无卤阻燃不饱和聚酯的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不饱和聚酯树脂(Unsaturated Polyester Resin,UPR)是热固性树脂中发展较快的品种之一,也是用量最大的热固性树脂。它具有优良的机械性能、电性能和耐化学腐蚀性能,可常温常压固化,原料易得,加工工艺简便。近年来,我国UPR的生产量保持着年均近两位数的增长,发展迅速,但是国内绝大多数企业由于技术原因,只是生产中低端通用型UPR产品,在国际市场无优势,亟需开发新产品来提升竞争力。同时,随人们对环境污染问题认识的深入,国际相关环保法规日益严格,UPR产品的发展在具备高性能要求的同时,向绿色环保趋势发展。
     为解决长期困扰阻燃UPR产品含卤素和添加阻燃剂损伤UPR性能等问题,本论文对无卤UPR/SiO2纳米复合物制备和含磷反应型阻燃UPR的合成进行了研究。
     (1)以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)和异氰酸基三亚甲基硅烷(ICTEOS)的加成产物(DI)为阻燃剂,将其溶解到UPR预聚物中,利用反应过程中的溶胶-凝胶反应制备得到透明的UPR/SiO2纳米复合物(UPR-DI)。由于DI演变而成的纳米SiO2结构带有苯环和氨基,氨基与UPR分子链上的-C=O之间能形成氢键,使网络状纳米SiO2最终能均匀分散在聚酯基体中。经FTIR、DSC、SEM及EDS对其结构进行了表征,表明形成了均一的纳米复合物。随DI用量由0增至20%,UPR-DI的极限氧指数(LOI)由19升至29,阻燃性能明显增强。分别测试了UPR-DI在空气氛和氮气氛中的TG曲线,利用Ozawa法求解活化能,发现DI用量为10%的UPR/SiO2纳米复合物(UPR-DI10)在热分解转化率大于5%时,较纯UPR具有更高的热分解活化能(Ea)。动态力学分析(DMA)分析结果表明,纳米SiO2在整个体系中起到增强作用,使UPR-DI20的储能模量E'比UPR高。
     (2)选用甲基磷酸二甲酯(DMMP)为阻燃剂,比较了反应型(“一步法”和“两步法”)和添加型(共混法)两种方式制备无卤阻燃UPR的差别,结果表明“一步法”为制备一种反应型含磷阻燃UPR(P1-UPR)的较佳方法。31P-NMR结果表明DMMP通过酯交换的方式连接到P1-UPR分子主链上。TG-FTIR对热分解气体的分析未发现含磷基团的特征吸收峰,SEM对不同DMMP用量的P1-UPR燃烧后的残留炭进行分析,结果表明随含磷量的增加,残留炭层趋向完整致密。综合两者结果说明,P1-UPR中所含磷主要通过凝聚相阻燃机理来增强阻燃效果。
     (3)以苯基磷酰二氯为起始原料,合成了阻燃剂BPHPPO和BHEPP,进而制备了两种主链含磷的UPR——P2-UPR和P3-UPR。随阻燃剂用量的增加,P2-UPR和P3-UPR的LOI值及垂直燃烧等级依次增加。TG和DTG分析结果表明,随反应物中BPHPPO用量由0增加至30%,其5%失重温度由275.5℃降至248.0℃。然而,P—O—C键的提前分解促使磷酸类物质的生成并有效阻碍了树脂的进一步分解,空气氛下600℃时残留炭量由0增至4.6%。采用M. R. Kamal模型分别研究了P2-UPR和P3-UPR的固化动力学特征,结果表明,引入BPHPPO后,P2-UPR1与纯UPR相比,出现固化延迟效应,固化反应的活化能由46.5 kJ/mol升至142.4 kJ/mol,且随BPHPPO用量增加而持续增大。而采用不含酚羟基的阻燃剂BHEPP合成的P3-UPR则无固化延迟效应。
     (4)合成了两种较高热稳定性的磷杂菲类阻燃剂DOPO-MA和DDP,利用元素分析、FTIR和1H-NMR等进行了结构表征,并将它们与马来酸酐、邻苯二甲酸酐及1,2-丙二醇进行缩聚反应,分别制备了P4-UPR和P5-UPR。在热稳定性方面,P4-UPR与纯UPR相当,而P5-UPR则高于纯UPR。P5-UPR在常温下具有与纯UPR相当的电气强度(22~25 MV/m),在155℃比纯UPR下降了6~7 Mv/m。DDP用量为30%的P5-UPR3的阻燃等级可达到UL 94 V-0级。锥形量热测试仪测试结果表明,与纯UPR相比,含磷1.62%的P5-UPR3的最大热释放速率(PHRR)为375kW/m2,降低了42.7%;总释放热(THR)为83 kJ,比纯UPR降低43.2%;有效燃烧热(EHC)下降至纯UPR的40.7%。利用外推法得到P4-UPR3在MEKP+异辛酸钴引发体系下的固化反应工艺参数为:凝胶温度84℃,固化温度103℃,后处理温度121℃。利用Malek方法对P5-UPR和纯UPR的固化动力学过程进行模拟,所得反应动力学模式方程分别为:
Unsaturated polyester resin (UPR) is one sort of thermosetting resins with rapid development, and the amount of usage of UPR is the biggest in thermosetting resins. Raw material for UPR is easily available, and it can be solidified by simple process technique at normal temperature and pressure. UPR shows excellent mechanistic, electrical properties and good chemical corrosion resistance. In recent years, the development of UPR is very rapid and output keeps a double-digit growth in our country. However, due to the technical problem, most of domestic corporations just manufacture mid/low-grade products, which have no predominance in international market. So developing new UPR products to promote competitive power is a problem to be solved immediately. At the same time, with the deep recognition of environmental contamination and gradual establishment of corresponding environmental protection laws, green and environment-friendly concept has been emphasized in the research of high performance UPR.
