提高锂离子电池安全性能新型材料的合成及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了提高锂离子电池安全性能的两种有效途径,主要内容如下:
     1.高密度磷阻燃添加剂的合成、表征及应用研究
     磷杂菲是一种新型、高效、无烟、无毒、环保的有机磷系阻燃剂中间体。本文以DOPO与对苯醌和甲醛的反应制得中间体,然后和磷酰氯反应合成了两个系列的含有高密度磷的新型磷杂菲衍生物。通过1H NNR、13C NMR、31P NMR、 FT-IR、HR-MS和ESI-MS对目标产物进行了结构表征;目标产物的TGA和DSC测试结果表明材料具有良好的热稳定性;循环伏安测试结果表明产物具有优良的电化学稳定性。另外,测试了化合物a5在电解液中的燃烧实验,根据其电导率、自熄时间、燃料燃烧率和消耗率的数据,表明a5在不影响电解质电导率的条件下对锂离子电池具有显著的阻燃作用。
     2.丙烯酸酯类凝胶聚合物电解质的合成及性能表征
     丙烯酸酯类化合物与电解液有很好的相容性,对锂电极有较好的界面稳定性;聚丙烯酸酯的较低的玻璃化转变温度可以增强聚合物链段的运动能力,提高凝胶电解质的离子导电率。丙烯酸酯类凝胶聚合物电解质在室温下为高弹态,机械性能得到了较大的提高。
     本论文以丙烯酸酯类化合物作为凝胶单体,加入液体电解液、交联剂、引发剂及其它共聚单体,采用现场热聚合工艺合成新型的交联共聚凝胶聚合物电解质。对丙烯酸酯类凝胶电解质的导电性和机械性能做了详尽的研究,发现丙烯酸酯类共聚凝胶电解质具有良好的机械性能和较高的离子电导率(高于5mS/cm)。 TGA和DSC结果表明丙烯酸酯类凝胶聚合物具有很好的热稳定性,循环伏安测试结果表明丙烯酸酯类凝胶具有良好的电化学稳定性。利用SEM研究了交联聚丙烯酸酯类凝胶的表面形貌表明他们具备了三维的孔状结构。在合成工艺方面,对现场热聚合制备交联网状的凝胶聚合物电解质的制各工艺进行了探索。由于丙烯酸酯类凝胶聚合物电解质具有导电率高、安全稳定、操作方便等优点,在结构和性能上较好的改善了锂离子液体电解质易燃易爆、漏液等安全性问题。
In this thesis, two effective ways to improve the safety performance of the lithium-ion batteries were studied. The results are as follows:
     1. Synthesis, characterization and application of hight-content organic phosphorus flame retardants:
     We prepared the intermediates by the reaction of DOPO with p-benzoquinone and formaldehyde, then the intermediates reacted with dialkyl phosphoryl chloride produced two series of high density phosphorus derivatives. The structures of target compounds were identified by1H NMR,13C NMR,31P NMR, FT-IR, HR-MS and ESI-MS. Take the TGA, DSC and cyclic voltammetry tests of the representative compounds al and a5, the results showed that they all have excellent thermal and electrochemical stabilities. Furthermore, we carried out the combustion experiments of compound a5, found that the lithium-ion electrolyte with compound a5displayed excellent flame retardant effect, namely have both small additive amount and high flame retardant properties.
     2. Synthesis and characterization of alkyl acrylates gel polymer electrolytes for Li-ion batteries:
     The polymers of alkyl acrylates have good compatibility with the electrodes, wide electrochemical window, good thermal stability and sufficient mechanical strength enabling its easy handling, etc. The lower glass transition temperature can increase the movement ability of the polymer chain, and enhance the ionic conductivity of the gel polymer electrolytes.
     The gel polymer electrolytes containing alkyl acrylates, other monomers, TEGDMA and liquid electrolyte were prepared by the in-situ radical polymerization. The ionic conductivity and mechanical properties of the gel polymer electrolytes were studied in detail. The results showed that the gel copolymer electrolytes have good mechanical properties and high ionic conductivity (exceed5mS/cm). The TGA and DSC results displayed the polymers and copolymers of alkyl acrylates have excellent thermal stability. The cyclic voltammetry tests showed that they have wide electrochemical window. The dimensional network structures of the host polymer matrix of the cross-linking gel polymer electrolytes were studied using the scanning electron microscopy, and the results showed that they have three-dimensional porous structures. In the synthesis process, the in-situ thermal polymerization method was explored and studied. In a word, the alkyl acrylates gel copolymer electrolytes have high ionic conductivity, excellent stability and good mechanical property, and have the ability to enhance the safety of Li-ion batteries.
