576-11577.
    [68] C. C. Wu, Y. T. Lin, H. H. Chiang, T. Y. Cho, and C. W. Chen, K. T. Wong, Y. L. Liao, G. H. Lee, and S. M. Peng, Highly bright blue organic light-emitting devices using spirobifluorene-cored conjugated compounds, Appl. Phys. Lett. 2002, 81, 577-579.
    [69] Wu C. C., Liu. T. L., Hung W. Y., Lin Y. T., Wong K. T., Chen R. T., Chen Y. M., Chien Y. Y., Unusual Nondispersive Ambipolar Carrier Transport and HighElectron Mobility in Amorphous Ter(9,9-diarylfluorene)s, J. Am. Chem. Soc. 2003, 125(13), 3710-3711.
    [70] T.-C. Chao, Y.-T. Lin, C.-Y. Yang, T. S. Hung, H.-C. Chou, C.-C. Wu, K.-T. Wong, Highly Efficient UV Organic Light-Emitting Devices Based on Bi (9, 9-diarylfluorene) s, Adv. Mater. 2005, 17, 992-996.
    [71] Wong, K.-T.; Chen, R.-T.; Fang, F.-C.; Wu, C.-c.; Lin, Y.-T. 4,5-Diazafluorene-Incorporated Ter(9,9-diarylfluorene): A Novel MolecularDoping Strategy for Improving the Electron Injection Property of a Highly Efficient OLED Blue Emitter, Org. Lett. 2005, 7(10), 1979-1982.
    [72] Silu Tao, Zhaokuai Peng, Xiaohong Zhang, Pengfei Wang, Chun-Sing Lee, and Shuit-Tong Lee, Highly Efficient Non-Doped Blue Organic Light-Emitting Diodes Based on Fluorene Derivatives with High Thermal Stability, Advanced Functional Materials,2005, 15, 1716-1721
    [73] Yanqing Li, Man Keung Fung, Zhiyuan Xie, Shui-Tong Lee, Liang-Sun Hung, Jianmin Shi, An Efficient Pure Blue Organic Light-Emitting Device with Low Driving Voltages, Adv. Mater. 2002, 14, 1317-1321.
    [74] A. R. Brown, K. Pichler, N. C. Greenham, D. D. C. Bradley, R. H. Friend, A. B. Holmes, Optical spectroscopy of triplet excitons and charged excitations in ppv light emitting diodes, Chem. Phys. Lett., 1993, 210: 61-66
    [75] M. A. Baldo, D. F. O'Brien, M. E. Thompson, S. R. Forrest, Excitonic singlet-triplet ratio in a semiconducting organic thin film, Phys. Rev. B, 1999, 60: 14422-14428
    [76] Hughes G, Bryce M R, Electron Transporting Materials for Organc Electroluminescent and Electrophosphorescent Devices Mater. Chem., 2005, 15:94- 107.
    [77] Baldo M A, O’Brien D F, Forrest S R et al. HighIy Efficient Phosphorescent Emission from Organic Electroluminescent Devices, Nature, 1998, 395 15l- l54.
    [78] Lamansky S, Djurovich P, Murphy D et al., Highly PhosphorescentBis-Cyclometalated Iridium Complexes : Synthesis , Photophysical Characterization,and Use in Organic Light Emitting Diodes, J. Am. Chem. Soc., 2001,123 4304-43l2.
    [79] Ma Y G, Zhang H Y, Shen J G, et al., from Triplet Metal-Ligand Charge-Transfer Excited State of Transition Metal Comphxes, Synth. Met., 1998, 94, 245-248.
    [80] Tsutsui T., Yang M J., Yahiro M., et a1. High Quantum Efficiency in Organic Light-Emitting Devices with Irridium-Complex as Triplet Emissive Center, Jpn. J. Apl. Phys., 1999, 38, L1502-L1504.
    [81] D. Braun, A. J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett. 1991, 58(18), 1982-1984.
    [82] Xiaohui Yang, David C. Müller, Dieter Neher, and Klaus Meerholz, Highly Efficient Polymeric Electrophosphorescent Diodes, Adv. Mater. 2006, 18, 948-954
    [83] Tsuzuki T, Shirasawa N, Suzuki T et al., Organic Light-Emitting Diodes Using Multifunctional Phosphorescent Dendrimers with Iridium-Complex Core and Charge-Transporting Dendrons, Jpn. J. Apl. Phys., 2005,44, 4151-4154.
