地下混凝土储热桩热能存储试验与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文介绍了目前国内外显热储热、潜热储热和化学反应储热等储热方法,针对地下土壤储热效率低的问题提出用高温储热混凝土进行储热。在参考大量国内外文献的基础上,选择合适的混凝土储热材料,建立混凝土储热试验台,建立地下混凝土储热桩内部储热的数学和物理模型。
     本文重点介绍了储热结构试验和储热试验,通过对试验数据的采集分析,得到试验实际流量值、热流密度值和储热桩内部和外部土壤温度场温度变化规律。通过试验与ANSYS软件分析相结合,在70℃以上的高温阶段,保温层的厚度增加到一定数值后,再增加保温层厚度,对于储热效果影响较小;对于45℃以下的低温阶段,则是保温层越厚,储热效果越好。间断加热试验表明,间断加热模式中的地下混凝土储热桩内部热量均匀度高于连续加热模式;导热系数的增加会有效提高储热桩内部换热速率,但同时也提高了热量散失速率,分析比较得导热系数在1 W/(mk)~1.5 W/(mk)比较适合储热;在吸收相同的热量条件下,储热桩直径的大小对总体储热的时间没有影响,但对45℃以下的低温热能存储时间影响较大。结合实际的储热试验,得到了比较合理的储热结构模型。
     本文的研究为提高地下显热储热效率,降低地下高温储热成本,提供了新的思路,并为地下混凝土储热的设计提供理论和实际数据的支持。
Energy is one of five elements that support our daily life. The discovery and use of High-quality energy sources is indispensable to the development of human society. Energy is the roll booster of human culture. Energy is very important strategic material in all countries contemporarily. Currently, oil, gas and coal are the three kinds of traditional energy sources, which still play an dominant role in the global energy consumption. According to authoritative data, provided by "BP World Energy Statistics 2009", by the end of 2008, the World's proved oil storage capacity is 170.8 billion tons. By 2008 production basis, the oil can be exploited in 42 years. Based on the same calculation, gas and coal mine can be used 60.4 years and 122 years respectively. However, with the reduction of storage capacity, the exploitation becomes more difficult, the value of exploration becomes less. If we take into account the enlarged economic scale, population growth and other factors, the life span of traditional energy exploration will be shorter.
     The building energy consumption takes an big role in the traditional energy source consumption. Based on the survey, HVAC energy consumption accounts for 65% of building energy consumption. Supposing building energy consumption is 35% in total, HVAC energy consumption ratio is as high as 22.75 %. So people in the world pay great attention to the reduction of traditional energy consumption, to the usage of thermoelectric waste thermal and to the usage of new energy sources to replace the traditional energy sources. Especially the usage of combined solar energy and geothermal energy is considered to replace the traditional energy sources to satisfy the building energy consumption. Solar energy not only could be used directly, but also could be stored and used gradually.
     It is a technical problem on how to storage thermal energy efficiently and environmentally. At present, there are mainly three kinds of methods on underground energy storage: sensible thermal storage, latent thermal storage and thermo-chemical thermal storage. Sensible thermal storage makes use of the characteristics of thermal storage regenerator which thermal storage changes along with temperature. Latent thermal storage takes advantage of characteristics of absorbing or releasing a large number of thermal energy when the material occurred phase transition. Thermo-chemical thermal storage utilizes reversible chemical reaction to store energy, which usually uses some inorganic oxide hydration. The concrete methods of sensible thermal storage are as followed: artificial water tank, underground aquifer, underground natural rock and underground soil, etc. The advantages of sensible thermal storage are convenient selection and low cost of storage materials. While its disadvantages are low storage density, heave weight and large size of thermal storage system, wide range of temperature during input and output energy, and unstable thermal flow. Therefore, its application is limited. The merits of latent thermal storage are high storage density, approximate constant temperature in the process of input and output energy, high storage efficiency and small size of system. The disadvantages of latent thermal storage are that the system requires two separated liquid circulation loop, high thermal diffusivity and thermal capacity of phase change material. In addition, the thermal exchanger must be designed specially in order to ensure the coordination of solidification rate and thermal speed. The change materials are prone to cold and crystal liquid separation during the process of phase change. The thermo-chemical thermal storage has large thermal storage capacity and could stores for long term at ambient temperature. While its disadvantages are as followed: complex reaction process, demand of catalyst sometimes, high system security, low efficiency, high operation and maintenance requirements. Thus, it is difficult to form large-scale thermal storage system.
