FACE对三系杂交籼稻汕优63生长发育的影响及其原因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球大气中CO_2浓度不断升高已是不争的事实。据估计到2050年前后,大气CO_2浓度将增至450-550μmol·mol~(-1)。大气CO_2浓度的不断升高将引起全球气候明显变化,并对农作物生产产生重大影响。前人已经研究了FACE对粳型水稻品种产量及其构成因素、物质生产与分配、养分吸收利用以及根系发育等的影响。为了明确FACE对在我国水稻生产中具有重要地位,且杂种优势强、环境适应强、产量潜力大的杂交籼稻的影响,本研究利用中日合作建立在我国江苏省江都市的农田FACE研究平台(32°35’5’’N,119°42’E),以三系杂交籼稻汕优63为供试品种,设计比目前大气CO_2浓度(对照)高200μmol·mol~(-1)的FACE对其进行了比较系统的研究,以期为未来大气CO_2浓度升高条件下我国水稻品种选育和应用、栽培技术的制订提供实验依据。主要研究结果如下,
     1.FACE使汕优63成熟期株高比AMB提高6.7%,达极显著水平;FACE对汕优63全生育期日数无显著影响;FACE使汕优63产量平均比AMB增加34.1%,其中2004、2005、2006年分别增加42.4%、27.3%和31.2%,均达极显著水平;CO_2×Y(年度)的互作效应对产量的影响达显著水平;FACE使汕优63单位面积穗数、每穗颖花数、单位面积颖花量、结实率和千粒重平均比AMB增加10.3%、10.3%、21.7%、4.9%和4.3%,均达显著或极显著水平;N处理对汕优63产量和产量构成因素的影响均未达显著水平,但N×Y对汕优63单位面积的穗数、颖花量以及产量均有显著互作效应。
     2.两季平均,FACE使汕优63移栽-分蘖期、分蘖-拔节期、拔节-抽穗期和抽穗-成熟期干物质生产量分别比AMB增加了39%、20%、32%和41%,结果使成熟期生物产量显著增加(+33%);与干物质生产量相比,汕优63平均叶面积指数(LAI)和净同化率(NAR)对CO_2的响应有相似的季节性变化趋势,但LAI的响应值明显大于NAR;FACE使汕优63不同生育时期叶片和稻穗占地上部干重的比例下降,而使茎鞘占地上部干重的比例明显增加;FACE使汕优63抽穗和成熟期茎鞘中可溶性碳水化合物的含有率和积累量均显著增加;三系杂交籼稻汕优63成熟期生物产量以及不同生育阶段平均LAI、NAR和干物质生产量对FACE的响应与粳稻品种存在明显差异,而干物质分配差异较小。
     3.FACE使汕优63各生育时期稻株含N率显著下降,使各生育时期N素吸收量显著增加,生育中期的增幅明显小于生育前、后期;FACE对汕优63 N素在不同器官中分配比例无明显影响;FACE使汕优63不同生育期N素干物质生产效率极显著提高,使N素籽粒效率显著提高,但对N素收获指数无显著影响;增施N肥,使汕优63不同生育时期的植株N素含量和吸N量均得到显著或极显著的增加,使N素干物质生产效率和N素籽粒效率下降;CO_2×Y、N×Y对植株含N率、吸N量的影响有互作效应,FACE使汕优63稻株含N率显著下降;使N素吸收量、N素干物质生产效率、N素籽粒效率显著提高。
     4.FACE使汕优63各生育时期稻株含P率极显著提高,使各生育时期P素吸收量极显著增加,生育中期的增幅略小于生育前、后期;FACE使汕优63抽穗后P素在茎鞘中的分配比例显著增加,穗中的分配比例显著下降,对抽穗前P素在叶片、茎鞘中的分配比例均无显著影响;FACE使汕优63不同生育期P素干物质生产效率极显著下降,使P素籽粒生产效率和P素收获指数亦均极显著下降;增施N肥,使汕优63大多数生育时期的植株P素含量和吸P量得到显著或极显著的增加,使大多数生育时期P素干物质生产效率下降,使P素籽生产粒效率和收获指数显著下降;CO_2×N、CO_2×Y对植株含P率、吸P量的影响有互作效应,FACE使汕优63稻株含P率、P素吸收量显著提高;使P素干物质生产效率、P素籽粒效率显著下降。
     5.FACE使汕优63分蘖期、拔节期、抽穗期每穴的不定根数、不定根总长度、根系体积以及根干重均极显著大于AMB;FACE使汕优63抽穗期每穴不定根数和每穴根体积极显著增加,主要是由于FACE使汕优63有效分蘖期间和无效分蘖期间每穴不定根数和每穴根体积大幅度增加;FACE使汕优63抽穗期每穴不定根总长度极显著增加,主要是由于FACE使汕优63有效分蘖期间、无效分蘖期间,拔节长穗期间每穴不定根总长度均大幅度增长;FACE使汕优63抽穗期每穴根干重极显著大于AMB,主要是由于FACE使汕优63拔节长穗期间每穴根干重的增长量大幅度增加;FACE使汕优63抽穗期每条不定根长极显著大于对照,是因为FACE使汕优63不同生育阶段每条不定根长的生长量均明显增加。
     6.FACE使汕优63不同生育时期单位干重根系的总吸收面积、活跃吸收面积、α-萘胺氧化量等根系活性指标均极显著小于对照。由于FACE促进汕优63根系发生量的大幅度增加,因此够苗期、拔节期其单穴根系活性与AMB多无明显差异,到抽穗期FACE使单穴根系活性显著大于AMB;拔节期、抽穗期汕优63每穴的不定根数、不定根总长度、根系体积、根干重与单位干重根系活性关系密切,根量越大单位干重根系活性越低;不同生育时期汕优63植株含氮率与单位干重的根系活性多呈正相关,植株碳氮比与单位干重的根系活性多呈负相关;FACE使汕优63根系生长量大、植株含氮率低、碳氮比高等可能是造成其单位干重根系活性低于AMB的重要原因。
It is reported that Global atmospheric CO_2 concentration is increasing continually. And it is projected to reach levels of 450~550μmol·mol~(-1) within year 2050. The enhancement of atmospheric CO_2 concentration commonly caused the climate change and affected the agriculture crops production. The effects of FACE on yield and yield components, biomass production and distribution, nutrient uptake and efficiency, roots of Japonica rice have been reported. This study was carried out in the platform for FACE study, located in Jiangdu (31°37’N,120°28’E), China, using three-line hybrid indica rice shanyou 63 as tested rice cultivar. The CO_2 concentration in FACE treatment was 570μmol·mol~(-1), with 370μmol·mol~(-1) as ambient (AMB). The main purpose of the experiment was to study the effects of elevated CO_2 concentration on three-line hybrid indica rice production. Results showed as follows:
     (1) Compared to ambient [CO_2], FACE increased plant height at maturity of Shanyou 63 by 6.7% on average, the effect reaching significant level (P < 0.01), however, no CO_2 effect was observed on the whole growth duration of Shanyou 63. On average, FACE increased the grain yield of Shanyou 63 significantly (P < 0.01), with an average increase of 34.8% across the three years (42.4%、27.3% and 31.2% in 2001, 2002 and 2003, respectively). The year effect and the interaction between [CO_2]×year were significant (P < 0.05 or P < 0.01) for grain yield; FACE increased yield components of Shanyou 63 significantly (P < 0.05 or P < 0.01), averaging 10.3%, 10.3%, 21.7%, 4.9% and 4.3% for panicle number per unit area, spikelet number per panicle, spikelet number per unit area, filled grain percentage and 1000-grain weight, respectively. N effect was not significant on yield and its components of Shanyou 63, while its interaction with [CO_2] was significant for panicle number, spikelet number and grain yield per unit area.