     Since flame-retardant UPR containing halogen destroys environment and the additive flame retardant results in the performance loss, to solve the problem, preparation of UPR/SiO2 nanocomposite and synthesis of novel phosphorus-containing UPR have been studied in this thesis.
     (1) A novel phosphorus-containing unsaturated polyester resin/SiO2 hybrid nanocomposite was prepared from the in-situ sol-gel curing of UPR and triethoxysilane (DI) which was synthesized by the nucleophilic additional reaction of 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) and 3-(trieoxysilyl) isocyanate(icteos). Since the structure of nano-SiO2 derived from DI contains phenyl and amino group, which can form hydrogen bonds with–C=O bond on the UPR chain, nano-SiO2 networks can homogeneous disperse in UPR. The structure of SiO2 /UPR nanocomposite was confirmed by FTIR, DSC, SEM and EDS. With the increase of DI contents from 0 to 20%, the limiting oxygen index (LOI) value of the cured UPR-DIs raised from 19 to 29, suggesting a significant improvement in flame retardance. Thermogravimetric analyses (TGA) both in air and in nitrogen were used to estimate mechanism of thermal degradation, and activation energies (Ea) of different degree of conversion (α) were calculated by Ozawa’s method. The UPR-DI containing 10%DI (UPR-DI10) had higher Ea than that of the pure UPR asα>5%. DMA results revealed that nano-SiO2 enhanced strength of the whole system and made the storage modulus higher than that of UPR.
     (2) With DMMP as flame retardant, the method of one step and two steps for preparing reactive flame-retarded UPR and the method of blending for preparing additive flame-retarded UPR were discussed. The results showed that one step method was the best for reactive flame-retarded P1-UPR. 31P-NMR confirmed that DMMP was imported into the main chain of P1-UPR by ester exchange reaction. Characteristic absorption peaks of phophorus-containing groups did not appear in the TG-FTIR for thermal degraded gas from P1-UPR. Char residues of burned P1-UPR with different usage of DMMP were analyzed by SEM. The results revealed that the layer of char residues became compact with increasing of phosphorus. These results indicated that phosphorus flame-retarded P1-UPR by condensation mechanism.
     (3) Bis-phenoxy (3-hydroxy) phenyl phosphine oxide (BPHPPO) was synthesized by phenyl phosphonic dichloride and resorcinol, and bis(hydroxyethyl)phenylphosphonate (BHEPP) was synthesized by phenyl phosphonic dichloride and ethylene glycol. P2-UPR and P3-UPR were prepared by condensation reaction with BPHPPO and BHEPP as flame retardant, respectively. UL94-V0 rating and limiting oxygen index (LOI) increased with the increase of flame retardant in the cured P2-UPR and P3-UPR. TG and DTG analysis indicated that decomposition temperature of 5% weight loss decreased from 275.5℃to 248.0℃with increase of BPHPPO content from 0 to 30% in P2-UPR. However, formation of phosphorus-containing acid from the decomposition of P—O—C bonds interfered effectively the further polymer decomposition. And the char residues increased from 0 to 4.6% at 600℃. Curing kinetic parameters of P2-UPR and P3-UPR were calculated by Kamal’s equation using DSC. Compared with pure UPR, retarded effect of P2-UPR happened after the introduction of BPHPPO. Values of Ea increased from 46.5kJ/mol to 262.9kJ/mol with increasing of mass fraction of BPHPPO in P2-UPR from 0 to 18%. While the retarded effect didn’t exist in P3-UPR which was synthesized by BHEPP without phenolic hydroxyl group.
     (4) DOPO-MA and DDP were synthesized by 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO) with maleic acid(MA) and itaconic acid(ITA), respectively. P4-UPR was obtained by reacting PG with MAH, PAH and DOPO-MA, and P5-UPR was obtained by reacting PG with MAH, PAH and DDP. The chemical structures of these compouds were confirmed by EA, FTIR, 1H-NMR and 31P-NMR. The thermal stabilities of P4-UPR and P5-UPR were studied by thermogravimetric analysis (TGA). The results showed that the thermal stability of P4-UPR was close to that of pure UPR, but P5-UPR had higher thermal stability than pure UPR. The electric strength of P5-UPR was almost the same as that of pure UPR(22-25MV/m) at room temperature, while it was 6-7MV/m less than that of pure UPR at 155℃. The flame retardance of P5-UPR3 