玉米对磷铝耦合胁迫的基因型差异及有机酸对土壤磷素有效性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤缺磷是农业生产中限制作物生长与产量的主要因素之一。但是施磷肥后,至少有700%~90%的磷在土壤中转化为难被作物吸收利用的形态。玉米是重要的粮食和饲料作物,其磷效率存在广泛的基因型差异,形成所谓的遗传学缺乏。由于缺磷是酸性土壤的特征之一,本研究室前期对国内外不同遗传背景的大量玉米自交系进行了苗期土培筛选,并对部分材料进行全生育期盆栽鉴定,获得了一些典型的耐低磷和耐酸铝基因型。本文进一步研究了同时具有耐低磷和耐酸铝玉米种质材料的耐低磷营养特性,同时以本地区三种pH值低磷土壤和三种低分子量有机酸为对象,研究了不同磷源对无机磷形态转化及有机酸对提高磷素有效性的作用。主要研究结果如下:
     1.本研究采用土培和水培方法系统研究了不同酸铝(铝)、磷处理下玉米自交系苗期生物学及营养学特性。结果表明,低磷和酸铝都严重抑制玉米植株的生长,低磷胁迫下干重受影响较大,酸铝胁迫对下部叶叶色和干重影响显著。耐低磷基因型适应低磷的能力较强,它们具有较长的根系和较大的根干重,且株高受低磷的影响明显小于敏感基因型。低磷胁迫增大了植株的根冠比,改变了植株对营养元素的吸收及其在地上部和根系的分配。铝胁迫下,铝敏感玉米基因型根伸长受到铝的抑制作用大于耐铝基因型,耐铝基因型地上部和根系相对干重下降较少,而敏感基因型相对干重显著下降。
     2.营养学特性研究表明,低磷胁迫下,低磷敏感基因型磷吸收效率低,耐低磷基因型的吸收能力较强,其绝对和相对吸磷量都明显高于低磷敏感基因型。低磷抑制玉米幼苗对N、K的吸收和累积,但耐低磷自交系受抑制程度较敏感自交系小。低磷敏感基因型M05根系和地上部Zn含量下降,耐低磷基因型M02、M08和M11根系和地上部Zn含量升高,且耐低磷自交系植株体内Zn的相对累积量高于敏感自交系。低磷胁迫使M05地上部和根系中Ca、Mg、Fe累积量显著下降,但M02、M08地上部和根系中钾、镁、锌的绝对和相对累积量显著高于敏感基因型。铝处理使自交系地上部和根系中各营养元素含量和累积量普遍下降,加磷可缓解酸铝对玉米生长的毒害作用。不同自交系之间存在耐低磷和耐酸铝基因型差异,相互间存在一定的关系,但耐胁迫能力不同。自交系M12属于酸铝低磷双敏感类型;耐酸铝自交系,如M02和M08同样耐低磷,耐低磷自交系M01也较耐酸铝,为双耐基因型。
     3.用营养液培养方法研究了不同耐低磷玉米幼苗对低钾、低铁和缺锌胁迫的适应性差异。结果表明,低钾胁迫对玉米株高和叶片数有显著的抑制作用,但对根系生长没有明显影响,甚至刺激多数基因型的根系生长。低钾胁迫对耐低磷基因型玉米地上部生长的抑制作用显著大于低磷敏感基因型,因此耐低磷基因型的根冠比增幅较大。低钾处理显著降低了植株的地上部和根系吸磷量,尤其是低磷敏感基因型植株的根系吸磷量;同时还使玉米根效率比大幅下降,6个基因型在对照和低钾处理中根效率比的差异均达到显著水平,但以耐低磷基因型降低的程度更为明显。低钾处理使地上部和根系的磷利用率增加,但基因型间无明显差异。
     低铁胁迫对低磷敏感基因型玉米地上部生物重的抑制作用显著大于对耐低磷基因型。在低铁胁迫时,耐低磷基因型玉米地上部和根系积累的磷量与正常供铁条件下相比变幅较小,而低磷敏感基因型积累的磷量显著下降。低铁胁迫显著降低了不同耐低磷基因型玉米幼苗叶片的叶绿素含量,但基因型间无明显差异。总的来说,玉米地上部更易受低铁胁迫的影响。
     低磷敏感基因型在缺锌时植株各部位锌含量和吸收量变幅均明显高于耐低磷基因型。缺锌处理影响玉米幼苗的磷含量,低磷敏感基因型地上部磷含量较对照显著上升,根系磷含量变幅不大:耐低磷基因型地上部磷含量变幅较小,根系磷含量则显著下降。低磷敏感基因型在缺锌时地上部磷利用率显著下降,根系磷利用率无明显变化,而耐低磷基因型的变化情况正好相反,根系磷利用率受影响的程度大于地上部。
     4.土壤大部分磷以难溶性磷形式存在,是影响作物生产的重要限制因素之一。作物根分泌物活化难溶性磷的能力对改善其磷素营养具有重要意义。采用室内培养方法,研究三种土壤不同磷(KH_2PO_4)处理后有效磷动态变化情况;同时将不同玉米基因型分别置于全磷和低磷的营养液中生长15d后,收集根系分泌物,然后加入预先采用磷酸钙和磷酸铝处理并已培养95d的土壤样品中进行试验。不同磷处理研究结果表明,所有施磷处理短期内速效磷含量急剧上升,并随培养时间推移不断下降,60d后趋于稳定。酸性土对磷的吸附和固定作用较强,磷处理后有效磷增加量显著小于中、碱性土。土壤加根系分泌物的试验反映,磷酸钙和磷酸铝有效磷的含量具有提高,其中加入耐低磷基因型M02低磷根系分泌物浸提的土壤有效磷含量显著高于去离子水的浸提量,且根系分泌物对磷酸铝的活化能力大于磷酸钙。
     5.以湖北省三种不同pH值的低磷土壤为材料,加入不同磷源和有机酸,经过室温培养后,测定有效磷含量和无机磷组分的变化。结果表明:施磷显著提高了土壤中有效磷含量,中、酸性土Fe-P和Al-P含量大幅上升,Fe-P占增加量的50%以上,而碱性土中Ca-P含量显著增加。由于有机酸的作用,三种土壤中O-P含量均有所增加,中、酸性土中Al-P含量一般呈下降趋势,碱性土中Ca-P含量有不同程度的减少。
Phosphorus is often sparingly soluble in soils and consequently P deficiency in plants represents a major constraint to world agricultural production.High phosphate fertilizer inputs intensive crop areas have been the practice for several decades.Generally,the P was widely considered to be firmly fixed onto the soil particles,and it was largely unavailable to plants,which results in "P deficiency in heredity".Consequently much research has concentrated on the potential to manipulate plants either through conventional breeding of genetic engineering to enhance their capability to mobilize P in soil.Maize was an important grain and forage crop in the world,there were P-efficiency difference among different maize genotypes.Most of cultivated land in acid soil was in heavy P-deficiency,after screen more than 300 maize genotypes in seedling stage with soil culture,and identify some of them in full-life stage with pot culture experiment,we achieved some typical low-P tolerant and Acid-tolerant maize genotypes.In this study, obtained typical lines were selected to research their nutritional characters and physiological mechanism.Meanwhile,three types of low-P soils collected from Hubei province were tested to analyze their inorganic phosphorus fractions after incubated with added various organic acids and different phosphorus sources.The main results of this study were summarized as follows:
     1.Aluminum(Al) toxicity and phosphorus(P) deficiency often coexist in acid soils that severely limit crop growth and production,including maize.Understanding the physiological mechanisms relating to plant Al and P interactions should help facilitate the development of more Al-tolerant and/or P-efficient crops.In this study,both nutrient solution and soil experiments were conducted to study the effects of Al and P interactions on maize biology and nutrient characteristics.The results demonstrated that P deficiency and acid stress severely hinder the growing of maize.P deficiency had a negative influence on biological traits,especially on plant dry matter weight.Low-P tolerant maize genotypes,had longer roots and larger dry root weight than low-P sensitive maize genotype;and the plant heigh of low-P tolerant maize genotypes were less affected by the phosphorus defficiency than that of sensetive genotypes.Under low phosphorus condition, the ratio of root to shoot in all genotypes increased;uptaking and distribution of P,K,Ca, Mg,Fe,Zn between roots and shoots also changed.Under stress of aluminum condition, the root lengtht and relative dry weigh of Al-tolerant maize genotypes were less affected by the Al toxicity than those of Al-sensetive genotypes.