    [84] S. C. Lo, T. D. Anthopoulos, E. B. Namdas, P. L. Burn, D. W. Samuel, Encapsulated Cores: Host-free Oganic light-Emitting Diodes Based on Solution-Processible Electrophosphorescent Dendrimers, Adv. Mater., 2005, 17, 1945-1948
    [85] Tokito S,Iijima T,Suzuri Y et al., Confinement of Triplet Energy on Ph0sph0rescent Molecules for Highly-Efficient Organic Blue-Light-Emitting Devices, App. Phys. Lett., 2003, 83, 569-571.
    [86] Yeh S J, Wu M F, Chen C T et al., New Dopant and Host Materials for Blue-Light-Emitting Phosphorescent Organic Electroluminescent Devices, Adv. Mater., 2005, l7, 285-289.
    [87] Holmes R J, D’Andrade B W, Forrest S R et al., Efficient,Deep-Blue Organic Electrophosphorescenee by Guest Charge Trapping, App1. Phys. Lett., 2003.83, 3818-3820.
    [88] Yeh S J, Chen C T, Song Y H et al., Efficient and Bright Blue-Emitting Phosphorescent Materials , J. Soc. Infom. Displ., 2005, 13, 857-862.
    [89] S. C. Lo, G. J. Richards, J. P. J. Markham, E. B. Namdas, Sanjay Sharma, P. L. Burn, D. W. Samuel, A light-blue phosphorescent dendrimer for efficient solution-processed light-emitting diodes, Adv. Funct. Mater. 2005, 15, 1454-1458.
    [90] Adachi C, Baldo M A, Forrest S R, High-Eficiency Red electrophosphorescent Devices. App1. Phys. Lett., 2001, 78, 1622-1624.
    [91] Rayabarapu D K, Paulose B, Cheng C H et al., New Iridium Complexes with Cyclometahted Alkenylquinoline Ligands as Highiy Efficient Saturated Red-Light Emitters for Organic Light-Emitting Diodes, Adv. Mater., 2005, 17, 349-353.
    [92] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno. J. Am. Chem. Soc. 2003, 125, 12971.
    [93] Jinsong Huang, Taiki Watanabe, Kazunori Ueno, and Yang Yang Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives, Adv. Mater. 2007, 19, 739–743 第二章
    [1] R. H. Friend, R. W. Gymer, A.B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J.-L. Bredas, M. Logdliund, W. R. Salaneck, Electroluminescence in conjugated polymers, Nature 1999, 397, 121-128.
    [2] A. J. Heeger, Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture),Angew. Chem. Int. Ed. 2001, 40, 2591.
    [3] M. A. Baldo, D. F. O’Brien, M. E. Thompson and S. R. Forrest, Excitonicsinglet-triplet ratio in a semiconducting organic thin film, Phys. Rev. B 1999, 60, 14422.
    [4] V. Cleave, G. Yahioglu, P. Le Barny, R. H. Friend, N. Tessler, Harvesting Singlet and Triplet Energy in Polymer LEDs,Adv. Mater. 1999, 11, 285.
    [5] M. D. McGehee, T. Bergstedt, C. Zhang, A. P. Saab, M. B. O’regan, G. C. Bazan, V. I. Srdanov, A. J. Heeger, Narrow Bandwidth Luminescence from Blends with Energy Transfer from Semiconducting Conjugated Polymers to Europium Complexes,Adv. Mater. 1999, 11, 1349.
    [6] K. M. Vaeth, C. W. Tang, Light-emitting diodes based on phosphorescent guest/polymeric host systems,J. Appl. Phys. 2002, 92, 3447.
    [7] K. M. Vaeth, J. DiCillo, High-efficiency phosphorescent-guest–polymeric-host organic light-emitting diodes,Synth. Met. 2004, 143, 75.
    [8] Y. Y. Noh, C. L. Lee, J. J. Kim, K. Yase, J. Chem. Phys. 2003, 118, 2853.
    [9] X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger, High-Efficiency Polymer-Based Electrophosphorescent Devices,Adv. Mater. 2002, 14, 581.