     This paper describes high-temperature concrete for thermal energy storage, aiming to resolve the issues of low efficient thermal energy by underground soil storage. Through theoretical analysis, the mathematical and physical models of internal thermal storage of underground concrete thermal storage pile were built. According to a large number of domestic and foreign references, by adding granite, basalt which can improve the special thermal and graphite which can improve the thermal conductivity, the concrete thermal storage materials have been improved. Ground thermal storage structure test platform and underground concrete storage thermal test platform have been built. In this paper, the influence of intermittent heating method and continuous heating method on internal temperature of concrete thermal storage pile and the influence of different sizes, different insulation thickness, thermal conductivity of different concrete, different initial thermal flux on internal temperature of concrete thermal storage pile has been studied. With the help of ANSYS, the research result has provided the basic data and theoretical guidance for choosing reasonable thermal energy storage materials and proper designing underground thermal energy storage structure. In this paper, theoretical research, testing and comparative analysis, simulation has been carried out on the research of underground thermal storage in concrete, have come to the following specific conclusions:
     1. The concrete thermal energy storing pile with high-temperature refractory aluminates cement as gelatins material, has little deformation at high-temperature, can improve the efficiency of thermal storage, and the thermal storage with the concrete pile is feasible.
     2. The rock fragments of specific large thermal capacity and the graphite can effectively improve thermal conductivity.
     3. The structure of the ground thermal storage test showed with the same temperature , the greater volume of thermal storage body, the better thermal storage; and the insulation layer is not the thicker the better, the insulation layer has little effect above 70℃, but the thicker the better under 45℃.
     4. The thermal storing concrete pile with diameter 1m, height 3m, insulation layer 0.1m, temperature discrepancy 55℃in and out of the pile, which will take more than 1000 hours to lost thermal to make get the original temperature. Relative to the thermal exchanger, the lost thermal influence radios is 2.25m.
     5. ANSYS shows: with the same thermal energy, that the thermal in the concrete pile with the discontinuous heating mode is less than the continuous heating mode. The discontinuous heating test show that the temperature improved rate higher, and the thermal of outside utilization ratio higher than the continuous heating mode.
     6. The lower thermal conductivity, the better thermal storage effect. But too low thermal conductivity may affect the thermal absorb rapid. Generally speaking, the thermal conductivity between 1 W/(mk)~1.5 W/(mk) is better for the storage pile with lower diameter and smaller volume.
     7. If only change the thermal flow density, the ratio of temperature changes and lost thermal energy equal to the ratio of original thermal flow density.
     8. Small space between thermal exchange pipes, only affects the temperature circled by those pipes. But the temperature in the center will fall rapidly after heating. The storage hours equals to others.
     9. With the same thermal energy, the difference of thermal storing pile diameter do not affect the storing time; but if the temperature is lower than 45℃, it affects more, the larger diameter, the longer storing time.
     This paper is about high-temperature thermal energy storage concrete and insulation material applied to the underground thermal storage, which effectively improve the efficiency of underground thermal storage. In this paper, taking use of the ANSYS to analyze the effect of thermal storage with the different initial conditions. We optimize the structure by the side insulation thickness on thermal storage, proposed reasonable structural model of thermal storage. In short, by those innovations we can receive a new way of thinking and method of thermal storage underground.
引文
[1]王立敏.从动荡与结构变化中认知世界能源市场——《BP世界能源统计2009》解析[J].国际石油经济,2009,7(7):44-52.
    [2]江亿.我国建筑能耗状况及有效的节能途径[J].暖通空调, 2005,35(5):30-40.
    [3]过国忠.最大热电余热回收热泵系统研制成功[N].中国技术市场报, 2009-12-11(001).
    [4]高峰,孙成权,刘全根.太阳能开发利用的现状及发展趋势[J].世界科技研究与发展,2001,23(4):35-39.
    [5]唐汝宁,王金萍.跨季节性太阳能显热储热系统的研究.2007年全国建筑环境与建筑节能学术会议论文集[C].成都,2007.