     2.Nutrient characteristics of seedling stage were studied for different maize genotypes.The efficiency of P uptake is the main contributor to low-P tolerance.And the P uptake amounts of P-tolerance lines M02、M08 and M11are significantly higher than P sensitive line M05 under low P stress.P deficiency has some influence on the uptake of N, P,K,Ca,Mg,Fe,Mn and Zn at seedling stage.P deficiency restrains the uptake of N and K for the maize.However,it affects less of P tolerant lines than that of P sensitive lines. The P tolerant lines show stronger abilities of Ca,Mg,Fe uptake and accumulation than P sensitive lines.P deficiency decreases concentration and accumulation of Zn in root and shoot of P sensitive lines but increases that of P tolerant lines.Under stress of aluminum condition,accumulation of P,K,Ca,Mg,Fe,Zn was seriously affected,the addition of P could alleviate the toxicities of acid and aluminum.There were genotypic differences in tolerance to low-P and acid stress among different lines.It was also found that there are some relation between low P tolerance and acid tolerance.M12 is sensitive line to both acid-aluminum stress and low P stress;The acid and aluminum tolerant lines M02 and M08 show the same tolerance to low P,whereas the low P tolerant line M01 has some tolerance to acid and aluminum stress,which are tolerant lines of both stress.
     3.The genotypic differences in response to K、Fe、Zn deficiency of maize with different phosphorus efficiency were investigated in nutrient solution under controlled conditions.K deficiency was significant effect on shoot growth and number of leaves. The genotypic differences existed in response to K deficiency,which decreased the dry weight of shoot in low-P tolerant genotypes more significantly than in low-P sensitive genotypes,and root/shoot ratio of low-P tolerant genotypes sharply droped.The K deficiency was also significant decreased P uptake in root、shoot and the root efficiency ratio,but increased P utilization efficiency,and P uptake in root in P sensitive genotypes more significantly than in low-P tolerant genotypes.
     Fe deficiency decreased the dry weight of shoot in low-P sensitive genotypes more significantly than in low-P tolerant genotypes.Compared with supplying Fe treatment (+Fe),in-Fe treatment,the P accumulation in shoot and root of low-P sensitive decreased significantly,but was not significant effect on that in low-P tolerant genotypes. The same response to Fe deficiency existed in chlorophyll content between P sensitive genotypes and P tolerant genotypes,the contents of different genotypes in chlorophyll decreased greatly respectively.Shoot of maize appears to be the causative factor of the different phosphorus efficiency genotypes.
     The genotypic differences existed in response to Zn deficiency,which decreased the content and uptake of Zn of seedling in low-P sensitive genotypes more significantly than in low-P tolerant genotypes.Compared with supplying Zn treatment,in-Zn treatment,the P content in shoot of low-P sensitive genotypes increased significantly than in root;but the P content in root of low-P tolerant genotypes decreased signifecantly than in shoot; the P utilization efficiency in shoot of low-P sensitive and in root of low-P tolerant genotypes decreased respectively.
     4.Low phosphate availability is one of the major limitations to crop production. Organic acids are a principal component of root exudates and have been hypothesized by many authors to be involved in the mobilization of nutrients within the rhizosphere. Mobilization of insoluble phosphates by root exudates plays an important role in improving P nutrition of crops.The effect of different phosphorus level on dynamic of available phophorus in soils had been studied.At the same time,two maize inbred lines were grown for 15 days in nutrient solution with different phosphorus treatment.The root exudates were collected and added into the three types of soil which had incubated for 95days.The results showed that the available phosphorus content quickly increased by application of different phsphate,and then constantly decreased by time,and were steady after 60 day;and the available phosphorus from acid soil is significant lower than alkali soil and neutral soil.The soil available phosphorus content was extracted by the root exudates of M02 collected under low phosphorus condition significant pronounced with the addition of insoluble phosphate to the deionized soil;and AlPO_4 mobilization by root exudates was significantly higher than Ca_3(PO_4)_2.
     5.Three types of soils collected from Hubei province were tested to analyze their inorganic phosphorus fractions and content of available P after incubated with added various organic acids and djfferent phosphorus sources.The results indicated that application of phosphorus sources increased content of available P in all soils.On soils of pH value 4.6 and 6.8 the fertilized phosphorus was transformed into Fe-P and Al-P mainly.However,on soil of pH value 8.3 the fertilized phosphorus significant increased content of Ca-P.The release of phosphorus by organic acids from soils is significant, especially Al-P in acid soil and neutral soil,Ca-P in Alkali soil.