     (2) Across the two growing seasons, rice DM production under FACE was significantly enhanced by 39, 20, 32 and 41% during the growth periods from transplanting to tillering, tillering to jointing, jointing to heading and heading to grain maturity, respectively. As a result, the final total biomass at maturety was increased by 33% on average. In general, seasonal changes in crop response to FACE in both leaf area index (LAI) and net assimilation rate (NAR) followed a similar pattern to that of the DM production, with the degree of response much larger in LAI than NAR. Under FACE the leaves and spikes decreased significantly in proportion to the total above-ground DM over the season, while the stems showed an opposite trend. FACE significantly increased the content (%) and amount of soluble sugar and starch in stems and sheaths at heading and grain maturity. Huge differences existed between the three-line indica hybrid rice cultivar and japonica rice cultivar with respect to the responses of final DM accumulation at maturity, as well as mean LAI and NAR, and DM production during the different growth periods, while differences on dry matter distribution were small.
     (3) Compared with AMB, FACE significantly decreased N concentration in rice plant of Shanyou 63 over the season, FACE significantly increased nitrogen accumulation in rice plant, and the increasing rate at the middle growth stage was less than that at the early and late growth stage. FACE had no obvious effect on nitrogen allocation pattern of Shanyou 63 over the season. FACE treatment resulted in the significant increase in N use efficiency for biomass (NUEp) over the season and in N use efficiency for grain yield (NUEg) at grain maturity, but no CO_2 effect was observed on nitrogen harvest index (NHI). Nitrogen concentration and accumulation at different growth stages of Shanyou 63 increased with increasing N supply (P < 0.05 or 0.01), but NUEp and NUEg showed the opposite trends. Significant interactions between [CO_2]×year and N×year were observed for N concentration and accumulation. FACE decreased N concentration, increased N uptake, NUEp and NUEg at different growth stages of Shanyou 63, but no CO_2 effect was detected on N allocation
     (4) Compared with AMB, FACE significantly increased P concentration in rice plant of Shanyou 63 over the season, FACE significantly increased phosphorus accumulation in rice plant, and the increasing rate at the middle growth stage was less than that at the early and late growth stage. Before heading, FACE had no obvious effect on phosphorus allocation pattern of Shanyou 63, but after heading, it made the proportion of phosphorus allocation in leaves significant increased, the phosphorus allocation in spikes significant decreased. Under FACE treatment, P use efficiency for biomass (PUEp) over the season, P use efficiency for grain yield (PUEg) at grain maturity, and phosphorus harvest index (PHI) were significantly decreased. Phosphorus concentration and accumulation at majority growth stages of Shanyou 63 increased with increasing N supply (P < 0.05 or 0.01), but PUEp and PUEg showed the opposite trends. Significant interactions between [CO_2]×N and [CO_2]×year were observed for P concentration and accumulation. FACE increased P concentration and P uptake, decreased PUEp and PUEg at different growth stages of Shanyou 63.