    [6]芦潮.西北高寒地区太阳能储热系统的研究[D].内蒙古工业大学硕士论文,2005.
    [7]王坤.太阳能建筑供暖和储热系统的研究[D].江苏大学硕士论文,2009.
    [8]韩敏霞.太阳能土壤跨季节蓄热-地源热泵组合理论与实验研究[D].天津大学硕士论文,2007
    [9]赵伟,赵大军,吴晓寒.太阳能地下土壤储热技术[J].煤气与热力, 2007,27(10):75-76.
    [10]赵大军.太阳能地下跨季节储热方法:中国, 200910066825.2[P]. 2009-04-16.
    [11]李守圣,赵大军,赵研.混凝土储热桩的储热试验研究[J].人民黄河, 2010,32(2):99-101.
    [12]李守圣,赵大军,赵研.一种新的热能地下存储技术[J].应用能源技术,2009(11):29-31.
    [13]张寅平,胡汉平,孔祥东等.相变储热理论和应用[M].合肥:中国科学技术大学出版社,1996:18-21.
    [14]张建国,陈永昌,林宏左.太阳能沸石储热技术的实验研究[J].北京工业大学学报,2005,31(1):63-65.
    [15]高瑞恒.沸石在储能中的应用实验研究[D].北京工业大学硕士论文,2005.
    [16] Zhang Dong, Li Zongjin, Zhou Jianmin, Wu Keru.Development of thermal energy storage concrete[J].Cement and Concrete Research. 2004,34(6):927-934.
    [17] Ryu Hw.Prevention of subcooling and stabilization of inorganic salt hydrates as latent heat storage materials[J].Solar Energy Mater Solar Cells,1992,27:161-172.
    [18]张炳.太阳能热发电用无机复合储热材料的制备及其性能研究[D].武汉理工大学硕士学位论文,2007.
    [19]何黎明.太阳能热发电中铝基合金高温相变储热材料及储热系统研究[D].武汉理工大学硕士学位论文,2008.
    [20]山下和夫.潜热蓄热装置:日本,87104257[P].1987-06-15.
    [21] SGL碳股份公司;德国空间宇航中心.潜热存储装置:德国,200710006103.9[P].2007-01-31.
    [22]肖敏,龚克成.良导热、形状保持相变储热材料的制备及性能[J].太阳能学报,2001,22(4):427-430.
    [23]沈维道,郑佩芝.工程热力学[M].北京:高等教育出版社,1983:246-264.
    [24]庄正宁,曹念.NaOH/KOH二元体系储热性能的研究[J].西安交通大学学报, 2002,36(11):1133-1137.
    [25]李华山,冯晓东,刘通.我国风力致热技术研究进展[J].太阳能, 2008,18(9):37-40.
    [26]张海峰.相变储热型热泵热水器的理论与实验研究[D].浙江大学硕士学位论文,2005.
    [27]王茜.有机/无机复合相变储热材料的制备与性能[D].天津大学硕士学位论文,2009.
    [28]张正国,文磊,方晓明等.复合相变储热材料的研究与发展[J].化工进展,2003,22(4):462-465.
    [29]李金.相变储热材料应用研究进展[J].北京联合大学学报(自然科学版), 2005,19(3):74-77.
    [30]王志强,曹明礼,龚安华等.相变储热材料的种类、应用及展望[J].安徽化工,2005(2):8-11.
    [31]张寅平,康艳兵,江亿.相变和化学反应储能在建筑供暖空调领域的应用研究[J].暖通空调,1999,29(5):34-37.
    [32]李爱菊,张仁元,周晓霞.化学储能材料开发与应用[J].广东工业大学学报,2002,19(1):81-84.
    [33]刘平.化学蓄热和化学热泵[J].节能,1986(5):43-45.
    [34] Rainer Tamme,Doerte Laing Wolf-Dieter Steinmann. Advanced Thermal Energy Storage Technology for Parabolic Trough[J]. Transactions of the ASME,2004,5(126):794-800.
    [35] Athienitis,A.K.Investigation of the Thermal Performance of a Passive Solar Test-Room with Wall Latent Heat Storage[J].Building and Environment ,1997(32):405-410.
    [36] Lee,T.Contor Aspects of Latent Heat Storage and Recovery in Concrete[J].Solar Energy Materials and Solar Cells ,2000(62):217-237.