引文
[1]郭炳棍,徐徽,王先友等.锂离子电池.长沙:中南大学出版社,2002,1-36
    [2]Broussely M, Archdele G, Li-ion batteries and protable power sources prospects for the next 5-10 years [J]. J. Power Sources,2004,136:386~394
    [3]李蔚.“品高成大器”走近佛山金银河机械设备有限公司[J].电源技术,2012,36,933-934。
    [4]Karden E, Ploumen S, Fricke B, et aL Energy storage devices for future hybrid electric vehicles [J]. J. Power Sources,2007,168:2-11
    [5]WakiharaM. Mater. Sci. Eng. R,2001,33:109~134
    [6]Xu K, Chem. Rev.2004,104:4303~4418
    [7]Takami, et al. J. Electrochem. Soc,1995,142:371-379
    [8]Herstedt M, Rensmo H, Siegbahn H, et al. Electrolyte additives for enhanced thermal stability of the graphite anode interface in a Li-ion battery[J]. Electrochim.Acta,2004,49:2351~2359
    [9]Hyung Y E, Vissers D R, Khalil A, J. Power Sources,2003,119:383~387
    [10]Gnanaraj J S, Zinigrad E, Asraf L, et al. A Detailed Investigation of Thermal Reactions of LiPF6 Solution in Organic Carbonates Using ARC and DSC [J]. J. Electrochem. Soc,2003, 150:1533-1537
    [11]Wang X M, Yamada C, Naito H, et al. J. Electrochem Soc,2006,153:135~139
    [12]Ota H, Kominato A, Chun W J, et al. J. Power Sources,2003,119:393~398
    [13]周代营,左晓希,谭春林,李伟善,卢雷,刘建生.电源技术[J].2007,31:687-689。
    [14]Nam N D, Park I J, Kim J G, Triethyl and tributyl phosphite as flame-retarding additives in Li-ion batteries [J]. Metals and Materials International,2012,18:189~196
    [15]Hyung Y E, Vissers D R, Amine K, J. Power Sources,2003,119:383~387
    [16]Zhou D Y,Li WH, Tan CL, et al. J. Power Sources,2008,184:589~592
    [17]Shim E G, Nam T H, Kim J G, et al. J. Power Sources,2008,175:533-539
    [18]Wang Q S, Sun J H, Yao X L, Chen C H, Electrochem Solid-State Lett,2005,8:467~470
    [19]Xiang H F, Xu H Y, Wang Z Z, et al. J. Power Sources,2007,173:562~564
    [20]Xiang H F, Lin H W, Yin B, et al. Effect of activation at elevated temperature on Li-ion batteries with flame-retarded electrolytes [J]. J. Power Sources,2010,195:335~340
    [21]Wu L, Song Z P, Liu L S, et al. A new phosphate-based non flammable electrolyte solvent for Li-ion batteries [J]. J. Power Sources,2009,188:570~573
    [22]Li Y J, Zhan H, Wu L, Li Z Y, et al. Flame-retarding ability and electrochemical performance of PEO-based polymer electrolyte with middle MW cyclic phosphate [J]. Solid State Ionics, 2006,177:1179-1183
    [23]Mandal B K, Padhi A K, Shi Z, et al. J. Power Sources,2006,161:1341~1345
    [24]Dixon B, Lithium batteries improved by use of a nonflammable electrolyte plus CNT [J], MRS Bull,2005,30:161-164
    [25]Arai J, Katayama H, Akaboshi H, J. Electrochem Soc,2002,149:217~226
    [26]MeMillan R, Slegr H, Shu Z X, et al. J. Power Sources,1999,81:20~26
    [27]Sato K, Yamazaki I, Okacla S, et al. Solid State lonics,2002,148:463~466
    [28]Yamaki J, Yamski I, Egashira M, et al. J. Power Sources,2001,102:288-293
    [29]Smart M C, Ratnakumar B V, Ryan-Mowrey V S, et al. J. Power Sources,2003,119: 359-367
    [30]Chen S Y, Wang Z X, Zhao H L, et al. J. Power Sources,2009,187:229~232
    [31]Arai J, J. Appl Electrochem,2002,32:1071~1079
    [32]Nagasubramanian G, Orendorff C, Hydrofluoroether electrolytes for lithium-ion batteries: reduced gas decomposition and nonflammable [J]. J. Power Sources 2011,196:8604~8609
    [33]XuK, Zhang S S, Allen J L, et al. J. Electrochem Sec,2002,149:1079~1082
    [34]XuK, Ding M, Zhang S S, et al, J. Electrochem Sec,2003,150:161~169
    [35]Xu K, Ding M S, Zhang S S, et al. J. Electrochem. Soc,2002,149:622~626
    [36]Tsujikawa T, Yabuta K, Matsushita T, et al. J. Power Sources,2009,189:429~434
    [37]SuzeRe IG, Wentao L, Brett L L, J. Power Sources,2004,135:291~296
    [38]Hu J L, Jin Z X, Hong H, et al. J. Power Sources,2012,197:297~330
    [39]Armand M B, Chabagno J M, Duelot M, Second International Meeting on Solid Electrolytes. St. Andrews.Scotland, September 20-22,1978, extended abstract.