     (5) FACE treatment increased the number of adventitious roots per hole, the length of adventitious roots per hole, the roots volume per hole, the dry weight of roots per hole significantly of Shanyou 63 at tillering, jointing and heading stages. the number of adventitious roots per hole and the roots volume per hole under FACE were significantly higher than those under AMB at heading stage, which was chiefly resulted from the larger increment of those root traits under FACE during effective-tillering and unproductive-tillering period. The length of adventitious roots per hole under FACE was significantly higher than that under AMB at heading stage, which was chiefly caused by the still larger increment of the length of adventitious roots per hole under FACE before heading. the dry weight of roots per hole under FACE was significantly higher than that under AMB at heading stage due to FACE substantially increased the dry weight of roots per hole during stem elongating and panicle bearing period. the length of per adventitious root under FACE was significantly higher than that under AMB at heading stage, which was chiefly resulted from the still larger increment of the length of per adventitious root under FACE before heading.
     (6) The total absorption area per unit dry weight of root, the active absorption area per unit dry weight of root and the amount ofα-NA per unit dry weight of root of shanyou63 under FACE were significantly higher than those under AMB at different growth stages. While FACE made larger increment of rice root, which resulted in no significant difference of root activity per hole between FACE and AMB at tillering and jointing stages, but FACE significantly increased root activity per hole at heading stage. Root activity per unit dry weight of root negatively correlated with the number of adventitious roots per plant, total length of adventitious roots per plant, roots volume and dry weight of root at jointing and heading stages. The larger the root productions, the lower the root activity per unit dry weight. For the most part,root activity per unit dry weight of root positively correlated with N content of rice plant, and negatively correlated with the content of soluble carbohydrates in stem and sheath and C/N ratio. The largeness of biomass accumulated, lower N content in rice plant and higher C/N ratio appear to be the primary causes of significant decrement of root activity per unit dry weight of root under FACE.
引文
1 OECD. 1999. Action against Climate Change: The Kyoto Protocol and Beyond. Paris: OECD publications. 138
    2 Horie T, Baker J T, Nakagawa H, Matsui T, Kim H Y. 2000. Crop ecosystem responses to climatechange: rice. In: Reddy, K.R, Hodges, H.F. (Eds.), Climate Change and Global Crop Productivity. CAB International, Wallingford, Oxon, pp. 81–106
    3 Kimball B A, Pinter Jr. P J, Wall G W, et al. 1997. Comparisons of responses of vegetation to elevated carbon dioxide in free-air and open-top chamber facilities. In: Allen Jr. L H, Kirkham M B, Olszyk D M, and Whitman C E, eds. Advances in Carbon Dioxide Research. Madison, Wisconsin, USA: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. 113-130
    4 McLeod AR, Long SP. 1999. Free-air carbon dioxide enrichment (FACE) in global change research: a review. Advances in Ecological Research, 28: 1–56.
    5杨连新,王余龙,黄建晔,杨洪建,刘红江.开放式空气CO2浓度增高对水稻生长发育影响的研究进展[J].应用生态学报,2006,17(7):1331–1337
    6 Garcia R L, Long S P, Wall G W, et al. 1998. Photosynthesis and conductance of spring wheat leaves: field response to continuous free-air CO2 enrichment. Plant Cell Environ, 21: 659–669
    7 Rogers A, Fischer B U, Bryant J, et al. 1998. Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Perennial ryegrass under free-air CO2 enrichment. Plant Physiol, 118: 683–689
    8 Wall G W, Adam N R, Brooks T J, et al. 2001a. Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes: Net assimilation and stomata conductance of leaves. Photosynth Res, 66: 79–95
    9 Wall G W, Brooks T J, Adam N R, et al. 2001 b. Leaf photosynthesis and water relations of grain sorghum grown in free-air CO2 enrichment (FACE) and waterstress. New Phytologist, 152: 231–248
    10 Osborne C P, LaRoche J, Garcia R L, et al. 1998. Does leaf position within a canopy affect acclimation of photosynthesis to elevated CO2. Plant Physiol, 117: 1037–1045
    11 Wechsung F, Garcia R L, Wall G W, et al. 2000. Photosynthesis and conductance of spring wheat ears: field response to free-air CO2 enrichment and limitations in water and nitrogen supply. Plant Cell Environ, 23: 917–929
    12 Brooks T J, Wall G W, Pinter Jr. P J, et al. 2001. Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 3. Canopy architecture and gas exchange. Photosynth Res, 66: 97–108
    13 Hileman D R, Huluka G, Kenjige P K, et al. 1994. Canopy photosynthesis and transpiration of field-grown cotton exposed to free-air CO2 enrichment (FACE) and differential irrigation. A gric For Meteorol, 70: 189–207
    14 Pinter Jr. P J, Kimball B A, Wall G W, et al. 2002. Elevated CO2 effects on growth, development, and yield of wheat at ample and limited supplies of water and nitrogen. Agron J, (in press)
    15 Kim H Y, Horie T, Nakagawa H, et al. 1996. Effects of Elevated CO2 Concentration and High Temperature on Growth and Yield of Rice. Jpn J Crop Sci, 65 (4): 634–643
    16 Kim H Y, Horie T, Nakagawa H, et al. 1996. Effects of Elevated CO2 Concentration and High Temperature on Growth and Yield of Rice.Ⅱ.The effects on yield and it’s components in Akihikari rice. Jap. J. Crop Sci, 65 (4): 644–651