引文
1.曹爱琴,廖红,严小龙.低磷土壤条件下菜豆根构型的适应性变化与磷效率.土壤学报,2002,39(2):276-282
    2.程传敏,曹翠玉.干湿交替过程中石灰性土壤无机磷的转化及有效性.土壤学报,1997,34(4):382-391
    3.成瑞喜,刘景福,徐芳森.磷肥对中酸性土壤无机磷形态转化及其有效性的影响.土壤,1996,28(2):225-228
    4.成瑞喜,贾平.中酸性土壤无机磷形态及生物有效性.热带亚热带土壤科学,1998,7(1):6-101
    5.丁永祯,李志安,邹碧.土壤低分子量有机酸及其生态功能.土壤,2005,37(3):243-250
    6.段海燕,徐芳森,王运华.甘蓝型油菜不同磷效率品种苗期根系生长和磷营养的差异.植物营养与肥料学报,2002,8(1):65-691
    7.冯固,杨茂秋,白灯莎.用32P示踪研究石灰性土壤中磷素的形态及有效性的变化.土壤学报,1996,33(3):301-306
    8.高超,张桃林,吴蔚东.氧化还原条件对土壤磷素固定与释放的影响.土壤学报,2002,7,39(4):542-549
    9.龚江,李绍长,夏春兰等.低磷胁迫下玉米自交系磷高效基因型筛选.新疆农业科学,2002,39(2):77-81
    10.郭智芬,徐书新.石灰性土壤不同形态无机磷对作物磷营养的贡献.中国农业科学,1997,30(10):26-32
    11.顾益初,蒋柏藩,鲁如坤.风化对土壤粘粒中磷素形态转化及其有效性的影响.土壤学报,1984,21(2):134-143
    12.顾益初,钦绳文.草地土壤长期定位试验残留磷的转化与有效性.土壤,1997(1):13-17
    13.郭再华,贺立源,徐才国.水稻耐低磷特性研究.应用与环境生物学报,2004,10(6):681-68
    14.郭再华,贺立源,徐才国.不同耐低磷水稻基因型对难溶性磷的活化吸收.作物学报,2005,31(10):1322-1327
    15.郭再华,贺立源,黄魏等.耐低磷水稻筛选与鉴定.植物营养与肥料学报,2006a,12(5):642-648
    16.郭再华,贺立源,徐才国.磷水平对不同耐低磷水稻苗根系生长及氮、磷、钾吸收的影响.应用与环境生物学报,2006b,12(4):449-452
    17.何振立,袁可能,朱祖祥.有机阴离子对磷酸根吸附的影响.土壤学报,1990,27(4):377-384
    18.何龙飞,刘友良,沈振国等.铝对小麦幼苗营养元素吸收和分布的影响.电子显微学报,2000,19:285-294
    19.胡荣桂,陈家和.几种不同母质发育的红壤磷的组分研究.海南大学学报,1998,(2):158-162
    20.胡红青,李学垣,贺纪正.有机酸对铝氧化物吸附磷的影响.植物营养与肥料学报,2000,6(1):35-41
    21.胡红青,廖丽霞,王兴林.低分子量有机酸对红壤无机态磷转化及酸度的影响.应用生态学报,2002,13(7):867-870
    22.胡红青,李研,贺纪正.土壤有机酸与磷素相互作用的研究.土壤通报,2004,35(2):222-229
    23.胡佩,周顺桂,刘德辉.土壤磷素分级方法研究评述.土壤通报,2003,6,34(3):229-232
    24.黄邦全,白景华,薛小桥.植物铝毒害及遗传育种研究进展.植物学通报,2001,18(2):385-395
    25.黄昌勇.土壤学.北京:中国农业出版社,2001,199-202
    26.蒋柏藩,顾益初.石灰性土壤无机磷分级体系的研究.中国农业科学,1989,22(3):58-66
    27.寇长林,王秋杰,任丽轩等.小麦和花生利用磷形态差异的研究.土壤通报,1999,30(4):181-184
    28.李德华,贺立源,李建生等.不同基因型玉米根系对铝胁迫反应的差异研究.华中农业大学学报,2003,22(4):365-369
    29.李德华,向春雷,姜益泉等.低磷胁迫下水稻不同品种根系有机酸分泌的差异.中国农学通报,2005,21(11):186-188
    30.李锋,潘晓华,刘水英等.低磷胁迫对不同水稻品种根系形态和养分吸收的影响.作物学报,2004a,30(5):438-442
    31.李锋,李木英,潘晓华等.不同水稻品种幼苗适应低磷胁迫的根系生理生化特性.中国水稻科学,2004b,18(1):48-52
    32.李刚华,丁艳锋,薛利红等.利用叶绿素计(SPAD-502)诊断水稻氮素营养和推荐追肥的研究进展.植物营养与肥料学报,2005,11(3):412-416
    33.李继云,刘秀娣,周伟等.有效利用土壤营养元素作物育种新技术研究.中国科学(B辑),1995,25(1):41-48
    34.李继云,孙建华,刘全友等.不同小麦品种的根系生理特性、磷的吸收及利用效率对产量影响的研究.西北植物学报,2000,20(4):506-510
    35.李绍长,胡昌浩,龚江等.供磷水平对不同磷效率玉米氮、钾素吸收和分配的影响.植物营养与肥料学报,2004a,10(3):237-240
    36.李绍长,胡昌浩,龚江等.低磷胁迫对磷不同利用效率玉米叶绿素荧光参数的影响.作物学报,2004b,30(4):365-370
    37.李寿田,周健民,王火焰等.不同土壤磷的固定特征及磷的释放量和释放速率研究.土壤学报,2003,11,40(6):908-914
    38.李淑仪,蓝佩玲,廖新荣等.砖红壤磷的有效性研究.生态环境,2003,12(2):170-171
    39.李延,徐照本,李小菊.水稻施磷对锌吸收的影响及磷锌指标探讨.浙江农业科学,1992,(2):77-79
    40.李永夫,罗安程,王为木.不同供磷水平下水稻磷素吸收利用和产量的基因型差异.土壤通报,2005,36(3):365-370
    41.李永夫,罗安程,魏兴华等.水稻利用难溶性磷酸盐的基因型差异及其与根系分泌物活化特性的关系.中国水稻科学,2006,20(5):493-498
    42.李志刚,谢甫绨,张玉铃等.磷胁迫对大豆不同磷素基因型光合作用的影响.内蒙古民族大学学报(自然科学版),2004,19(3),297-299
    43.李志洪,陈丹,曹国军.磷水平对不同基因型玉米根系形态和磷吸收动力学的影响.吉林农业大学学报,1995,17(4):40-43
    44.廉鸿志,张璐,宇万太等.大剂量磷肥对作物微量元素营养的影响.土壤通报,1993,24(1):27-29
    45.廖红,严小龙.菜豆根构型对低磷胁迫的适应性变化及基因型差异.植物学报,2000,42(2):158-163
    46.廖星,李志玉,王江薇等.甘蓝型油菜耐缺磷种质筛选指标的研究.中国农业科学,1999,32(增刊):107-111
    47.林文雄,石秋梅,郭玉春.水稻磷效率差异的生理生化特性.应用与环境生物学报,2003,9(6):578-583
    48.刘国栋,李振声,李继云.小麦不同磷效率基因型的子母盆栽试验.作物学报,1998,24(1):78-83
    49.刘厚诚,邝炎华.缺磷胁迫下不同长豇豆品种幼苗中IAA含量的变化.植物生理学通讯,2003,39(2):125-127
    50.刘鸿雁,黄建国,魏成熙等.磷高效基因型玉米的筛选研究.土壤肥料,2004,(5):25-29
    51.刘辉,王三根.低磷胁迫对大麦内源激素的影响.西南农业大学学报,2003,25(1):48-511
    52.刘建铃,张福锁.小麦—玉米轮作长期肥料定位试验中土壤磷库的变化.Ⅱ.土壤Olsen-P及各形态无机磷的动态变化.应用生态学报,2000a,11(3):365-368
    53.刘建玲,张凤华.土壤磷素化学行为及影响因素研究进展.河北农业大学学报,2000b,23(3):36-45
    54.刘建中,李振声,李继云.利用植物自身潜力提高土壤中磷的生物有效性.(中国生态农业学报,1994,2(1):16-23
    55.刘鹏,区伟贞,王金祥等.磷有效性与植物侧根的发生发育.植物生理学通讯, 2006,42(3):395-400
    56.鲁如坤.土壤磷素化学研究进展.土壤学进展,1990(6):1-51
    57.鲁如坤.水稻土磷素化学和有效施用磷肥.磷肥和复肥,1993(1):84-861
    58.鲁如坤,时正元,钱乘梁.土壤积累态磷研究.Ⅲ.几种典型土壤中累积态磷的形态特征及其有效性.土壤,1997,28(2):57-75
    59.鲁如坤.土壤植物营养学.北京:化学工业出版社,1998,152-208
    60.陆文龙,张福锁,曹一平.磷土壤化学行为研究进展.天津农业科学,1998,4(4):127-132
    61.陆文龙,张福锁.低分子量有机酸对石灰性土壤磷吸附动力学的影响.土壤学报,1999,36(2):189-197
    62.明凤,郑先武,张福锁.水稻对低磷反应的基因型差异及生理适应机制的初步研究.应用与环境学报,2000,6(2):138-141
    63.潘晓华,刘水英,李锋等.低磷胁迫对不同水稻品种幼苗生长和磷效率的影响.江西农业大学学报,2002,24(3):297-300
    64.潘晓华,刘水英,李锋等.低磷胁迫对不同水稻品种幼苗光合作用的影响.作物学报,2003,25(5):770-774
    65.庞欣.植物对缺磷胁迫的感应及调控机理的研究.北京,中国农业大学,1999a,9-10
    66.庞欣,李春俭,张福锁.缺磷胁迫对黄瓜体内磷运输及再分配的影响.植物营养与肥料学报,1999b,5(2):137-143
    67.庞欣,李春俭,张福锁.部分根系供磷对小麦幼苗生长及同化物分配的影响.作物学报,2000,26(6):721-724
    68.邵兴华,章永松,林成永等.三种铁氧化物的磷吸附解吸特性以及与磷吸附饱和度的关系.植物营养与肥料学报,2006,12(2):208-21
    69.沈阿林,李学垣,吴受容.土壤中低分子量有机酸在物质循环中的作用.植物营养与肥料学报,1997,3(4):363-369
    70.沈宏,杨存义,范小威等.大豆根系分泌物和根细胞壁对难溶性磷的活化.生态环境,2004,13(4):633-638
    71.沈宏,菊井森士,严小龙等.大豆根分泌物活化难溶性铝磷的研究.水土保持学报,2005,19(1):68-70
    72.沈仁芳,蒋柏藩.石灰性土壤无机磷的形态分布及其有效性.土壤学报,1992,29(1):80-85
    73.沈任芳.潮土无机磷的形态及其分布特点.河南农业科学,1992,(12):24-27
    74.沈善敏.中国土壤肥力.北京:中国农业出版社,1998,80-83
    75.台德卫,张效忠,苏泽胜等.不同磷营养胁迫下水稻苗期性状基因型差异的研究.分子植物育种,2005,3(5):704-710
    76.田中民,李春俭,王晨等.缺磷白羽扇豆排根和非排根区根尖分泌有机酸的比 较.植物生理学报,2000,26(4):317-312