with the usage of 30% DDP could reach UL 94 V-0. The results of cone calorimeter showed that, in P5-UPR, an increase of phosphorus content from 0 to 1.62% decreased PHRR values from 655 to 375kW/m2 (a 42.7% reduction) and THR values from 146 to 83kJ (a 43.2% reduction). EHC was reduced to 40.7% of the control sample (UPR). With MEKP and cobalt isooctoate used as initiator system, calculated curing conditions for P4-UPR3 were as follow: Tgel =84℃,Tcure = 103℃,and Ttreat = 121℃. Curing kinetics of P5-UPR3 was researched by Malek model. The cure kinetic function could be described using S-B model in the function of f(a)1 =a0.82×(1-a)1.25, and the function for pure UPR was f(a)2 =a0.41×(1-a)0.84。
引文
[1] Penczek P., Czub P., Pielichowski J. Unsaturated polyester resins: chemistry and technology [J]. Adv Polym Sci 2005, 184:1-95
    [2]沈开猷.不饱和聚酯树脂及其应用[M].第二版.北京:化学工业出版社, 2004:1-51
    [3]中国建筑材料工业年鉴编委会.中国建筑材料工业年鉴2004-2005年卷[M].北京:中国建筑材料工业年鉴社, 2005:184-186
    [4]陈红. 2005-2006年国内外不饱和聚酯树脂工业进展[J].热固性树脂, 2007, 22(2):46-50
    [5]陈红,侯运城,邹林等. 2006-2007年国内外不饱和聚酯树脂工业进展[J].热固性树脂2008, 23(3):44-51
    [6]陈红,邹林,范君怡. 2007-2008年国外不饱和聚酯工业进展[J].热固性脂2009, 24(2):50-55
    [7]潘明翔.不饱和聚酯树脂产品质量存在的问题及其建议[J].浙江化工, 2006, 36(9):32-34
    [8] H?rold S. R. Phosphorus Flame Retar Dants in Thermoset Resins [J]. Polym Degrad Stab, 1999, 64(3):427-431
    [9] Kicko-Walczak E. Evaluation of the fire-retardant properties of new modifiers in unsaturated polyester resins using the Cone calorimetric method [J]. Macromol Symp, 2003, 202(1):221-234
    [10] Kicko-Walczak E. New generation of fire retardant polyester resins [J]. Macromol Symp, 2003, 199(1):343-350
    [11] Auad M. L., Frontini P. M., Borrajo J., et al. Liquid rubber modified vinyl ester resins: fracture and mechanical behavior [J]. Polymer, 2001, 42:3723-3730
    [12] Guo Z. X., Gandini A., Pla F. Polyesters from lignin. 1. The reaction of kraft lignin with dicarboxylic acid chlorides [J]. Polym Intel, 2007, 27(1):17-22
    [13] Schulze U., Skrifvars M., Reichelt N., et al. Modification of unsaturated polyesters by poly(ethylene glycol) end groups [J]. J Appl Polym Sci, 1997, 64(3):527-537
    [14] Galina H., Potoczek M. The determination of styrene vapor in industrial area atmosphere [J]. Polimery 1999, 44(11):730-734
    [15] Galeraa M. M., Vidal J. L. M., Frenich A. G., et al. Evaluation ofmultiwavelength chromatograms for the quantification of mixtures of pesticides by high-performance liquid chromatography-diode array detection with multivariate calibration [J]. J Chromatogr A, 1997, 778(1-2):139-149
    [16] Ibaraki M. A., Amagasaki S. S., Suita A. M. Unsaturated polyester resin coating composition [P]. U S: 4745141, 1987-01-12
    [17] Giannelis E. P., Krishnamoorti R., Manias E. Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes [J]. Adv Polym Sci, 1999, 138:107-147
    [18] V. Mehrotra. Metal-insulator molecular multilayers of electroactive polymers: Intercalation of polyaniline in mica-type layered silicates [J]. Solid State Commun, 1991, 77(2):155-158
    [19]李学锋,邱华,陈绪煌.不饱和聚酯塑料阻燃体系的优化[J].塑料科技, 1999, 134(6):28-30
    [20]张伟民,刘正平,陈文绣等.含水不饱和聚酯树脂的研究进展[J].高分子通报, 2000, (3):69-77
    [21]胡云楚,吴志平,孙汉洲等.聚磷酸铵的合成及其阻燃性能研究[J].功能材料, 2006, 37(3):424-427
    [22]陈秉倪,陈龙海,杨勇.红磷和磷的化合物阻燃剂的研究[J].同济大学学报, 1995, 23(5):573-576
    [23] Piotr P., Ryszard O., Danjel K. Expanded graphite used as flame retardants for unsaturated polyester resins [J]. Flame Retard 2000 Proc Coaf 9th, 2000:105-111
    [24] NazaréS., Kandola B. K., Horrocks A. R. Flame-retardant unsaturated polyester resin incorporating nanoclays [J]. Polymr Adv Technol, 2006, 17(4):294-303
    [25] Kandola B. K., Horrocks A. R., Myler P., et al. The effect of intumescents on the burning behaviour of polyester-resin-containing composites [J]. Composites Part A: Appl Sci Manufac, 2002, 33(16):805-817
    [26] Kandola B. K., Horroocks A. R., Myer P., et al. Thermal characterization of thermoset matrix resin [M]. Washington: ACS Symposium Series, 2001:33-44
    [27] Masahiko H., iroshi M. H. Flame-retarded fibre reinforced plastics [P]. J P: 2001171011, 2001-06-26
    [28]朱军民,周菊兴.含水不饱和聚酯树脂的制备及其性能的研究[J].热固性树脂, 1997, 12(4):5-7
    [29]汪艳.含水不饱和聚酯树脂的性能[J].武汉化工学院学报, 2001,23(4):42-44
    [30]欧育湘.阻燃高分子材料[M].北京:国防工业出版社, 2001
    [31] Shih Y.-F., Wang Y.-T., Jeng R.-J., et al. Expandable graphite systems for phosphorus-containing unsaturated polyesters. I. Enhanced thermal properties and flame retardancy [J]. Polym Degrad Stab, 2004, 86(2):339-348