    17 Daepp M, Suter D, Almeida J P F, et al. 2000. Yield response of Lolium perenne swards to free-air CO2 enrichment increased over six years in a high N input system on fertile soil. Global Change Biol, 6: 805–816
    18 Daepp M, Nosberger J, Luscher A. 2001. Nitrogen fertilization and developmental stage alter the response of Lolium perenne to elevated CO2. New Phytologist, 150: 347–358
    19 Hebeisen T, Luscher A, Zanetti S, et al. 1997. Growth response of Trifolium repens L. and Lolium perenne L. as monocultures and bi-species mixture to free-air CO2enrichment and management. Global Change Biol, 3: 149–160
    20 Mauney J R, Lewin K F, Hendrey G R, et al. 1992. Growth and yield of cotton exposed to free-air CO2 enrichment (FACE). Crit Rev Plant Sci, 11: 213–222
    21 Mauney J R, Kimball B A, Pinter Jr. P J, et al. 1994. Growth and yield of cotton in response to a free-air carbon dioxide enrichment (FACE) environment. Agric For Meteorol, 70: 49–68
    22 Pinter Jr. P J, Kimball B A, Wall G W, et al. 1997. Effects of elevated CO2 and soil nitrogen fertilizer on final grain yields of spring wheat. In: Annual Research Report. U. S. Water Conservation Laboratory, USDA, Agricultural Research Service, Phoenix, Arizona, USA. 71–74
    23 Kobayashi K, Lieffering M, Kim H Y. 2001. Growth and yield of paddy rice under free-air CO2 enrichment. In: Shiyomi M, Koizumi H eds, Structure and Function in Agro-ecosystem Design and Management. Boca Raton: CRC Press. 371–395
    24 Kim H Y, Lieffering M, Miura S, et al. 2001. Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytologist, 150: 223–229
    25 Miglietta F, Giuntoli A, Bindi M. 1996. The effect of free air carbon dioxide enrichment (FACE) and soil nitrogen availability on the photosynthetic capacity of wheat. Photosynth Res, 47: 281–290
    26 Ottman M J, Kimball B A, Pinter Jr. P J, et al. 2001. Elevated CO2 effects on sorghum growth and yield at high and low soil water content. New Phytologist, 150: 261–273
    27 Miglietta F, Magliulo V, Bindi M, et al. 1998. Free Air CO2 Enrichment of potato (Solanum tuberosum L.): development, growth and yield. Global Change Biol, 4: 163–172
    28 Bindi M, Fibbi L, Frabotta A, et al. 1998. Free air CO2 enrichment of potato (Solanum tuberosum L.). In: Annual Report for Changing Climate and Potential Impacts on Potato Yield and Quality (CHIP), Contract ENV4-CT97-0489. Brussels, Belgium: Commission of the European Union. 133–163
    29 Bindi M, Fibbi L, Frabotta A, et al. 1999. Free air CO2 enrichment of potato (Solanum tuberosum L.). In: Annual Report for Changing Climate and PotentialImpacts on Potato Yield and Quality (CHIP), Contract ENV4-CT97-0489. Brussels, Belgium: Commission of the European Union. 160–196
    30 Pinter Jr. P J, Kimball B A, Garcia R L, et al. 1996. Free-air CO2 enrichment: responses of cotton and wheat crops. In: Koch G W and Mooney H A, eds. Carbon Dioxide and Terrestrial Ecosystems. San Diego, USA: Academic Press
    31 Bindi M, Fibbi L, Gozzini B, et al. 1995a. Mini free-air carbon dioxide enrichment (FACE) experiment on grapevine. In: Harrison P A, Butterfield R E, Downing T E eds. Climate Change and Agriculture in Europe: Assessment of Impacts and Adaptations, Research Report No. 9, Contract ENV4-CT97-0489. Brussels, Belgium: Commission of the European Union. 125–137
    32 Bindi M, Fibbi L, Gozzini B, et al. 1995b. Modeling the effects of climate change and climate variability on grapevine. In: Harrison P A, Butterfield R E, Downing T E eds. Climate Change and Agriculture in Europe: Assessment of Impacts and Adaptations, Research Report No. 9, Contract EV5V-CT93-0294. Brussels, Belgium: Commission of the European Union. 206–220
    33 Bindi M, Fibbi L, Lanini M, et al. 2001a. Free-air CO2 enrichment (FACE) of grapevine (V itis vinifera L.). I. Development and testing of the system for CO2 enrichment. Europ J Agron, 14: 135–143
    34 Bindi M, Fibbi L, Miglietta F. 2001b. Free-air CO2 enrichment (FACE) of grapevine (Vitis vinifera L.).Ⅱ. Growth and grapes and wine quality in response to elevated CO2 concentration. Europ J Agron, 14: 145–155
    35 Sinclair T R, Pinter Jr. P J, Kimball B A, et al. 2000. Leaf nitrogen concentration of wheat subjected to elevated [CO2] and either water or nitrogen deficits. Agric Ecosyst Environ, 79: 53–60
    36 Zanetti S, Hartwig U A, Luscher A, et al. 1996. Stimulation of symbiotic N2 fixation in Trifolium repens L. under elevated atmospheric CO2 in a grassland ecosystem. Plant Physiol, 112: 575–583
    37 Kimball B A, Morris C F, Pinter Jr. P J, Wall G W, Hunsaker D J, Adamsen F J, LaMorte R L, Leavitt S W, Thompson T L, Matthias A D, Brooks T J. 2001. Wheat grain quality as affected by elevated CO2, drought, and soil nitrogen. NewPhytologist, 150: 295–303
    38 Luscher A, Hartwig U A, Suter D, et al. 2000. Direct evidence that symbiotic N2 fixation in fertile grassland is an important trait for a strong response of plants to elevated atmospheric CO2. Global Change Biol, 6: 655–662
    39陈利军,武志杰,黄国宏,等.大气CO2增加对土壤脲酶、磷酸酶活性的影响[J].应用生态学报,2002,13(10):1356–1357
    40 Kobayashi K. 2001. The experimental study of FACE. Jap J Crop Sci, 70 (1): 1–16
    41 Morison J L, Lawlor D W. 1999. Interactions between increasing CO2 concentration and temperature on plant growth. Plant Cell Environ, 22: 659–682
    42 Kim HY, Horie T, Nakagawa H, et al. 1996. Effects of elevated CO2 concentration and high temperature on growth and yield of riceⅡ. The effects on yield and it’s components in Akihikari rice. Jap J Crop Sci, 65 (4): 644–651
    43 Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim H Y, Kobayashi K. 2001. Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytologist, 150: 251–260.