    [10] W. Zhu, Y. Mo, M. Yuan, W. Yang, Y. Cao, Highly efficient electrophosphorescent devices based on conjugated polymers doped with iridium complexes,Appl. Phys. Lett. 2002, 80,2045-2047.
    [11] X. H. Yang, D. Neher, D. Hertel, T. K. D?ubler,Highly Efficient Single-Layer Polymer Electrophosphorescent Devices,Adv. Mater. 2004, 16, 161.
    [12] H. Z. Xie, M. W. Liu, O. Y. Wang, X. H. Zhang, C. S. Lee, L. S. Hung, S. T. Lee,P. F. Teng, H. L. Kwong, H. Zheng, C. M. Che, Reduction of Self-Quenching Effect in Organic Electrophosphorescence Emitting Devices via the Use of Sterically Hindered Spacers in Phosphorescence Molecules,Adv. Mater. 2001, 13, 1245.
    [13] F. C. Chen, S. C. Chang, G. F. He, Seungmoon PYO, Y. Yang, Masa Yukikurotaki, Junji Kido,Energy transfer and triplet exciton confinement in polymeric electrophosphorescent devices,Journal of Polymer Science: Part B: Polymer Physics 2003, 41, 2681.
    [14] C. H. Kim, J. Shinar, Bright small molecular white organic light-emitting devices with two emission zones,Appl. Phys. Lett. 2002, 80, 2201-2203.
    [15] T. M. Brown, J. S. Kim, R. H. Friend, and F. Cacialli R. Daik and W. J. Feast,Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer, Appl. Phys. Lett., 1999, 75,1679-1681.
    [16] N. J. Turro, Modern Molecular Photochemistry, (Benjamin/Cummings Publishing Co., Inc. London, 1978), Chap. 9, pp 301-309.
    [17] L.-S. Hung, C.W. Tang, M.G. Mason, Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode,Appl. Phys. Lett. 1997, 70 152-154.
    [18] M.G. Mason, C.W. Tang, L.-S. Hung, P. Raychaudhuri, J. Madathil, D. Giesen, L. Yan, Q.T. Le, Y. Gao, S.-T. Lee, L.-S. Liao, L.F. Cheng, W.R. Salaneck, D.A. dos Santos, J.L. Bredas, Interfacial chemistry of Alq3 and LiF with reactivemetals,J. Appl. Phys. 2001, 89, 2756.
    [19] Y. Kawamura, S. Yanagida, S. R. Forrest, Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers J. Appl. Lett. 2002, 92, 87-93.
    [20] S. Lanmansky, P. I. Djurovich, F. A. Razzaq, S. Garon, D. L. Murphy, M. E. Thompson, Cyclometalated Ir complexes in polymer organic light-emitting devices,J. Appl. Phys., 2002, 92, 1570.
    [1] Baldo M. A., Brian D. F.,You Y., et a1. Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, l998, 395, l5l-l54
    [2] Adachi C., Baldo M. A., Thempson M. E., et a1. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,J. App1. Phys., 2001,90, 5048-505l
    [1] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada. M. Hoshino, K. Ueno, Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode, J. Am. Chem. Soc. 2003, 125, 12971.
    [2] Y. J. Su, H. L. Huang, C. L. Li, C. H. Chien, Y. T. Tao, P. T. Chou, S. Datta, R. S. Liu, “Highly Efficient Red Electrophosphorescent Devices Based on Iridium Isoquinoline Complexes: Remarkable External Quantum Efficiency Over a Wide Range of Current”, Adv. Mater. 2003, 15, 884.
    [3] R. J. Holmes, B. W. D’Andrade, S. R. Forrest, X. Ren, J. Li, M. E. Thompson, “Efficient, deep-blue organic electrophosphorescence by guest charge trapping”, Appl. Phys. Lett. 2003, 83, 3818-3820.