    [32] Chang Y. L., Wang Y. Z., Ban D.-M., et al. A Novel Phosphorus-Containing Polymer as a Highly Effective Flame Retardant [J]. Macromol Mater Eng, 2004, 289(8):703-707
    [33] Petreus O., Vlad-Bubulac T., Hamciuc C. Synthesis and characterization of new polyesters with enhanced phosphorus content [J]. Europ Polym J, 2005, 41(11):2663-2670
    [34] Ma Z. L., Zhao W. G., Liu Y. F. Synthesis and properties of intumescent, phosphorus-containing, flame-fetardant polyesters [J]. J Appl Polym Sci, 1997, 63:1511-1515
    [35].张秀成,王玉峰,李斌等.反应型阻燃不饱和聚酯树脂[J].东北林业大学学报, 2002, 30(6):61-64
    [36] Enrico J. Termmine, Facstresky N. A. Smoke suppressed flame retardant unsaturated polyester resin compositions [P]. U S: 5346938, 1994
    [37] Takeshi A., Yoshifusa H. Phosphorus-containing unsaturated polyester, its manufacturing method, phosphorus-containing unsaturated polyester resin, phosphorus-containing unsaturated polyester resin composition, molding material obtained by using the same, and laminated board [P]. J P: 2003183370 2003-07-03
    [38] Kuan J.-F., Lin K.-F. Synthesis of Hexa-Allylamino-Cyclotriphosphazene as a Reactive Fire Retardant for Unsaturated Polyesters [J]. J Appl Polym Sci, 2004, 91:697-702
    [39].张军,纪奎江,夏延致.聚合物燃烧与阻燃技术[M].北京:化学工业出版社, 2005:191-195
    [40]欧育湘.实用阻燃技术[M].北京:化学工业出版社, 2002:48-61
    [41] Wang S.-p., Gong W.-h., Zeng J. Synthesis of antistatic composite based on reaction flame retarding unsaturated polyester resin [J]. Journal of Wuhan University of Technology-Mater.Sci.Ed, 2002, 17(4):86-88
    [42]王海军,陈立新,缪桦.氮系阻燃剂的研究和应用概况[J].热固性树脂,2005, 20(4):36-41
    [43] Liu W., Chen D.-Q., Wang Y.-Z., et al. Char-forming mechanism of a novel polymeric flame retardant with char agent [J]. Polym Degrad Stab, 2007, 92:1046-1052
    [44] Ye L., Qu B. Flammability characteristics and flame retardant mechanism of phosphate-intercalated hydrotalcite in halogen-free flame retardant EVA blends [J]. Polym Degrad Stab, 2008, 91:918-924
    [45] Wu Q., Lu J., Qu B. Preparation and characterization of microcapsulated red phosphorus and its flame-retardant mechanism in halogen-free flame retardant polyolefins [J]. Polym Intel, 2003, 52:1326-1331
    [46] Marosi G., Marton A., Anna P., et al. Ceramic precursor in flame retardant systems [J]. Polym Degrad Stab, 2002, 77(2):259-265
    [47] Liu Y., Wang Q. The investigation on the flame retardancy mechanism of nitrogen flame retardant melamine cyanurate in polyamide 6 [J]. Journal of Polymer Research, 2009, 16:583-589
    [48] Gu J.-w., Zhang G.-c., Dong S.-l., et al. Study on preparation and fire-retardant mechanism analysis of intumescent flame-retardant coatings [J]. Surf Coat Technol, 2007, 201:7835-7841
    [49]李宗剑.不饱和聚酯/蒙脱土纳米复合材料阻燃性能及蒙脱土阻燃协效作用研究[M].河北工业大学硕士学位论文, 2007
    [50]周艳.不饱和聚酯/无机物纳米复合材料的制备、结构与性能[D].广州:华南理工大学, 2003
    [51] Yang Y. S., Lee L. J. Microstructure formation in the cure of unsaturated polyester resin [J]. Polymer, 1988, 29:1793-1800
    [52] Kamal M. R., Sourour S. Kinetics and Thermal Characterization of Thermoset cure [J]. Polym Eng Sci, 1973, 13(1): 59~64
    [53] Lam P. W. K., Plaumann H. P., Tran T. An improved kinetic model for the autocatalytic curing of styrene-based thermoset resins [J]. J Appl Polym Sci, 1990, 41(11):3043-3057
    [54] Ramis X., Salla J. M. Theoretical and experimental conversion in the curing of unsaturated polyester resins with styrene as a crosslinking agent [J]. J Appl Polym Sci, 1992, 45(2):227-236
    [55] Salla J. M., Ramis X. Comparative study of the cure kinetics of an unsaturatedpolyester resin using different procedures [J]. Polym Eng Sci, 1996, 36(6):835-851
    [56] Martin J. L., Cadenato A., Salla J. M. Comparative studies on the non-isothermal DSC curing kinetics of an unsaturated polyester resin using free radicals and empirical models [J]. Thermochim Acta, 1997, 306:115-126
    [57]陆振荣.热分析动力学(第二版) [M].北京:科学出版社, 2008:2-11
    [58] Pusatcioglu S. Y., Fricke A. L., Hassler J. C. Heats of reactionand kineticsofa thermoset polyester [J]. J Appl Polym Sci, 1979, 24:937-940
    [59] Gebart B. Critical parameterf or heat transferand chemical reaction in thermosetting materials [J]. J Appl Polym Sci, 1994, 51:153-168
    [60] Flory P. J. Principles of Plymer Chemistry [M]. New York: Cornell University Press, 1953