    44 Horie T, Nakagawa H, Nakano J, Hamotani K, Kim H Y. 1995. Temperature gradient chambers for research on global environment change. III. A system designed for rice in Kyoto, Japan. Plant, Cell and Environment, 18: 1064–1069
    45 Makino A. 2000. Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased rubisco under CO2 enrichment. Experimental botany, 51: 383–389
    46 Vu J C V. 1998. Elevated CO2 and water deficit effects on photosynthesis, ribulose bisphosphate carboxylase-oxygenase, and carbohydrate metabolism in rice. Physiologia plantarum, 103 (3): 327–339
    47林伟宏,张福锁,白克智,等.大气CO2浓度升高对植物根际微生态系统的影响[J].科学通报,1999,44(16):1690–1696
    48 Tang Ruhang. 1999. Effect of double atmospheric CO2 concentration on rice photosynthesis and rubisco. Rice research newsletter, 7 (4): 7–8
    49 Peng Changlian. 1998. Response of rice photosynthesis to CO2 enrichment. ActaPhytophysiologica Sinica, 24 (3): 272–278
    50 Gesch R W. 1998. Changes in growth CO2 result in rapid adjustments of ribulose-1, 5-bisphosphate carboxylase/oxygease small subunit gene expression in expanding and mature leaves of rice. Plant physiology, 118 (2): 521–529
    51刘大永.大气中CO2含量对水稻种子萌发和幼苗生长的生理效应[J].陕西农业大学学报,1996,18(4):343–345
    52唐如航,郭连旺,陈根云,等.大气CO2浓度倍增对水稻光合速率和Rubisco的影响[J].植物生理学报,1998,24(3):309–312
    53 Peng Changlian. 1998. Response of rice photosynthesis to CO2 enrichment. Acta Phytophysiologica Sinica, 24 (3): 272–278
    54 Baker J T, Allen L H Jr, Boote K J, et al. 1996. Assessment of rice response to global climate change: CO2 and temperature. In: Koch GW, Mooney HA. eds. Terrestrial Ecosystem Response to Elevated CO2. San Diego, USA: Academic Press. 265–282
    55林宏伟,王大力.大气二氧化碳升高对水稻生长及同化物分配的影响[J].科学通报,1998,43(21):2299–2302
    56 Nakagawa H, Horie T. 2000. Rice responses to elevated CO2 and temperature. Global Environ Res, 3: 101–113
    57 Seneweera S P, Conroy J. 1997. Growth, grain yield and quality of rice (Oryza sativa L.) in response to elevated CO2 and phosphorus nutrition. Soil Sci Plant Nutr, 43: 1131–1136
    58 Ziska L H, Namuco O S, Moya T, et al. 1997. Growth and yield responses of field-grown tropical rice to increasing carbon dioxide and air temperature. Agron J, 89: 45–53
    59 Ziska L H, Teramura A H. 1992. Intraspecific variation in the response of rice (Oryza sativa) to increased CO2-photosynthetic, biomass and reproductive characteristics. Physiol Plant, 84: 269–274
    60 Moya T B, Ziska L H, Namuco O S, et al. 1998. Growth dynamics and genotypic variation in tropical, field-grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature. Global Change Biol, 4: 645–656
    61 Weerakoon W M W, Ingram K T, Moss D N. 2000. Atmospheric carbon dioxide and fertilizer effects on radiation interception by rice. Plant Soil, 220: 99–106
    62 Ziska L H, Weerakoon W, Namuco O S, et al. 1996. The influence of nitrogen on the elevated CO2 response on field-grown rice. Aust J Plant Physiol, 23: 45–52
    63杨连新,王余龙,张亚洁,徐家宽,董桂春.论我国优质稻米可持续发展战略[J].江苏农业科学,2004,5:1–3
    64 Kobayashi K, Lieffering M, Kim H Y. 2001. Growth and yield of paddy rice under free-air CO2 enrichment. In: Shiyomi M, Koizumi H, eds. Structure and Function in Agroecosystem Design and Management. Boca Raton, Florida, USA: CRC Press. 371–395
    65黄建晔,杨连新,杨洪建,刘红江,董桂春,朱建国,王余龙.开放式空气CO2浓度增加对水稻生育期的影响及其原因分析[J].作物学报,2005,31(7): 882–887
    66黄建晔,杨洪建,杨连新,刘红江,董桂春,朱建国,王余龙.开放式空气CO2浓度增加(FACE)对水稻产量形成的影响及其与氮的互作效应[J].中国农业科学,2004,37(12):1824–1830