    [4] Lee C. L.,Lee K. B.,Kim J. J.,Combinatorial fabrication and studies of intense efficient ultraviolet–violet organic light-emitting device arrays, App1. Phy. Lett. 2000, 77, 2282-2290
    [5] X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger, High-efficient polymer-based electrophosphorescent devices, Adv. Mater. 2002, 14, 581-585
    [6] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, et a1. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode, J. Am. Chem. Soc., 2003, 125, 12971-12979
    [7] A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, et a1. Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes[J]. J. Am. Chem. Soc., 2003, 125, 7377-7387
    [8] S. Lamansky, P. Djurovich, D. Murphy, et a1. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes[J]. J. Am. Chem. Soc.,123, 4304-4312
    [9] S. C. Lo, G. J. Richards, J. P. J. Markham, E. B. Namdas, Sanjay Sharma, P. L. Burn, D. W. Samuel, A light-blue phosphorescent dendrimer for efficient solution-processed light-emitting diodes, Adv. Funct. Mater. 2005, 15, 1454-1458.
    [10] Jinsong Huang, Taiki Watanabe, Kazunori Ueno, and Yang Yang Highly Efficient Red-Emission Polymer Phosphorescent Light-Emitting Diodes Based on Two Novel Tris(1-phenylisoquinolinato-C2,N)iridium(III) Derivatives, Adv. Mater. 2007, 19, 739–743
    [11] H. Z. Xie, M. W. Liu, O. Y. Wang, X. H. Zhang, C. S. Lee, L. S. Hung, S. T. Lee, P. F. Wang, H. L. Kwong, H. Zheng, and C. M. Che, Reduction of Self-Quenching Effect in Organic Electrophosphorescence Emitting Devices via the Use of Sterically Hindered Spacers in Phosphorescence Molecules, Adv. Mater. 2001, 13, 1245-.
    [12] B. Valeur, Molecular Fluorescence: Principles and Applications Wiley-VHC, Weinheim, 2002.
    [13] S. R. Meech, D. Phillips, J. Photochem. 1983, 23, 193.
    [14] C. Schaffner-Hamann, A. von Zelewsky, A. Barbieri, F. Barigel, G. Muller, J. P. Riehl, and A. Neels, Diastereoselective formation of chiral tris-cyclometalated iridium (Ⅲ) complexes: characterization and photophysical properties, J. Am. Chem. Soc. 2004, 126, 9339.
    [15] Y. Wang, N. Herron, V. V. Grushin, D. LeCloux, and V. Petrov, Highly efficient electroluminescent materials based on fluorinated organometallic iridium compounds, Appl. Phys. Lett. 2001, 79, 449-451.
    [16] N. Tessler, P. K. H. Ho, V. Cleave, D. J. Pinner, R. H. Friend, G. Yahioglu, P. Le. Barny, J. Gray, M. de Souza, and G. Rumbles, Material and device related properties in the context of the possible making of electrically pumped polymer laser, Thin Solid Films, 2000, 363, 64-67.
    [17] S. L. Chew, C. S. Lee, S.T. Lee, P. F. Wang, J. He, W. Li, Jie Pan, X. H. Zhang, and H. Kwong, Photoluminescence and electroluminescence of a new blue-emitting homoleptic iridium complex, Appl. Phys. Lett. 2006, 88, 093510-093512.
    [1] Tang C W,VanSlyk S A.Organic electroluminescent diodes ,App1.Phys.Lett.,1987,51:913.915.
    [2] Baldo M A,Lamansky S,Burows P E,et a1.Very high-eficiency green organic light-emitting devices based on electro-phosphorescence,App1.Phys.Lett.,1999,75,4-6.
    [3] Adachi C,Baldo M A,Thompson M E,et a1.Nearly 100% internal phosphorescence efficiency in an organic light-emitting device[J]. App1.Phys.,2001,90,5048-5055.
    [4] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, et a1. Homoleptic Cyclometalated Iridium Complexes with Highly Efficient Red Phosphorescence and Application to Organic Light-Emitting Diode,J. Am. Chem. Soc., 2003, 125, 12971-12979
    [5] A. B. Tamayo, B. D. Alleyne, P. I. Djurovich, S. Lamansky, et a1. Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III)Complexes, J. Am. Chem. Soc., 2003, 125, 7377-7387
    [6] S. Lamansky, P. Djurovich, D. Murphy, et a1. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes, J. Am. Chem. Soc.,123, 4304-4312
    [7] C. Adachi, M. A. Baldo, S. R. Forrest et a1. High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine) iridium doped into electron-transporting materials, Appl. Phys. Lett., 2000, 77, 904-906.