    [61] Stevenson J. F. Free radical polymerization models for simulating reactive processing [J]. Polym Eng Sci, 1986, 26:746-759
    [62] Ng H., Manas-zloczower I. A nonisothermal differential scanning calorimetry study of the curing kinetics of an unsaturated polyester system [J]. Polym Eng Sci, 1989, 29(16):1097-1102
    [63] Batch G. L., Macosko C. W. Kinetic model for crosslinking free radical polymerization including diffusion limitations [J]. J Appl Polym Sci, 1992, 44(10):1711-1729
    [64] Martín J. L., Cadenato A., Salla J. M. Comparative Studies on the Non-Isothermal DSC Curing Kinetics of an Unsaturated Polyester Resin Using Free Radicals and Empirical Models [J]. Thermochim Acta, 1997, 306(1~2):115~126
    [65] González-Romero V. M., Casillas N. Isothermal and temperature programmed kinetic studies of thermosets [J]. Polym Eng Sci, 1989, 29(5):295-301
    [66] Worzakowska M. Kinetics of the Curing Reaction of Unsaturated Polyester Resins Catalyzed with New Initiators and a Promoter [J]. J Appl Polym Sci, 2006, 102(2):1870~1876
    [67] Kissinger H. E. Reaction Kinetics in Differential Thermal Analysis [J]. Anal Chem, 1957, 29(11):1702-1706
    [68] Ozawa T. A New Method of Analyzing Thermogravimetric Data [J]. Bull Chem Soc Jpn, 1965, 38(11):1881-1886
    [69]刘元俊,贺传兰,邓建国等.热重法测定聚合物热降解反应动力学参数进展[J].工程塑料应用, 2005, 33(6):70-72
    [70] Martín J. L. Kinetic Analysis of Two DSC Peaks in the Curing of an Unsaturated Polyester Resin Catalyzed With Methylethylketone Peroxide and Cobalt Octoate [J]. Polym Eng Sci, 2007, 47:62-67
    [71] Qin Y., Liu H., Huang Z., et al. Cure Reaction Kinetics of Low Pressure Sheet Molding Compound System Thickened by Crystalline Polymer [J]. Journal of Wuhan University of Technology-Mater.Sci.Ed, 2007, 22(2):380-284
    [72] Pandiyan R. R., Chakraborty S., Neogi S., et al. Curing Kinetics of Medium Reactive Unsaturated Polyester Resin Used for Liquid Composite Molding Process [J]. J Appl Polym Sci, 2009, 114:2415-2420
    [73] Boyard N., Sinturel C., Vayer M., et al. Morphology and Cure Kinetics of Unsaturated Polyester Resin/Block Copolymer Blends [J]. J Appl Polym Sci, 2006, 102:149-165
    [74]肖洁.我国食品和母乳中发现微量溴阻燃剂[N].科学时报, 2009-08-31(A1)
    [75]匡军.透光阻燃不饱和聚醋树脂及玻璃钢的研制和开发[J].热固性树脂, 1994, (4):38-40
    [76]徐冬静.添加型透光高阻燃不饱和聚酯树脂的研究[J].玻璃钢/复合材料, 2000, 2:23-25
    [77]于同福,梁凤霞,李凤和.透光阻燃型不饱和聚酯树脂TZ-2 [J].热固性脂, 2001, 16(4):16-18
    [78] Wang C.-S., Shieh J.-Y. Synthesis and properties of epoxy resins containing 2-(6-oxid-6H-dibenz<1,2>oxaphosphorin-6-yl)1,4-benzenediol [J]. Polymer, 1998, 39(23):5819-5826
    [79] Wang C. S., Shieh J. Y., Sun Y. M. Phosphorus containing PET and PEN by direct esterification [J]. Eur Polym J, 1999, 35:1465-1472
    [80] Wu C. S., Liu Y. L., Chiu Y. S. Preparation of phosphorous-containing poly(epichlorohydrin) and polyurethane from a novel synthesis route [J]. J Appl Polym Sci, 2002, 85(10):2254-2259
    [81] Allcock H. R., Dembek A. A., Mang M. N., et al. Synthesis and structure of small-molecule cyclic phosphazenes bearing ortho-substituted aryloxy and phenoxy substituents [J]. Inorg Chem, 1992, 31(13):2734-2739
    [82] Karches M., Marcus Morstein, Rudolf P., et al. Plasma-CVD-coated glass beadsas photocatalyst fo rwater decontamination [J]. Catalysis Today, 2002, 72:267-279
    [83]赵建青,华誉,刘述梅等.无卤阻燃透明不饱和聚酯绝缘涂料及其制备方法[P]. C.P.: CN101186779, 2007-12-10
    [84]马耀,周润培.自熄性透明不饱和聚醋玻璃钢的老化性能[J].玻鸿钢/复含材扦, 1990, 5:13-21
    [85] Lin C. H., Feng C. C., Hwang T. Y. Preparation, thermal properties, morphology and microstructure of phosphorus-containing epoxy/SiO2 and polyimide/SiO2 nanocomposites [J]. Eur Polym J, 2007, 43:725-742
    [86] Liu Y.-L., Wu C.-S., Chiu Y.-S., et al. Preparation, Thermal Properties, and Flame Retardance of Epoxy–Silica Hybrid Resins [J]. J Polym Sci Part A Polym Chem, 2003, 41:2354-2367
    [87] Wu C. S., Liu Y. L. Preparation and properties of epoxy/amine hybrid resins from in situ polymerization [J]. J Polym Sci Part A Polym Chem, 2004, 42(8):1868-1875
    [88] Hu Q., Marand E. In situ formation of nanosized TiO2 domains within poly(amide-imide) by a sol-gel process [J]. Polymer, 1999, 40(17):4833-4843
    [89] Chung C.-M., Cho S.-Y., Kim J.-G., et al. Preparation of Unsaturated Polyester–Silica Nanocomposites [J]. J Appl Polym Sci, 2007, 106:2442-2447