    [40]Tarascon J M, Armand M, Nuture,2001,414,359-367.
    [41]Jayathilaka P, Dissanayake M, Albinsson I, et al. Solid State Ionics,2003,156:179~195
    [42]Appeteehi G B, Cree F, Marassi R, et al. Electrochim. Acta,1999,45:23~30
    [43]Peramunage D, Pasquariello D, Abraham K, Polyacrylonitrile Based Electrolytes with Ternary Solvent Mixtures as Plasticizers [J]. J. Electrochem. Soc,1995,142:1789~1798
    [44]Croee F, Appeteeehi G B, Serosati B, et al. Electrochim. Acta,1994,39:2187~2194
    [45]Serosati B, Lithium ion Plastic batteries [A].Lithium Ion Batteries, Fundmaentals and Perofmranee[C].Tokyo:KodnashaLtd,1998,218-244
    [46]APPetecehi G B, Croee F, Scrosati B, et al. Eleeortehem. Commun,1999,1:83~86
    [47]吴宇平,万荣春,姜长印,等. 锂离子二次电池[M].北京:化学工业出版社,2002
    [48]Choi B K, Kim Y W, Shin H K, Electroehim. Acta,2000,45:1371~1374
    [49]Balieres J, MarechalM, J. Electrochem Soc,2003,150:14~20
    [50]Rajendran S, Babu R, Sivakumar P, Optimization of PVC-PAN-based polymer electrolytes [J]. J. AppL Polym. Sci.2009,113:1651~1656
    [51]Panero S, Satolli D D, Epifano A, et al. J. Electrochem. Soc,2002,149:414~417
    [52]Slane S, Salomon M, An Improved Li/LiCoO2 Rechargeable Cell [J]. J. Electrochem Soc, 1989,136:1865-1869
    [53]Benedetti J E, Goncalves A D, Formiga A L D, et al. A polymer gel electrolyte composed of a poly(ethylene oxide) copolymer and the influence of its composition on the dynamics and performance of dye-sensitized solar cells[J]. J. Power Sources,2010,195:1246~1255
    [54]Cheng H, Zhu C, Lu M, et al. Spectroscopic and electrochemical characterization of the passive layer formed on lithium in gel polymer electrolytes containing propylene carbonate [J]. J. Power Sources,2007,173:531~537
    [55]Kim Y T, Smotkin E S, Solid State Ionics,2002,149:29~37
    [56]Ballard D, Cheshire P, Mamn T, Preworski J, Ionic conductivity in organic solids derived from amorphous macromolecules [J]. Macromol,1990,23:1256~1264
    [57]Kim H S, Shin J H, Doh C H, et al. Preparation and electrochemical performance of gel polymer detroh/tes using tri (ethylene glycol) dimethacrylate [J]. J. Power Sources,2002, 112:469-476
    [58]Appetecchi G B, Aihara Y, Scrosati B, Investigation of swelling phenomena in poly (ethyleneoxide) basedpolymer electrolytes [J]. J. Electrochem. Soc,2003,150:301~305
    [59]于明昕,石桥,周啸等PEO/LiclO4/纳米Si02复合聚合物电解质的电化学研究,高分子学报[J].2002,1:38-42
    [60]IiJIMA T, TOYOGUCHI Y, EDAN, Quasi-solid organic electrolytes gelatinized with poh/methylmethacrylate and their applications for lithium batteries [J]. Denki Kagaku,1985, 53:619-621.