    [8] Jiang C, Yang W, Peng J, Xiao S, Cao Y, et a1. High-efficiency saturated red-phosphorescent polymer light-emitting diodes based on conjugated and non-conjugated polymers doped with an Ir complex, Adv Mater, 2004, 16, 537-541.
    [9] C. Adachi, M. A. Baldo, M. E. Thompson, et a1. Nearly 100% internal phosphorescence efficiency in an organic light emitting device, Appl. Phys. 2001, 90, 5048-5051.
    [10] Adamovich V, Brooks J, Tamayo A, et a1. High efficiency single dopant white electrophosphorescent light emitting diodes, New. J. Chem., 2002, 26, 1171-1178.
    [11] S. Tokitoa, T. Iijima, Y. Suzuri, et a1. Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices, Appl. Phys. Lett., 2003, 83, 569-571.
    [12] Lee Chang-Lyoul,Lee Kyung Bok,Kim Jang-Jo, et a1. Polymer phosphorescent light-emitting devices doped with tris(2-phenylpyridine)iridium as a triplet emitter, App1.Phys.Lett., 2000, 77, 2280-2282.
    [13] X. Gong, M. R. Robinson, J. C. Ostrowski, et a1. High-efficiency polymer-based electmphosphorescent devices, Adv. Mater., 2002, 14, 581-585.
    [14] H. M. Liu, He J, P. F. Wang, et a1. High-efficiency polymer electrophosphorescent diodes based on an Ir (III)-complex, Appl. Phys. Lett., 2005, 87, 221103-221105.
    [15] M. Yokoyama, T. Tamamura, T.Nakano, H. Mikawa, et a1. Triplet excitonmigration in rigid solution of poly(N-vinylcarbazole) and N-vinylcarbazole–fumaronitrile alternating copolymer, J. Chem. Phys. 1976, 65, 272-279.
    [16] R. J. Holmes , S. R. Forrest , Y. J. Tung, et a1.Blue organic electrophosphorescence using exothermic host–guest energy transfer, Appl. Phys. Lett., 2003, 82, 2422-2424.
    [17] H. Z. Xie, M. W. Liu, O. Y. Wang, X. H. Zhang, et a1., Reduction of self-quenching effect in organic electrophosphorescent emitting devices via the use of sterically hindered spaces in phosphorescence molecular, Adv. Mater. 2001, 13, 1245-1248.
    [1] Tang C W,VanSlyk S A.Organic electroluminescent diodes.App1.Phys.Lett.,1987, 51, 913-915.
    [2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, Light-emitting diodes based on conjugated polymers, Nature 1990, 347, 539-541.
    [3] D. Braun, A. J. Heeger, Visible light emission from semiconducting polymer diodes, Appl. Phys. Lett. 1991, 58(18), 1982-1984.
    [4] D. A. Pardo, G. E. Jabbour, N. Peyghambarian, Application of Screen Printing in the Fabrication of Organic Light-Emitting Devices,Adv. Mater. 2000, 12, 1249.
    [5] J. Birnstock, J. Bl?ssing, A. Hunze, M. Scheffel, M. St??el, K. Heuser, G. Wittmann, J. W?rle, A. Winnacker, Screen-printed passive matrix displays based on light-emitting polymers,Appl. Phys. Lett. 2001, 78, 3905.
    [6] Y. R. Sun, M. Shtein, S. R. Forrest, Direct patterning of organic light-emitting devices by organic-vapor jet printing,Appl. Phys. Lett. 2005, 86, 113 504.
    [7] G. E. Jabbour, R. Radspinner, N. Peyghambarian, IEEE J. Sel. Top. Quantum Electron. 2001, 7, 769.
    [8] J. Bharathan, Y. Yang, Polymer electroluminescent devices processed by inkjet printing: I. Polymer light-emitting logo,Appl. Phys. Lett. 1998, 72, 2660.
    [9] Markham J. P. J., Lo S. C., Magnnis S. W., Burn P. L., Samuel I. D.,High-efficiency green phosphorescence from spin-coated single-layer dendrimer light-emitting diodes, J. Appl. Phys. 2002, 80, 2645-2647.