    67 Yang L X, Huang J Y, Yang H J, Zhu J G, Liu H J, Dong G C, Liu G, Han Y, Wang Y L. 2006. The impact of free-air CO2 enrichment (FACE) and N supply on yield formation of rice crops with large panicle. Field Crop Res, 98: 141–150
    68 Kim H Y, Lieffering M, Kobayashi K, et al. 2003. Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Res, 83: 261–270
    69 Yang L X, Huang J Y, Yang H J, Dong G C, Liu H J, Liu G, Zhu J G, Wang Y L. 2007. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on nitrogen (N) uptake and utilization of rice at three levels of N fertilization (Oryza sativa L). Field Crops Research, 100: 189–199
    70董桂春,王余龙,杨洪建,黄建晔,朱建国,杨连新,单玉华.开放式空气CO2浓度增高对水稻N素吸收利用的影响[J].应用生态学报, 2002 ,13(10):1219–1222
    71黄建晔,杨洪建,杨连新,王余龙,朱建国,刘红江,董桂春,单玉华.水稻不同生育期N素营养对FACE响应的研究[J].作物学报,2004,30(12):1237–1243
    72 Kim H Y, Horie T, Nakagawa H, et al. 1996. Effects of elevated CO2 concentration and high temperature on growth and yield of rice.Ⅱ. The effect on yield and its components of Akihikari rice. Jpn J Crop Sci, 65: 644–651
    73 Yamakawa Y, Saigusa M, Okada M, et al. 2004. Nutrient uptake by rice and soil solution composition under atmospheric CO2 enrichment. Plant Soil, 259: 367–372
    74黄建晔,王余龙,杨洪建,董桂春,朱建国,杨连新,单玉华.开放式空气CO2浓度增高对水稻磷吸收利用的影响[J].扬州大学学报·农业与生命科学版,2002,23(4):39–42
    75谢祖彬,朱建国,张雅丽,马红亮,刘刚,韩勇,曾青,蔡祖聪.水稻生长及其体内C、N、磷组成对开放式空气CO2浓度增高和N、磷施肥的响应[J].应用生态学报,2002,13(10):1223–1230
    76 Yang L X, Wang Y L, Huang J Y, Zhu J G, Yang H J, Liu G, Liu H J, Dong G C, Hu J. 2007. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on phosphorus uptake and utilization of rice at three levels of nitrogen fertilization. Field Crops Res, 102: 141–150
    77董桂春,王余龙,黄建晔,杨洪建,顾晖,彭斌,居静,杨连新,朱建国,单玉华.稻米品质性状对开放式空气二氧化碳浓度增高的响应[J].应用生态学报,2004,15(7):1217–1222
    78张旭,刘彦卓,孔清霓,黄农荣,陈奕,潘大建.高CO2浓度下水稻高产品种特三矮2号的生长、产量与米质的研究[J].应用与环境生物学报,1998,4(3):238–242
    79 Imai K, Coleman D F, Yanagisawa T. 1985. Increase in atmospheric partial pressure of carbon dioxide and growth and yield of rice (Oryza sativa L.). Jpn J Crop Sci, 54: 413–418
    80 Baker J T, Allen L H Jr. 1993. Effects of CO2 and temperature on rice: a summary of five growing seasons. J Agric Meteorol, 48: 575–582
    81黄建晔,杨洪建,董桂春,等.开放式空气CO2浓度增高对水稻产量形成的影响[J].应用生态学报,2002,13(10):1210–1214
    82罗卫红,Mayumi Yoshimoto,戴剑峰,等.开放式空气CO2浓度增高对水稻冠层微气候的影响[J].应用生态学报,2002,13(10):1235–1239
    83廖轶,陈根云,张海波,等.水稻叶片光合作用对开放式空气CO2浓度增高(FACE)的响应与适应[J].应用生态学报,2002,13(10):1205–1209
    84 Kim H Y, Lieffering M, Kobayashi K, et al. 2003. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: A free-air CO2 enrichment (FACE) experiment. Global Change Biol, 9: 826–837
    85 Yang L X, Huang J Y, Yang H J, et al. 2006. Seasonal changes in the effects of free-air CO2 enrichment (FACE) on dry matter production and distribution of rice (Oryza sativa L.)?. Field Crop Res, 98: 12–19
    86黄建晔,董桂春,杨洪建,等.开放式空气CO2增高对水稻物质生产与分配的影响[J].应用生态学报,2003,14(2):253–257
    87杨洪建,杨连新,刘红江,等.FACE对武香粳14根系活性影响的研究[J].作物学报,2006,32(1):118–124
    88杨洪建,杨连新,刘红江,等.FACE对武香粳14根系生长动态的影响[J].作物学报,2005,31(12):1628–1633
    89杨洪建,杨连新,刘红江,等.FACE对水稻根系及产量的影响[J].作物学报,2005,31(9):1221–1226
    90 Xie Z B, Zhu J G, Pan H L, et al. 2004. Stimulated rice growth and decreased straw quality under free air CO2 enrichment (FACE). Proceedings of the fifth annual conference for young scientists of China Association for Science and Technology. Shanghai: Science Press
    91 Yang L X, Wang Y L, Dong G C, et al. 2007. The impact of free-air CO2 enrichment (FACE) and nitrogen supply on grain quality of rice (Oryza sativa L.)?. Field Crop Res, 102: 128–140