    [90] Kohjiya S., Ochiai K., Yamashita S. Preparation of inorganic/organic hybrid gels by the sol-gel process [J]. J. Non-Cryst. Solids, 1990, 119(2):132-132
    [91] Tamaki R., Samura K., Chujo Y. Synthesis of polystyrene and silica gel polymer hybrids viaπ-πinteractions [J]. Chem. Commun 1998:1131-1132
    [92] Li Q., Jiang P., Su Z., et al. Synergistic Effect of Phosphorus, Nitrogen, and Silicon on Flame-Retardant Properties and Char Yield in Polypropylene [J]. J Appl Polym Sci, 2005, 96:854-860
    [93] Leu T.-S., Wang C.-S. Synergistic Effect of a Phosphorus–Nitrogen Flame Retardant on Engineering Plastics [J]. J Appl Polym Sci, 2004, 92:410-417
    [94] Price D., Cunliffe L. K., Bullett K. J., et al. Thermal behaviour of covalently bonded phosphate and phosphonate flame retardant polystyrene systems [J]. Polym Degrad Stab, 2007, 92(6):1101-1114
    [95] Yoon C.-B., Shim H.-K. New second-order nonlinear optical (NLO) epoxy polymer treated by sol-gel processing [J]. Macromol Chem Phys, 1998, 199(11):2433 - 2437
    [96] Manfredia L. B., Rodrígueza E. S., Wladyka-Przybylakb M., et al. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres [J]. Polym Degrad Stab, 2006, 91(2):255-261
    [97] Wei Y., Yeh J.-M., Jin D., et al. Composites of Electronically Conductive Polyaniline with Polyacrylate-Silica Hybrid Sol-Gel Materials [J]. Chem. Mater, 1995, 7(5):969–974
    [98] Chujo Y., Ihara E., Kure S., et al. Synthesis of triethoxysilyl-terminated polyoxazolines and their cohydrolysis polymerization with tetraethoxysilane [J]. Macromolecules, 1993, 26(21):5681–5686
    [99] Petrovic Z. S., Zavargo Z. Z. Reliability of methods for determination of kinetic parameters from thermogravimetry and DSC measurements [J]. J Appl Polym Sci, 1986, 32(4):4353 - 4367
    [100] Regnier N., Guibe C. Methodology for multistage degradation of polyimide polymer [J]. Polym Degrad Stab, 1997, 55(2):165-172
    [101] Baudry A., Dufay J., Regnier N., et al. Thermal degradation and fire behaviour of unsaturated polyester with chain ends modified by dicyclopentadiene [J]. Polym Degrad Stab, 1998, 61(3):441-452
    [102] Yang Y. S., Lee L. J. Microstructure formation in the cure of unsaturated polyester resins [J]. Polymer, 1988, 29(10):1793-1800
    [103] Skinner G. A., Haines P. J., Lever T. J. Thermal degradation of polyester thermosets prepared using dibromoneopentyl glyol [J]. J Appl Polym Sci, 1984, 29:763-776
    [104] Anderson D. A., Freeman E. S. The kinetics of the thermal degradation of the synthetic styrenated polyester, Laminac 4116 [J]. J Appl Polym Sci, 1959, 1(2):192-199
    [105] Gupta S. K., Thampy R. T. Kinetic of thermal degradation and fire retardant efficiency of polyesters [J]. J Polym Sci Part A Polym Chem, 1975, 44:47-65
    [106] Evans S. J., Haines P. J., Skinner. G. A. Pyrolysis-gas-chromatographic study of a series of polyester thermosets [J]. Journal of Analytical and Applied Pyrolysis, 2000, 55:13-28
    [107]曾汉民,容敏智,章明秋.聚合物多相复合体系的结构和内耗行为特征[J].高分子通报, 1998, 2:1-6
    [108] Worzakowska M. Synthesis, characterization, thermal and viscoelastic properties of an unsaturated epoxy polyester cured with different hardeners [J]. J Appl Polym Sci, 2008, 110:3582-3589
    [109] Mark J. E. Experimental determination of crosslink densities [J]. Rubber Chem Technol, 1982, 55:762-768
    [110] Myrex R. D., Farmer B., Gray G. M., et al. 31P and 1H NMR studies of the transesterification polymerization of polyphosphonate oligomers [J]. Eur Polym J, 2003, 39:1105-1115
    [111] Ren H., Sun J., Wu B., et al. Synthesis and properties of a phosphorus-containing flame retardant epoxy resin based on bis-phenoxy (3-hydroxy) phenyl phosphine oxide [J]. Polym Degrad Stab, 2007, 92(6):956-961
    [112] Hsiue G. H., Liu Y. L., Liao H. H. Flame-retardant epoxy resins: An approach from organic-inorganic hybrid nanocomposites [J]. J Polym Sci, Part A: Polym Chem, 2001, 39(7):986-996
    [113] Liu Y.-L., Chiu Y.-C., Chen T.-Y. Phosphorus-containing polyaryloxydiphenylsilanes with high flame retardance arising from a phosphorus-silicon synergistic effect [J]. Polym Inter, 2003, 52(8):1256-1261
    [114] Vilas J. L., Laza J. M., Garay M. T., et al. Unsaturated polyester resins cure: Kinetic, rheologic, and mechanical-dynamical analysis. I. Cure kinetics by DSC and TSR [J]. J Appl Polym Sci, 2001, 79(3):447-457