    77.王景安,张福锁.缺锌与低锌对玉米苗期生长发育的影响.土壤肥料,1999(5):18-20
    78.王庆仁,李继云,李振声.植物高效利用土壤难溶态磷研究动态及展望.植物营养与肥料学报,1998,4(2):107-116
    79.王永锐.杂交水稻“汕优2号”“汕优6号”和“威优6号”对磷(32P)的吸收分配和干物质增长情况研究.中国农业科学,1983,3:15-19
    80.吴春艳,庄舜尧,杨浩.南方红壤处理滇池水的初步试验.农业环境科学学报,2003,22(6):669-672
    81.吴照辉,贺立源,左雪冬等.低磷胁迫下不同基因型水稻阶段性磷营养特征.中国水稻科学,2008,22(1):71-76
    82.席章营,吴克宁,王同朝等.玉米抗旱性生理生化鉴定指标及利用价值分析.河南农业大学学报,2000,34(1):7-12
    83.向万胜,黄敏,李学垣.土壤磷素的化学组分及其植物有效性.植物营养与肥料学报,2004,10(6):663-670
    84.邢宏燕,王二明,李滨等.有效利用土壤磷的小麦种质筛选方法研究.作物学报,2000,26(6):839-844
    85.熊俊芬,石孝均,毛知耘.定位施磷对土壤无机磷形态土层分布的影响.西南农业大学学报.2000.22(4):123-125
    86.熊毅、李庆逵编.中国土壤,北京:科学出版社,1987,39
    87.杨庆,金华斌.铝胁迫对花生吸收氮、磷、钙的影响.中国油料作物学报2000,22(2):68-73
    88.阎秀兰,段海燕,王运华.甘蓝型油菜不同基因型幼苗磷营养差异的研究.中国油料作物学报,2002,24(2):47-49
    89.尹金来,沈其荣,周春林等.猪粪和磷肥对石灰性土壤无机磷组分及有效性的影响.中国农业科学,1989,34(3):296-3001
    90.尹金来,周春霖,洪立洲等.长期棉麦轮作下石灰性土壤无机磷形态转化及有效性研究.江苏农业学报,1999,15(1):34-37
    91.袁可能.植物营养元素的土壤化学.北京:科学出版社,1983,110-163
    92.臧小平.土壤铝毒及植物钙镁营养.广西农业科学,1997(2):80-82
    93.章爱群,贺立源,李德华等.酸胁迫对不同基因型玉米生长和养分吸收的影响.植物营养与肥料学报,2007a,13(4):548-553
    94.章爱群,贺立源,李德华等.酸胁迫对不同基因型玉米生长和钙镁养分吸收的影响.应用与环境生物学报,2007b,13(6):796-798
    95.张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用.土壤学报,1998,36(1):104-111
    96.张恩和,张新慧,王惠珍.不同基因型春蚕豆对磷胁迫的适应性反应.生态学 报,2004,24(8):1589-1593
    97.张福锁.植物营养生态生理学和遗传学.北京:中国科学技术出版社.1993,260-262
    98.张吉海,高世斌,潘光堂.玉米苗期耐低磷基因型的筛选与鉴定.玉米科学,2006,14(5):20-25
    99.张可炜,李坤朋,刘治刚等.磷水平对不同基因型玉米苗期磷吸收利用的影响.植物营养与肥料学报,2007,13(5):795-801
    100.张丽梅,贺立源,李建生等.玉米自交系耐低磷材料苗期筛选研究.中国农业科学,2004,37(12):1955-1959
    101.张丽梅,贺立源,李建生等.不同耐低磷基因型玉米磷营养特性研究.中国农业科学,2005a,38(12):110-115
    102.张丽梅.磷对玉米不同基因型影响的差异及其生理适应机制研究,[博士学位论文].武汉:华中农业大学,2005 b
    103.张丽梅,贺立源,龚阳敏等.不同耐低磷玉米自交系生长发育特征研究.植物营养与肥料学报,2006,12(1):56-62
    104.章永松,林咸永,罗安程等.有机肥(物)对土壤中磷的活化作用及机理研究Ⅰ有机肥(物)对土壤不同形态无机磷的活化作用.植物营养与肥料学报,1998a,4(2):145-150
    105.章永松,林咸永,倪吾钟.淹水和风干过程对水稻土磷的吸附、解吸及有效磷的影响.中国水稻科学,1998b,12(1):40-44
    106.赵明,沈宏,严小龙.不同菜豆基因性根系对难溶性磷的活化吸收.植物营养与肥料学报,2002,8(4):435-440
    107.赵晓齐,鲁如坤.有机肥对土壤磷素吸附的影响.土壤学报,1991,28(1):7-13
    108.周建华,潘建伟,朱睦元.铝胁迫下大麦根过氧化物酶同工酶及根中Al、Ca、和P含量的变化.浙江农业学报,200I,13(4):190-196
    109.Ae N,Arihara J,Okada K,et al.Phosphorus uptake by pigeon pea and its role in cropping system of the India subcontinent.Science,1990,248:477-480
    110.Ayalew L,Hong S,Koichi S,Yoko Y,Shigemi T,Hideaki M.The role of phosphorus in aluminium-induced citrate and malate exudation from rape(Brassica napus) Physiologia Plantarum,2004,120:575-584
    111.Baligar V C,Fageria N K.Nutrient use efficiency in plants.Soil Sci &Plant Anal,2001,32(7-8):921-950
    112.Barber S A,Mackey A D.Root growth and postassium uptake by two corn genotypes in the field.Fertilizer.Res,1986,217-223
    113.Barriga B P,Fuentealba A J,Manquilan T N.Capacity for phosphorus uptake and use in wheat genotypes.Agro Sur,1998,26(1):1-10
    114.Batra ML,Chaudhryb M L.Transformation of native and applied phosphorous in soil as affected by moisture regimes under black gram. J of Indian Soc of Soil Sci,1988, 36: 714-718
    115.Bienfait H F, Letty A, Weger D E et al. Control of the development iron efficiency reactions in potato as a response to iron deficiency is located in the roots. Plant Physiol, 1987, 83: 244-247
    116.Borch K, Bouma T, Brown K et al. Interactions of ethylene and phosphorus nutrition on root growth. In: Flores H E, Lynch J P and Eissenstat D eds. Radical Biology: Advances and Perspectives on the Function of Plant Roots. Maryland: American Society of Plant Physiologists, 1998, 391-393
    117.Borggaard O K, Jorgensen S S, Moberg J P, et al. Influence of organic matter on phosphate adsorp tion by aluminum and iron oxides in sandy soils. Soil Sci, 1990, 150(1): 443-449
    118.Bowmen R A, Cole C V. An exploratory method for fractionation of organic phosphorous from grassland. Soil Sci, 1978,125: 95-101
    119.Brookes P C, Powlson D S. Measurement of microbial biomass phosphorus in soil. Soil boil Biochem, 1982,14: 319-329
    120.Buerkert A, Haake C, Ruckwield H, et al. Phosphorus application affects the nutritional quality of millet grain in the Sahel. Field Crops Res, 1998, 57: 223-325
    121.Cambraia J, Pimenta J A, EstevaoM M,et al. Aluminum effects on nit rate up take and reduct ion in sorghum. J Plant Nutr,1987, 12(12): 1435-1445
    122.Cancado G M A, Loguercio L L, Martins P R, et al. Hematoxylin staining as a phenotypic index for alumiunm tolerance selection in tropical maize (Zea mays L).Theor Appl Genet, 1999, 99; 747-754
    123.Carlia A Ticconi, Carlia A Delatorre,Steffen Abel.Attenuation of phosphate starvation responses by phosphite in arabidopsis. Plant Physiol, 2001, 127: 963-972
    124.Chaney R L,Coulombe B A. Effect of phosphate on regulation of Fe-stress response in soybean and peanut. J. Plant Nutr, 1982, 5: 469-487