    92 Wang Y L, Yang L X, Huang J Y, and Dong G C. 2007. The impact of free-air CO2 enrichment (FACE) and N supply on growth, yield and quality of rice crops with large panicle (special review). Journal of Integrated Field Science, 4: 11–25
    93杨连新,杨洪建,黄建晔,王余龙,朱建国,刘红江,董桂春,单玉华.水稻不同生育时期磷素营养对开放式空气二氧化碳浓度增高的响应[J].应用生态学报,2005,16(5):924–928
    94黄建晔,杨连新,杨洪建,王余龙,朱建国,刘红江,董桂春,单玉华.水稻稻磷对开放式空气CO2浓度增高响应的研究[J].扬州大学学报(农业与生命科学版),2004,25(4):1–6
    95刘刚,韩勇,朱建国,等.稻麦轮作FACE系统平台Ⅰ.系统机构与控制[J].应用生态学报,2002,13(10):1253–1258
    96 Gunderson C A, Wullschleger C A. 1994. Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective. Photosynthesis Res, 39: 369–388
    97 Grant R F, Kimball B A, Brooks T J, et al. 2001. Interactions among CO2, N, and climate on energy exchange of wheat: Model theory and testing with a free air CO2 enrichment (FACE) experiment. Agronomy J, 93: 638–649
    98 Morison J IL. 1985. Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell and Environment, 8: 467–474
    99 Curtis P S and Wang X. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia, 113: 299–313
    100Hunsaker D J, Hendrey G R, Kimball B A, et al. 1994. Cotton evapotranspiration under field conditions with CO2 enrichment and variable soil moisture regimes. Agric. For. Meteorol, 70: 247–258
    101Korner C, Arnone Ill J A. 1992. Response to elevated carbon dioxide in artificial tropical ecosystems. Science, 258: 1672–1675
    102王修兰,徐师华,梁红.CO2浓度增加对C3、C4作物生育和产量影响的实验研究.中国农业科学,1998,31(1):55–61
    103Morison J IL, Lawlor D W. 1999. Interactions between increasing CO2 concentration and temperature on plant growth. Plant cell Environ, 22: 659–682
    104Peng S B, Yang J C. 2003. Current status of the research on high-yielding and high efficiency in resource use and improving grain quality in rice. Chin J Rice Sci, 17: 275–280
    105Yang J C, Zhang W H, Wang Z Q, Liu L J, Zhu Q S. 2001. Source sink characteristics and translocation of assimilates in new plant type and japonica/indicahybrid rice. Sci Agric Sin, 34: 465–468
    106Delucia E H, Sasek T W, Strain B R.1985. Photosynthetic inhibition after long-time exposure to elevated levels of atmospheric carbon dioxide. Photosynth Res, 7: 175–184
    107Sakai H, Yagi K, Kobayashi K, Kawashima S. 2001. Rice carbon balance under elevated CO2. New Phytol, 150: 241–249
    108Nakano H, Makino A, Mae T. 1997. The effect of elevated partial pressure of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiol, 115: 191–198
    109Tissue D T, Thomas R B, Strain B R. 1993. Long term effects on photosynthesis and Rubisco in loblolly pine seedlings. Plant Cell Environ, 16: 859–865
    110Berntson G M, Rajakaruna N, Bazzaz F A. 1998. Growth and nitrogen uptake in an experimental community of annuals to elevated atmospheric CO2. Global Change Biol, 4: 607–626
    111Bowler J M, Press M C. 1996. Effects of elevated carbon dioxide, nitrogen form and concentration on growth and photosynthesis of a fast-and slow-growing grass. New Phytol, 132: 391–401
    112Crawford N M, Glass D M A. 1998. Molecular and physiological aspect of nitrate uptake in plants. Trends Plant Sci, 3: 389–395
    113Pettersson R, MacDonald J S. 1994. Effects of nitrogen supply on the acclimation of photosynthesis to elevated CO2. Photosynth Res, 39: 389–400
    114Zheng X H, Zhou Z X, Wang Y S, et al. 2006. Nitrogen-regulated effects of free-air CO2 enrichment (FACE) on methane emissions from paddy rice fields. Global Change Biol, 12 (9): 1717–1732
    115Wu D X, Wang G X, Bai Y F, Liao J X. 2004. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agric Ecosyst Environ, 104: 493–507.