    [115] Yousefi A., Lafleur P. G., Gauvin R. Kinetic Studies of Thermoset Cure Reactions: A Review [J]. Polym Compos, 1997, 18(2):157-168
    [116] Mikroyannidis J. A. Flame Retardation of Polyurethanes by Means of 1,4-bis[(dialkoxyphosphinyl)hydroxymethyl]benzene [J]. J Polym Sci Polym Chem Ed, 1988, 26:885~890
    [117] Chang T. C., Shen W. Y., Chiu Y. S. Synthesis and Characterization of Phosphorus-Containing Polyurethanes [J]. J Polym Res, 1994, 1:353~359
    [118] Bourbigot S., Bras M. L., Gengembre L., et al. XPS study of an intumescent coating application to the ammonium polyphosphate/pentaerythritol fire-retardant system [J]. Appl Surf Sci, 1994, 81:299-308
    [119]张臣,刘述梅,黄君仪等.反应型含磷阻燃不饱和聚酯的合成及固化研究[J].石油化工, 2009, 38 (5):515~520
    [120] Caba K. D. L., Guerrero P., Eceiza A., et al. Kinetic and rheological studies oftwo unsaturated polyester resins cured at different temperatures [J]. Eur Polym J, 1997, 33(1):5-9
    [121] Lin C. H., Wu C. Y., Wang C. S. Synthesis and Properties of Phophorus-containing Advanced Epoxy ResinsⅡ[J]. J Appl Polym Sci, 2000, 78:228-235
    [122] Lu L. G., Yang S. S., Zhang Y., et al. Thermal Decomposition Kinetics of Novel Flame Retardant from 1,3,5-Tri(5,5-Dibromomethyl- 1,3,-Dioxaphosphorinanyl- 2-Oxy)Benzene [J]. Acta Chimica Ainica, 2009, (14):1695—1699
    [123] Canadell J., Mantecon A., Cadiz. V. Synthesis of a Novel Bis-Spiroorthoester Containing 9,10-Dihydro-9-oxa-10-phosphaphenantrene-10-oxide as a Substituent: Homopolymerization and Copolymerization with Diglycidyl Ether of Bisphenol A [J]. J Polym Sci Part A Polym Chem, 2007, 45:1980-1992
    [124] Zhu S. W., Shi W. F. Thermal degradation of a new flame retardant phosphate methacrylate polymer [J]. Polym Degrad Stab, 2003, 80:217-222
    [125] Wang C. S., Lin. C. H. Synthesis and properties of phosphorus-containing epoxy resins by novel method [J]. J Polym Sci Part A Polym Chem, 1999, 37:3903-3909
    [126] Evans S. J., Haines P. J., Skinner G. A. The effects of structure on the thermal degradation of polyester resins [J]. Thermochimica Acta, 1996, 278:77-89
    [127]曾秀妮,段跃新. 840S环氧树脂体系固化反应特性[J].复合材料学报, 2007, 24(3):100-104
    [128] Endo S., Kashihara T., Osako A., et al. Phosphorus-containing compounds [P]. U S: 4127590, 1978-11-28
    [129] Chang S. J., Chang F. C. Sequential distribution of copolyesters containing the phosphorus linking pendant groups characterized by 1H-NMR [J]. Polymer, 1998, 39(8):3233-3237
    [130] Chang S. J., Chang F. C. Synthesis and Characterization of Copolyesters containing the Phosphorus Linking Pendent Group [J]. J Appl Polym Sci, 2000, 72:109-122
    [131] Wang L. S., Kang H. B., Wang S. B., et al. Solubilities, thermaostabilities, and flame retardance behaviour of phophorus-containing flame retardants and copolymers [J]. Fluid Phanse Equilibr, 2007, 258:99-107
    [132] Wang D. Y., Song Y. P., Wang J. S., et al. Souble in stiu approach for thepreparation of polymer nanocomposite with multi-functionality [J]. Nanoscale Res Lett, 2009, 4:303-306
    [133] Wang D. Y., Liu X. Q., Wang J. S., et al. Preparation and characterisation of a novel fire retardant PET/a-zirconium phosphate nanocomposite [J]. Polym Degrad Stab, 2009, 94:544-549
    [134] 2577-1984(E) I. Plastic-thermosetting moulding materials- determination of shrinkage [S]. 1984.
    [135] McQuade D. T., Pullen A. E., Swager T. M. Conjugated Polymer-Based Chemical Sensors [J]. Chem. Rev.,, 2000, 100 (7):2537–2574
    [136] Gettinger C. L., Heeger A. J., Drake J. M., et al. A photoluminescence study of poly(phenylene vinylene) derivatives: The effect of intrinsic persistence length [J]. J. Chem. Phys. , 1994, 101(2):1673-1678
    [137] Samuel I. D. W., Rumbles G., Collison C. J., et al. Picosecond Time-Resolved Photoluminescence of PPV Derivatives [J]. Synth Met, 1997, 84( 1-3):497-500
    [138] Sun Y. M., Wang C. S. Synthesis and luminescent characteristics of novel phosphorus containing light-emitting polymers [J]. Polymer, 2000, 42:1035-1045
    [139] Vald-Bubulac T., Hamciuc C., Petreus O., et al. Synthesis and properties of new phosphorus-containing poly(ester-imide)s [J]. Polym. Adv. Technol., 2006, 17:647–652
    [140]贺庆国,林童,白凤莲.线性及超支化共轭聚合物的合成及光物理性质[J].科学通报, 2000, 45(22):2376 - 2383
    [141]李强军,姜其斌. H级不饱和聚酯亚胺无溶剂浸渍漆的研究[J].绝缘材料, 2005, (3):11-14
    [142] JB/T7770.不饱和聚酯玻璃纤维增强模塑料[S].北京:全国绝缘材料标准化技术委员, 1995.
    [143] GB11021.电气绝缘的耐热性评定和分级[S].北京:中华人民共和国机械电子工业部, 1989.