    125.Chang S C, Jackson M L. Fractionation of soil phosphorous in soils. Soil Sci, 1957, 84:1334-1447
    126.CIark R B and Brown J C. Differential phosphorus uptake by phosphorus-stressed corn inbreds. Crop Sci, 1974, 14 (4): 505-508
    127.Cogliatti D H, Alcocer N, Santa Maria G E. Effect of P concentration on 65Zn uptake in Gaudinia fragilis. J Plant Nutrition, 1991, 14: 443-452
    128.Dalal R C. Soil organic phosphorus. Advan. in Agron, 1977, 29: 83-119
    129.Delhaize E, Craig S, Beaton C D, et al. Aluminum tolerance in wheat (Triticum aestlvum L) I Uptake and distribution of aluminum in root apices. Plant Physiol, 1993a, 103: 685-693
    130.Delhaize E, Ryan P R, Randall P J. Aluminium tolerance in wheat (Triticum aestivum L.) II. Aluminium-stimulated excretion of malic acid from root apices. Plant Physiol, 1993b, 103: 695-702
    131.Delhaize E, Ryan P R. Aluminum toxicity and tolerance in plants. Plant Physiol, 1995,107:315-321
    132.Dinkelater B, Romheld V, Marschner H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin. Plant Cell Environ,1989,8:693-699
    133.Elliott G C, Lauchli A. Phosphorus efficiency and phosphate-iron interaction in maize. Agron. J, 1985, 77: 399-403
    134.Fageria N K, Baligar V C. Upland rice genotypes evaluation for phosphorus use efficiency. Journal of Plant Nutrition, 1997,20(4-5): 499-509
    135.Farrar J E. The whole plant: Carbon partitioning during development.In: Farrar J E, Gordon A J, Pollock P J. Carbon Partitioning Within and Between Organisms. Bios Scientific Publisher, 1992,163-179
    136.Fife C V. An evaluation of ammonia fluoride as a selective extractant for aluminum-bound soil phosphate: II. Preliminary studies on soils. Soil Sci, 1959, 87: 83-88
    
    137.Fife C V. An evaluation of ammonia fluoride as a selective extractant for aluminum-bound soil phosphate: III. Detailed studies on selected soils. Soil Sci, 1962,93: 113-123
    138.Foches D. Claasen N and Jungk A. Phosphorus efficiency of plant I: External and internal P uptake efficiency of different plant specie. Plant soil, 1998, 110: 101-109
    139.Fox T R, Comerford N B and McFee W W. Phosphorus and aluminum release from a spodic horizon meddiated by organic acids. Soil Sci Soc Am J , 1990, 54: 1763-1767
    140.Gahoonia T S, Nielsen N E. Variation in root hairs of barley cultivars doubled soil phosphorus uptake. Euphytica.1997,98:177-181
    141. Gardner W K, D A Barber, D G Parbery. The acquisition of phosphorus by Lupinus albus L. III. The probable mechanism by which phosphorus movement in the soil/ root interface is enhanced. Plant and Soil, 1983a, 70: 107-124
    142.Gardner W K, K Boundy. The acquisition of phosphorus by lupinus albus L. IV.The effect of interplanting wheat and white lupin on the growth and mineral composition of the two species. Plant and Soil, 1983b, 70: 391-402
    143.Gassmann W, Schroeder J I.. Inward-rectifying K~+channels in root hairs of wheat. A mechanism for aluminium-sensitive low-affinity K~+ uptake and membrane potentialcontrol. Plant Physoil, 1994, 105: 1399-1408
    144.Gerke J, W Romer and A J ungk. The excretion of citric and malic acid by proteoid roots of Lupinus albus L; effects on soil solution concentrations of phosphate, iron, and aluminum in the proteoid rhizosphere in samples of an oxisol and a luvisol. Z Pflanzenernahr. Bodenk, 1994, 157: 289-294
    145.Gibson R S. Estimation of physiologically active zinc in maize by biochemical assay. Plant& Soil, 1981, 63: 395-406
    146.Goodwin P B. Australian natives2fertilizing containe-grown plants. Australian Horticulture, 1983, 3: 57-65
    147.Grierson R F. Organic acids in the rhizosphere of Banksia integrifolia L. Plant Soil, 1992, 144, 259-265
    148.Guo F, Yost R S, Hue N V et al. Changes in phosphorus fractions in soils under intensive plant growth. Soil Sci Soc of Am J, 2000, 64: 1681-1688
    149.Handreck K A. Acessment of iron availability in soilless potting media. Communications in Soil Science and Plant Analysis, 1989, 20: 1297-1320
    150.Handreck K A. Interaction between iron and phosphorus in the nutrient of Banksia ericif olia L.f. var. ericif olia ( Proteaceae) in Soil-less potting media. Aust. J. Bot ,1991, 39: 373-384
    151.Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubation. Soil Sci Soc of AmJ, 1982,46: 970-975
    152.Hinsinger P. Bioavailability of soil inorganic P in the rhizo-sphere as affected by root-induced chemical changes: a review.Plant & Soil, 2001, 237(2): 173-195
    153.Hocking P J, P J Randall. Better growth and phosphorus nutrition of sorghum and wheat following organic acid secreting crops, in W J. Horst et al. (Eds), Plant nutrition-Food security and sustainability of agro-ecosystems. 548-549, Kluwer Academic Publishers. 2001a.