    116Norby R J. 1994. Issues and perspectives for investigating root responses to elevated atmospheric carbon dioxide. Plant Soil, 165: 9–20
    117Hu S J, Wu J S, Burkey K O, Firestone M K. 2005. Plant and microbial N acquisition under elevated atmospheric CO2 in two mesocosm experiments with annual grasses. Global Change Biol, 11: 213–223
    118石庆华,李木英,涂起红.杂交水稻根系N素营养效率及其生理因素研究[J].杂交水稻,2002,17(4):45–48
    119Hocking P J, Weyer C P. 1993. Effects of CO2 enrichment and nitrogen stress on growth. Aust Plant Physiol, 18: 339–356
    120单玉华,王余龙,Yamamoto Y,黄建晔,杨连新,张传胜.不同类型水稻在氮素吸收及利用上的差异[J].扬州大学学报(自然科学版),2001,4(3):42–45
    121马红亮,朱建国,谢祖彬,张雅丽,刘刚,曾青.开放式空气CO2浓度升高对水稻土壤可溶性C、N和P的影响[J].土壤,2004,36(4):392–397
    122Poorter H, Van berkel Y, Baxter P, et al. 1997. The effect of elevated CO2 on the chemical composition and construction costs of leaves of 27, C3 species. Plant, Cell and Environment, 20: 472–482
    123郭朝晖,李合松,张杨珠,等.磷素水平对杂交水稻生长发育和磷素运转的影响[J].中国水稻科学,2002,16(2):151–156
    124李永夫,罗安程,王为木,蔡炳祥,胡晓跃,杨肖娥.不同供磷水平下水稻磷素吸收利用和产量的基因型差异[J].土壤通报,2005,36(3):365–370
    125庞静,朱建国,谢祖彬,陈改苹,刘刚,张雅丽.自由空气CO2浓度升高对水稻营养元素吸收和籽粒中营养元素含量的影响[J].中国水稻科学,2005,19(4):350–354
    126Penuelas J, Estiarte M, Kimball B A. 1999. Phenolic compound response to elevated CO2: Green versus senescent leaves. photosynthetica, 37: 615–619
    127Lieffering M, Kim H Y, Kobayashi K, et al. 2004. The impact of elevate CO2 on the elemental concentrations of field-grown rice grains. Field Crops Res, 88: 279–286
    128李木英.水稻根系营养吸收特性及其与干物质生产和稻米品质关系的研究[J].江西农业大学学报,1996,18(4):376–382 129陆定志,邱鸿步.杂交水稻根系生理优势及其与地上部性状的关联研究[J].中国水稻科学,1987,1(2):81–94
    130凌启鸿,凌励.水稻不同层次根系的功能及对产量形成作用的研究[J].中国农业科学,1984,17(4):3–11
    131朱德峰,林贤青,曹卫星,等.水稻深层根系对生长和产量的影响[J].中国农业科学,2001,34(4):429–432
    132陈春涣,骆世名,李洪武,等.水稻根系与产量构成关系的研究[J].华南农业大学学报,1993,14(2):18–23
    133凌启鸿,苏祖芳,张洪程,等.水稻品种不同生育类型的叶龄模式[J].中国农业科学,1983,16(1):1–8
    134倪文.光照对水稻根系生长和产量以及根系生理活性的影响[J].作物学报,1983,9(1):29–33
    135董桂春,王余龙,吴华,等.供氮浓度对水稻根系生长的影响[J].江苏农业研究,2001,22(4):9–13
    136王义琴,张慧娟,杨奠安,等.大气CO2浓度倍增对植物幼苗根系生长影响的分形分析[J].科学通报,1998,43(16):1736–1738
    137Berntson G M, Bazzaz F A. 1997. Elevated CO2 and the magnitude and seasonal dynamics of root production and loss in Betula papyrifera. Plant and Soil, 190: 211–216
    138王大力,林伟宏.CO2浓度升高对水稻根系分泌物的影响[J].生态学报,1999,19(4):570–572
    139Gorissen A, Cotrufo M F. 2000. Decomposition of leaf and root tissue of three perennial grass species grown at two levels of atmospheric CO2 and N supply. Plant and Soil, 224: 75–84
    140凌启鸿,陆卫平,蒋建中,等.水稻不同层次根系的功能及对产量形成作用的研究[J].中国农业科学,1984(4):3–11
    141杨洪建.FACE对水稻根系生育的影响及其与产量形成的关系.博士论文.2005,5
    142石庆华,李木英.水稻根系特征与地上部关系的研究[J].江西农业大学学报,1995(2):110–115.
    143张传胜.高产籼稻品种的基本特征及其原因分析.博士论文.2004,5
    144陆定志,邱鸿步.杂交水稻根系生理优势及其与地上部性状的关联研究[J].中国水稻科学,1987,1(2):81–94
    145凌启鸿,张国平,朱庆森,等.水稻根系对水分和养分的反应[J].江苏农学院学报,1990,11(1):23–27
    146王余龙,津野幸人.水稻不同层次根量与活性的关系及其对氮素吸收的影响[J].江苏农学院学报,1989,10(2):13–16
    147王余龙,陈林,姚友礼,等.不同水稻品种的根系发生和根系活性[J].江苏农学院学报,1994,15(1):11–16
    148沈波,王熹.籼粳亚种间杂交稻根系伤流强度的变化规律及其与叶片生理状况的相互关系[J].中国水稻科学,2000,14(2):122–124
    149林伟宏,王大力.大气二氧化碳升高对水稻生长及同化物分配的影响[J].科学通报,1998,43 (21):335–341
    150Baker J T, Allen L H Jr. 1993. Contrasting crop species responses to CO2 and temperature: Rice, soybean and citrus. Vegetatio, 104/105: 239–260
    151黄建晔.FACE对水稻生长发育的影响及其原因分析.博士论文.2004,5
    152Imai K, Murata Y. 1976. Effect of carbon dioxide concentration on growth and dry matter production of crop plants. Jap J Crop Sci, 45 (1): 598–606
    153Imai K, Murata Y. 1978. Effect of carbon dioxide concentration on growth and dry matter production of crop plants. III. Jap J Crop Sci, 47 (1): 118–123
    154Nakagawa H, Horie T. 2000. Rice responses to elevated CO2 and temperature. Global Environ Res, 3: 101–113
    155Wand S JE, Midgley G F, Jones M H, et al. 1999. Responses of wild C4 and C3 grasses (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology, 5: 723–741
    156李伏生,康绍忠.不同氮和水分条件下CO2浓度升高对小麦碳氮比和碳磷比的影响[J].植物生态学报,2002,26(3):295–302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700