    [144] Qazvini N. T., Mohammadi N. Dynamic mechanical analysis of segmental relaxation in unsaturated polyester resin networks: Effect of styrene content [J]. Polymer, 2005, 46:9088–9096
    [145]朱立新,许家瑞.改性聚乙二醇修饰高交联度不饱和聚酯网络结构的动态力学分析[J].高等学校化学学报, 2004, 25(5):948-951
    [146] Wen M., Scriven L. E., McCormick A. V. Kinetic Gelation Modeling: Kineticsof Cross-Linking Polymerization [J]. Macromolecules, 2003, 36(11):4151-4159
    [147] Fitz B. D., Mijovic J. Molecular Dynamics in Cyanate Ester Resin Networks and Model Cyanurate Compounds [J]. Macromolecules, 2000, 33(3):887–899
    [148] Berzosa A. E., Ribelles J. L. G., Kripotou S., et al. Relaxation Spectrum of Polymer Networks Formed from Butyl Acrylate and Methyl Methacrylate Monomeric Units [J]. Macromolecules, 2004, 37 (17):6472–6479
    [149] Erickson K. L. Thermal decomposition mechanisms common to polyurethane, epoxy, poly(diallyl phthalate), polycarbonate and poly(phenylene sulfide) [J]. J Therm Anal Cal, 2007, 89(2):427
    [150] Park W. H., Lenz R. W., Goodwin S. Epoxidation of bacterial polyesters with unsaturated side chains : IV. Thermal degradation of initial and epoxidized polymers [J]. Polym Degrad Stab, 1999, 63(2):287-291
    [151] Worzakowska M. The influence of chemical modification of unsaturated polyesters on viscoelastic properties and thermal behavior of styrene copolymers [J]. J Therm Anal Calorim, 2009, 96(1):235-241
    [152] Khatib W. E., Youssef B., Bunel C., et al. Fireproofing of polyurethane elastomers by reactive organophosphonates [J]. Polym Int, 2003, 52:146-151
    [153] Sestak J., Malek J. Diagnostic limits of phenomenological models of hterogeneous reactions and thermal analysis kinetics [J]. solid State ionics, 1993, 63-65:245-254
    [154] Dollimore D., Lerdkanchanaporn S., Alexander K. S. The use of the Harcourt and Esson relationship in interpreting the kinetics of rising temperature solid state decompositions and its application to pharmaceutical formulations [J]. Thermochim Acta, 1997, 290(1):73-83
    [155] Erceg M., i T. K., Klari I. Thermal Degradation and Kinetics of Poly(3-hydroxybutyrate)/Organoclay Nanocomposites [J]. Macromol. Symp, 2008, 267 57-62
    [156]. Silva A. R., Crespi M. S., Ribeiro C. A., et al. Kinetic of thermal decomposition of residues from different kinds of composting [J]. J Therm Analys Calorim, 2004, 75(2):401-409
    [157] Lu Z. R., Sun J. P., Yang L., et al. Synthesis, spectral and structural characterization and thermal decomposition kinetics of dinitrato (N,N,N',N'-tetra-n-butyl aliphatic diamide)urany(II) by thermogravimetric analysis [J]. Thermochimica Acta, 1995, 255:281-295
    [158] Montserrat S., FlaquéC., Calafell M., et al. Influence of the accelerator concentration on the curing reaction of an epoxy-anhydride system [J]. Thermochimica Acta, 1995, 269-270:213-229
    [159] Senum G. I., Yang R. T. Rational approximations of the integral of the Arrhenius function [J]. J Therm Anal Cal, 1977, 11(3):445-447
    [160] Zhou T., Gu M., Jin Y., et al. Mechanism and Kinetics of Epoxy-Imidazole Cure Studied with Two Kinetic Methods [J]. Polym J, 2005, 37(11):833-840
    [161] Liu Y.-L., Hsiue G.-H., Chiu Y.-S., et al. Synthesis and flame-retardant properties of phosphorus-containing polymers based on poly(4-hydroxystyrene) [J]. J Appl Polym Sci, 1996, 59(10):1619 - 1625
    [162]. Brabauskas V. Development of the cone calorimeter–a bench-scale heat release rate apparatus based on oxygen consumption [J]. Fire Mater, 1984, 88(2):81-87
    [163] Li B. A study of thermal degradation and decomposition of rigid poly(vinylchloride) with metal oxides using thermogravimetry and cone calorimetry [J]. Polym Degrad Stab, 2000, 68(2):197-204
    [164]. Kandola B. K., Horrocks A. R., Myler P., et al. Mechanical performance of heat/fire damaged novel ?ame retardant glass-reinforced epoxy composites [J]. Composites Part A, 2003, 34:863-873
    [165] Manfredi L. B., Rodr?guez E. S., Wladyka-Przybylak M., et al. Thermal degradation and fire resistance of unsaturated polyester, modified acrylic resins and their composites with natural fibres [J]. Polym Degrad Stab, 2006, 91:255-261
    [166] Pereira C. M. C., Herrero M., Labajos F. M., et al. Preparation and properties of new ?ame retardant unsaturated polyester nanocomposites based on layered double hydroxides [J]. Polym Degrad Stab, 2009, 94:939-946
    [167] Lem K. W., Hn C. D. Chemorheology of thermlsetting resinsⅢeffect of low-profole additive on the chemorheology and curing kinetics of unsaturated polyester resins [J]. J Appl Polym Sci, 1983, 28(10):3207-3225
    [168] Zhou Y., Yang X. Y., Jia D. M. Cure behavior of unsaturated polyester/modified montmorillonite nanocomposites [J]. Polym Intel, 2006, 56(2):267 - 274
    [169] Wang F., Xiao J., Wang J. W., et al. A Novel Imidazole Derivative Curing Agent for Expoxy Resin: Synthesis, Characterization, and Cure Kinetc [J]. J Appl Polym Sci, 2008, 107:223-227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700