    154.Hocking P J. Organic acids exuded from roots in phosphorus uptake and aluminum tolerance of plant s in acid soils. AdvA gron, 2001b, 74: 63-97
    155.Hoffland E. Quantitative evaluation of the role of organic acid exudation in the mobilization of rock phosphate by rape. Plant and Soil, 1992, 140: 279-289
    156.Hong L, Hui YW, Jon S, Xiu RW, Xiao LY, Leon V. K. Phosphorus and Aluminum Interactions in Soybean in Relation to Aluminum Tolerance. Exudation of Specific Organic Acids from Different Regions of the Intact Root System. Plant Physiology, 2006,141,674-684
    157.Huang J W, Shaff J E, Grunes D L, Kochian L V. Al effects on calcium fluxes at the root apex of Al-tolerant and Al-sensitive wheat cultivars. Plant Physiol,1992, 98: 230-237
    158.Hue N V. Effects of organic acids/anions on P sorption and phytoavailability in soils with different mineralogies. Soil Science, 1991,152 (6): 463-471
    159.Itho S, Barber S A. PHospHorus uptake by six plant species as related to root. USA: Agron, 1983,457-461
    160.Iyamuremye F, Dick R P and Baham J. Organic amendments andphosphorus dynamics: III Phosphorus speciation. Soil Science, 1996,161 (7): 444-451
    161.Jawson M D, Franzluebbers A J, Galusha D K. Soil fumigation within monoculture and rotation: response of corn and mycorrhizae. Agron.J, 1993, 85: 1174-1180
    162.Jeschke W D, Kirkby E A, Peuke A D et al. Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus communis L). J Experimental Botany, 1997,48: 75-91
    163.Johnson J F, Allan D L, Vance C P. Phosphorus stress-induced proteoid roots show altered metabolism in L upinus albus. Plant Physiol, 1994,104: 657-665
    164.Jones D L and P R Darrah. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil ,1994,166: 247-257
    165.Jones D L, Kochian L V. Aluminum inhibition of 1,4,5-trisphosphate signal transduction pathway in wheat roots: a role in aluminum toxicity? Plant Cell, 1995, 7: 1913-1922
    166.Jugsujinda A, Krairapanond A Patrick W H Jr. Influence of extractable iron, aluminium, and manganese on P-sorption in flooded acid sulfate soils. Biol. Fertil. Soils, 1995, 20: 118-124
    167.Kamh M, Horst W J, Amer F, et al, Mobilization of soil and fertilizer phosphate by cover crops. Plant Soil, 1999, 211: 19-27
    168.Jones D L. Organic acids in the rhizosphere-a critical review. Plant Soil. 1998, 205 (1):25-44
    169.Keerthisinghe G, Hocking P J, Ryan P R et al. Effect of phosphorus supply on the formation and function of proteoid roots of white lupin (Lupinus albus L). Plant Cell Environ, 1998,21:467-478
    170.Kirk G J D, E E Santos and G R Findenegg. Phosphate solubilization by organic anion excretion from rice (Oryza sativa L ) growing in aerobic soil. Plant and Soil, 1999,211: 11-18
    171.Kiss S. Antagonism of magnesium and aluminium in bean and wheat. Acta Agronomica Hungaria, 1989, 38: 219-229
    172.Kollmeier M, Horst W J. Aluminum activates a citrate permeable anion chanel in the Al-sensitive zone of the maize apex: a comparison between an Al-sensitive and an Al-tolerant cultivar.Plant Physiol, 2001,126: 397-410
    173.Kumar V, Gilkes R J, Bollang M D A. Phosphate fertilizer placement and tillage systemon phosphorous distribution in soil. Commun. In Soil Sci and Plant Analy, 1992, 23 (13-14): 1462-1477
    174.Li Long, Rengel Z, Tang C, rt al.hosphorus uptake by intercropped chickpea and wheat from organic and inorganic P sources. Plant and Soil, 2001
    175.Li M, T Shinano and T Tadano. Distribution of exudates of lupin roots in the rhizosphere under phosphorus deficient conditions.Soil Sci Plant Nutr, 1997, 43 (1): 237-245
    176.Lindberg S. Aluminium effects on transmembrane potertial in cells of fibrous roots of sugar beet. Physiol Plant, 1991, 83: 54-62
    177.LindsayW L, F raziep A W, Stephenson H F. Identification of reaction p roducts from phosphate fertilizers in soils. Soil Sci Soc Am P roc, 1962, 26(3): 446-452
    178.Lipton D S, RW Blanchar and D G Blevins Citric, malate and succinate concentration in exudates from P- sufficient and P-stressed Medicago sativa L. seedlings. Plant Physiol., 1987, 85: 315-317
    179.Lisa C W, Sebastien P C R, Ribriow et al. Phosphate availability regulates root system architecture in arabidopsis. Plant Physiol, 2001,126: 875-882
    180.Lonnerdal B. Dietary factors influencing zinc absorption. J Nutr, 2000, 130: 1378-1383
    181.López-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L et al. An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation. Plant Physiol, 2005,137: 681-691
    182.López-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L et al. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol, 2002, 129: 244-256
    183.Lopez-Pineiro A, Garcia-Navarro A. Phosphate fractions and availability in vertisols of south2western Spain. Soil Sci, 2001,166(8): 548-565