    [10] Cripin A., Crispin X., Fahlman M., Cornil J., Johansson N., Bauer J., Weissortel F., Salbeck J., Bredas J. L., Salaneck W. R., J. Chem. Phys. 116, 8159
    [11] Chen J. A., Chen C. H., Liao C. H., Solution- processible small molecular organic light-emitting diode material and devices based on the substituted aluminum quinolate, Chem. Mater., 2004, 16, 2862-2868
    [12] S. C. Lo, T. D. Anthopoulos, E. B. Namdas, P. L. Burn, D. W. Samuel, Encapsulated cores: host-free organic light-emitting diodes based on solution-processible Electrophosphorescent dendrimers, Adv. Mater. 2005, 17, 1945-1948
    [13] Cui J., Huang Q., Veinot J. C. G., Yan H., Wang Q., Hutchison G. R., Richter A. G., Evmenenko G., Dutta P., Marks T. J., Anode Interfacial Engineering Approaches to Enhancing Anode/Hole Transport Layer Interfacial Stability and Charge Injection Efficiency in Organic Light-Emitting Diodes, Langmuir 2002, 18(25), 9958-9970.
    [14] Huang Q., Evmenenko G., Dutta P., Marks T. J., Molecularly "Engineered" Anode Adsorbates for Probing OLED Interfacial Structure-Charge Injection/Luminance Relationships: Large, Structure-Dependent Effects, J. Am. Chem. Soc. 2003, 125(48), 14704-14705.
    [15] Cui J., Huang Q., Wang Q., Marks, T. J., Nanoscale Covalent Self-Assembly Approach to Enhancing Anode/Hole-Transport Layer Interfacial Stability and Charge Injection Efficiency in Organic Light-Emitting Diodes, Langmuir 2001, 17(7), 2051-2054.
    [16] Yan H., Lee P., Armstrong N. R., Graham A., Evmenenko G. A., Dutta P., Marks T. J., High-Performance Hole-Transport Layers for Polymer Light-Emitting Diodes. Implementation of Organosiloxane Cross-Linking Chemistry in Polymeric Electroluminescent Devices, J. Am. Chem. Soc. 2005; 127(9), 3172-3183.
    [17] Jonathan G. C. Veinot, Andtobin J. Marks, Toward the Ideal OrganicLight-Emitting Diode. The Versatility and Utility of Interfacial Tailoring by Cross-Linked Siloxane Interlayers, Acc. Chem. Res. 2005, 38, 632-
    [18] Erwin Bacher, Steffen Jungermann, Markus Rojahn, Vale′rie Wiederhirn, Oskar Nuyken, Photopatterning of Crosslinkable Hole-Conducting Materials for Application in Organic Light-Emitting Devices, Macromol. Rapid Commun. 2004, 25, 1191–1196
    [19] M. S. Bayerl, T. Braig, O. Nuyken, D. C. Müller, M. Gro?, K. Meerholz, Crosslinkable hole-transport materials for preparation of multilayer organic light emitting devices by spin-coating, Macromol. Rapid Commun. 20, 224–228 (1999)
    [20] Yang X. H., Muller D. C., Neher D., Meerholz K., High efficient polymer electrophosphorescent diodes, Adv. Mater. 2006, 18, 948-954
    [21] S L Tao, Z K Peng, X H Zhang, P F Wang, C S Lee, and S T Lee, Highly Efficient Non-Doped Blue Organic Light-Emitting Diodes Based on Fluorene Derivatives with High Thermal Stability, Advanced Functional Materials,2005, 15, 1716-1721
    [22] J. Salbeck, N. Yu, J. Bauer, F. Weiss?rtel, and H. Bestgen, Low molecular organic glasses for blue electroluminescence,Synth. Met. 91, 209 1997.
    [23] Li-Hsin Chan, Rong-Ho Lee, Chia-Fen Hsieh, Hsiu-Chih Yeh, and Chin-Ti Chen,Optimization of High-Performance Blue Organic Light-Emitting Diodes Containing Tetraphenylsilane Molecular Glass Materials,J. Am. Chem. Soc. 2002, 124, 6469-6479
    [24] Shizuo Tokito, Koji Noda, and Yasunori Taga, Strongly directed single mode emission from organic electroluminescent diode with a microcavity, App1. Phys. Lett., 1996, 68(19): 2633-2635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700