    [61]Bohnke O, Rousselot C, Gillet P, et al. Electrochem Soc,1992,139:1862~1865
    [62]卢雷,左晓希,李伟善等.锂离子电池PMMA-VAc聚合物电解质的制备与性质研究[J].化学学报[J].2007,65-475-480
    [63]Ramesh S, The G B, Louh R F, et al. Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes [J]. Sadhana-Acad. Proc. Eng. Sci.2010, 35:87-95
    [64]Ramesh S, Arof A K, A study incorporating nano-sized silica into PVC-blend-based polymer electrolytes for lithium batteries [J]. J. Mater. Sci.2009,44:6404~6407
    [65]Ramesh S, Winie T, Arof A K, Mechanical studies on poly(vinyl chloride)-poly(methyl methacrylate)-based polymer electrolytes [J]. J. Mater. Sci.2010,45:1280~1283
    [66]XU J J, BASKARANR Y E, SELVASEKARAPANDIANS, et al. Solid State Ionics,2006, 177:2679-2682.
    [67]Kim S I, Kim H S, Na S H, et al. Electrochemical Charaeteristics of TMPTA-and TMPETA-based gel Polymerelectrolyte [J]. Electrochim Acta,2004,50:317~321.
    [68]Ahmad S, Ahmad S, Agnihotry S A, J. Power Sourees,2005,140:151~156
    [69]Liao Y H, Rao M M, Li W S, et al. Improvement in ionic Conductivity of self-supported P(MMA-AN-VAc)gel electrolyte by fumed siliea for lithiuxnion batteries [J]. Electrochim. Acta,2009,54:6396~6402
    [70]Watanabe M, Kanba M, High lithium ionic conductivity of polymeric solid electrolytes[J], MakromolChem Rapid Comm,1981,2:741~744
    [71]Zhao L, Zhang H, Li X, et al. Modification of electrospun poly(vinylidene fluoride-co-hexa-fluoropropylene) membranes through the introduction of pohy(ethylene glycol) dimeth acryla-te [J]. J. AppL Polym. Sci.2009,111,3104-3112
    [72]Kim J P, Choi S W, Jo S M, el al. Electrochim. Acta,2004,50:69~75
    [73]崔振宇,朱宝库,韩改格等.合含PVDF-HFP多孔骨架和交联PEG的锂离子凝胶膜制备 与性能[J].功能材料,2007,38:234-236
    [74]韩坤明,鲁道荣.纳米SiO2/LiC104/PVDF-HFP复合凝胶聚合物电解质的制备及其电化学性能[J],复合材料学报,2008,37:57-62
    [75]Othman L, Chew K W, Osman Z, Impedance spectroscopy studies of poly(methyl methacrylate)-lithium salts polymer electrolyte systems [J]. Ionics,2007,13:337~342
    [76]Gozdz A S, Chmutz C N, Wsrren P C, et al. Lithium secondary battery ext racti on method [P]. US 5540741,1996-07-30.
    [77]Kang Y, Lee W, Suh D H, et al. J. Power Sources,2003,119:448~453
    [78]Hyun S K, Jung H S, Seong IM, et al. J. power sources,2003,119:482~486
    [79]Ophie M Canniccioni B j, Graillot A, et al. Phosphorus Containing Polymers:A Great Opportunity for the Biomedical Field [J]. Biomacromolecules,2011,12:1973~1982
    [80]吴庆宝,果学军,魏铭衫.9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物及其衍生物的制备方法[P].中国专利.200610099076.X.2006-7-19
    [81]Wang L C, Jiang J Q, Jiang P K. et al. Synthesis, characteristic of a novel flame retardant containing phosphorus and its application in poly(ethylene-co-vinyl acetate)[J]. Fire and Materials,2011,35:193~207
    [82]Wang, X, Lei S, Wei X Y. et al. A effective flame retardant for epoxy resins based on poly(DOPO substituted dihydroxyl phenyl pentaerythritol diphosphonate)[J]. Materials Chemistry and Physics,2011,125:536~541
    [83]Wang X, Hu Y, Song L P, Preparation, flame retardancy, and thermal degradation of epoxy thermosets modified with phosphorous/nitrogen-containing glycidyl derivative [J]. Polym. Adv. Technol,2012,23:190~197
    [84]Jeng Y E, Wang C S, Sythesis of novel flame retardant epoxy hardeners and properties of cured products [J]. Polymer,2001,42:7617~7625

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700