    184.Luo H M, Watanabe T, Shinano T, et al. Comparison of aluminum tolerance and phosphate absorption between rape (Brassica napus L) and tomato (Lycopersicum esculentum Mill. )in relation to organic acid exudation. Soil Sci Plant Nutr, 1999, 45 (4): 897-907
    185.Lyamuremye F, Dick R P, Baham J. Organic amendments and phosphorus dynamics: I Phosphorus chemistry and sorp tion. Soil Science, 1996, 161 (7): 426-435
    186.Lynch J P, Deikman J. Phosphorus in plant biology: regulatory roles in molecular, cellular, organismic and ecosystem processes. Maryland: American Society of Plant Physiologists Rockville, USA, 1998, 157
    187.Magid J. Vegetation effects on phosphorous fractions in set-aside soils. Plant and Soil, 1993, 149: 111-119
    188.Magnavaca R? Gardner C O, Clark R B.Evaluation of inbred maize lines for aluminum tolerance in nutrient solttion.In:Gabelmam F W, Loughman B C eds, Genetics Aspects of Plant Mineral Nutrition.Hague, Netherlands:Martinus Nijhoff Publishers, 1987,255-265
    189.Marschner H. Role of root growth, arbuscular mycorrhiza, and roo t exudates for the efficiency in nutrient acquisition. Field C rop sR esearch, 1998, 56: 203-207
    190.Martin R B.The chemistry of aluminum as related to biology and medicine. Clin Chem. 1986, 32:1797-1806
    
    191.Matsumoto H, Yamaya T. Inhibition of potassium uptake and relation of membrane-associated Mg~+-ATPase activity of pea roots by aluminium. Soil Sci Plant Nutr, 1986, 32: 179-188
    192.Mckenzie R H, Stewart J W B, Dommaar J F. Long-term crop rotationand fertilizer effects on phosphorous transformations in a chernozemic soil. Canadian J of Soil Sci, 1992, 72: 569-579
    193.Narang R A, Altmann T. Phosphate acquisition heterosis in Arabidopsis thaliana: a morphological and physiological analysis. Plant & Soil, 2001, 234 (1): 91-97
    194.Neumann G and V Romheld. Root excretion of carboxylic acids and protons in phosphorus-deficient plants. Plant and Soil. 1999, 211: 121-130
    195.Newman E J, Andrews R E. Uptake of pHospHorus in relation to root growth and root density. Plant and Soil, 1982, 3(8): 49-69
    196.Nielsen N E, Schjrring J K. Efficiency and kinetics of phosphorus uptake from soil by various barly genotypes. Plant Soil, 1983, 72: 225-230
    197.Olilaa O G, Reddya K R, Stites D L. Influence of draining on soil phosphorus forms and distribution in a constructed wetland. Ecological Engineering, 1997, 11 (3-4): 157-169
    198.Osborne L D, Rengel Z. Genotypic differences in wheat for uptake and utilization of P from iron phosphate. A ust J A gric Res, 2002, 53(7): 837-844
    199.Otani T, Ae N and Tanaka H. Phosphorus (P) uptake mechanisms of crops grown in soils with low P status. II.Significance of organic acids in root exudates of pigeonpea. Soil Sci. Plant Nutr, 1996,42(3): 553-560
    
    200.Pearse S J, Veneklaas E J, Bolland M D A et al. Carboxylate composition of root exudates and the ability of wheat, canola and different lupin and pulse species to use phosphorus from soluble and sparingly soluble phosphorus sources. Li C J et al.(Eds), Plant nutrition for food security, human health and environmental protection[M], Tsinghua University Press, Printed in Beijing, China. 2005, 462-463
    201.Pellet D M, Grnues D L. Kochian L V.Organic acid exudation as aluminum tolerance mechanism in maize. Planta, 1995, 196: 788-795
    202.Peter R. Interaction between aluminium toxicity and calcium uptake at the root apex in near-isogenic lines of wheat (Tritcium aestivum L) differing in aluminium tolerance. Plant Physiol, 1993,102: 975-982
    203.Peterson G W, Corey R B. A modified Chang- Jackson procedure for routine fractionation of inorganic soil phosphates. Soil Sci Soc Of Am Proc, 1966, 30: 563- 565
    204.Pfeffer P E, Tu S I, Gerasimowcz W V et al. In Vivo P NMR studies of corn root tissue and its uptake of toxic metal. Plant Physiol, 1986, 80: 77-84
    205.Raghothama K. G. Phosphate acquisition. A nn Rev PlantPhysiol Plant Mol Biol, 1999, 50: 665-693
    206.Rao A N, Reddy K S, Takkar P N. Residual effects of phosphorous applied to soybean or wheat in a soybean wheat cropping systemon a typic halpustert. J of Agric Sci ,1996,127: 325-330
    207.Reed R C, Brady S R, Muday G K. Inhibition of auxin movement from the shoot into the root inhibits lateral root development in Arabidopsis. Plant Physiol, 1998, 118: 1369-1378
    208.Rengenl Z, Elliott D C. Mechanism of aluminium inhibition of net 45Ca~(2+) uptake by Amaranthus protoplasts. Plant Physiol, 1992,98: 632-638
    209.Rubaek G H, Sibbesen E. Soil phosphorous dynamics in a long-term field experiment at Askov. Biol and Fert of Soils, 1995, 20: 86-92
    210.Sadeghi A M, Kissel D E, CabreraM L. Temperature effects on urea diffusion coefficients and urea movement in soil. Soil Soc Amer J , 1988, 52: 46-49
    211.Sagoe C I, Ando T, Kouno K, et al. Effects of organic acid treatment of phosphate rocks on the phosphorus availability to Italian ryegrass. Soil Sci. Plant Nutri., 1997, 43,1067-1072
    212.Sanchez-Calderon L, Lopez-Bucio J, Chacon-Lopez A et al. Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana. Plant Cell Physiol, 2005,46: 174-184
    213.Schiefelbein J W, Benfy P N. The development of plant root: New approaches to underground problem. Plant Cell, 1991, 3: 1147-1154
    214.Sharma K N, Deb D L. Effect of soil moisture tension and soil compaction on self - diffusion zine in soils of varying texture. J.Nuclear Agr Biol, 1984, 13 (4): 118-120
    215.Shao J Z, Jian L Y, Yun FH, et al. Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiol. 2005 138: 297-303.
    216.Shen H, Wang X C, Shi W M, et al. Isolation and identificaton of specific root exudates in elephant grass (Pennis Hum L) in response to mobilization of iron-and aluminum- phosphates. Journal of Plant Nutrition, 2001,24(7): 1117-1130
    217.Shen H, Yan X L, Zhao M, et al. Exudation of organic acids in common bean as related to mobilization of aluminum-and iron-bound phosphates. Envi ron Exp Bot, 2002,48(1): 1-9
    218.Shukla S S, Syers J K, Williams J D. Sorption of inorganic phosphate by lake sediments. Soil Sci Soc Am.Proc, 1971, 35: 244-249
    219.J P, Karamanos R E, Stewart J W P. Phosphorus-induced zinc deficiency in wheat on residual phosphorus plots. Agron J, 1986, 78: 668-675
    220.Smalle J, Vander S D. Ethylene and regtative development. Physiol Plant, 1997,100: 593-605
    221.Smith S E, Read D J. Mycorrhizal Symbolis. Second edition Sam diego, California: academic Press, 1997: 131 -147
    222.Strom L, Owen A G, Godbold D L et al. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling.Soil. Biology & Biochemistry, 2005, 37: 2046-2054
    223.Syers J K, Smillie G W, Williams J D H. Calcium fluoride formation during extraction of calcareous soils in lake sediments. Soil Sci Soc of Am Proc, 1972, 36: 20-25
    224.Tarafdar J C, Claassen N. Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphorus produced by roots and microorganisms. Biol and Fert of Soils, 1988, 5: 308-312
    225.Tate KB. The biological transformation of phosphorus in soil. Plant and Soil, 1984, 76: 245-256
    226.Taylor G J. The physiology of aluminium phytoxicity. In H Singel, eds, Metal Ions in Biological Systems. 1988, Vol 24, Maecel Dekker, New York, 123-163
    227.Taylor G J. The physiology of aluminum tolerance in higher plant. Commun in Soil Sci Plant Anal, 1998, 19: 1179-Z034
    
    228.Ticconi C A, Delatorre C A, Lahner B et al. Arabidopsis pdr2 reveals a phosphate- sensitive checkpoint in root development. Plant, 2004, 37: 801-814
    229.Traina S J, Sposito G, Hesterberg,et al. Effects of organic acids on orthophosphate solubility in an acidic, montmorillonitic soil. Soil Sci Soc Am J , 1986, 50: 45-52
    230.Traina S J, Sposito G, Bradford G R, et al. Kinetic study of citrate effects on orthophosphate solubility in an acidic , montmorillonitic soil. Soil Sci Soc Am J, 1987,51: 1483-1487
    231.Urrea-Gomez R, Ceballos H, Pandey S, et al. A greenhouse screening technique for acid soil tolerance in maize. Agron J, 1996, 88: 806-812
    232.Verma L P, Singh A P, Srivastva M K. Relationship between Olsen-P and inorganic P fraction in soil. J of Indian Soc of Soil Sci, 1991, 39: 361-362
    233.Walfgang S and Adam S. Different Pathways are involved in phosphate and iron stress-induced alterations of root epidermal cell development. Plant Physioll, 2001, 125(4): 2078-2084
    234. Williams J D H, Syers J K, Walker TW. Fractionation of soil inorganic phosphate by a modification of Chang and Jackson's procedure. Soil Sci Soc of Am Proc, 1967, 31:739-749
    235.Williams J D H, Syers J K, Harris R F et al. Fractionation of inorganic phosphate in calcareous lake sediments. Soil Sci Soc of Am.Proc, 1971, 35: 250-255
    236.Williamson L C, Ribrioux S P C P, Fitter A H, et al. Phosphate availability regulates root system architecture in Arbidopsis. Plant Physiol, 2001, 126, 875-882
    237.Xu R K, Zhao A Z, Ji G L. Effect of low-molecular-weight organic anions on surface charge of variable charge soils. Colloid Interface Sci, 2003, 264: 322-326
    238.Zemin Zhou, Yongjun Lin, Liyuan He, et al. Effect of overexpression of citrate synthase gene from Pseudomonase on ivproving nutrient use efficiency of rice. Plant Genomics in China V, 2004, Wuhan, China
    239.Zhao Q G, Gong Z T, Hou C Q , et al. T rop ical soils. Soil of ch ina, 1990 (5): 43-73

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700