    [37]潘家铮.中国的能源问题和出路[J].世界科技研究与发展, 1997,19(1):1-9.
    [38]林宗虎.论我国可持续发展的能源道路[J].世界科技研究与发展, 1997,19(1):16-21.
    [39]严长乐.中国能源发展报告[M].北京,经济管理出版社,1997.
    [40]马爱山等译.中国的能源问题与可持续发展[M].地质出版社,2001.
    [41]陈洪泳,殷琨,庄迎春.地源热泵技术及其发展.世界地质, 2002,21(2):203-207
    [42]王补宣,葛新石.太阳能利用中储热研究的新进展[J].自然杂志, 1981,4(1):16-19
    [43] Yuan S. W.,Galowin L. S.A Central Solar Energy Utilization System[J].Future Energy Production Systems,1976,1:140.
    [44]王恩宇,齐承英,杨华等.太阳能跨季节储热建筑供热系统及土壤储热实验分析.中国制冷学会2007学术年会论文集[C].北京,2007.
    [45]林密.地下蓄能和太阳能复合系统工程应用分析[D].吉林大学硕士学位论文,2007.
    [46]李明.地下蓄能时变特性及其能量特征分析[D].吉林大学博士学位论文,2007.
    [47]林媛.太阳能深层土壤蓄热的数值模拟与实验研究[D].哈尔滨工业大学硕士学位论文,2003.
    [48] Jong Chan Choi, Sang Done Kim, Gui Young Han. Heat tansfet characteristics in low-temperature latent heat storage systems using salt-hydrates at heat recovery stage[J]. Solar Energy Mater and Solar Cells,1996,40(1):71-87.
    [49] Comini G, Del guidiees, Lewi s R W.Zenkiewicy OC.Finite element solution of non-linear heat conduction problem with special reference to phase change[J].Int.J.Numerical Metlr ods Eng, 1974(8):613.
    [50] BannerotR, JametP. Numeriealcom Putation for two-dimerr sional Stefan paoblem by space-time finite elements[J].J.ComPut. Phys, 1977,25:16.
    [51] Rone J, Baliga B R. A Finite Element Method for Unsteady Heat Conduetion in Material with and without Phase Change[J].Ameriean Society of Meehanieal Engineers,1979.
    [52] Kemiek R G, Sparrow EM. Heat transfer coefficients for melding about a vertical cylinder with or Without subeooling and for open or closed eontainment[J].Int.J.Heat MassTransfer,1981,(24):169.
    [53] M.Lundh. J.-O. Dalenback. Swedish solar heated residential area With seasonal storage in rock-Initial evaluation[J].Renewable energy,2008,(33):703-711.
    [54] Implementing Agreement on Energy Conservation Through Energy Storage February 2005[C].
    [55] Berndt M L, Philippacopoulos A J.Incorporation of fibres in geothernal well cements.Geothermics,2002,31:643-656.
    [56] Santoyo E, Garcia A J, Morales M,et al..Effective thermal conductivity of Mexican geothermal cementing systems in the temperature range from 28℃to 200℃.Applied Thermal Engineering,2001,21(17):1799-1812.
    [57]常振明,韩平,曲春波.可再生能源利用现状于未来展望[J].当代石油石化,2004,12(12):19-23.
    [58] Wolf-Dieter Steinmann, Markus Eck, Doerte Laing. Solarthermal Parabolic trough Power plants with integrated storage capacity. Energy Technology and Policy,2005,(3):123-136.
    [59] Dirk Mangold, Thomas Schmidt, Volkmar Lottenr.Seasonl Thermal Energy Dtorage in Germany.Solar Energy,2001(21):56-61.
    [60] Micheal Geyer, Zentrum fur Luft-und Raumfahrt.Concrete Thermal Energy for Parabolic Trough Plants.Energy,2001:31-47.
    [61]吴会军,朱冬生,李军等.蓄热材料的研究进展[J].材料导报, 2005,19(8):96-99.
    [62]贺岩峰,张会轩,燕淑春.热能储存材料研究进展[J].现代化工, 1994,8:8-11.
    [63]李圆圆.太阳能热发电用储热混凝土的制备与储热单元模拟分析[D].武汉理工大学硕士学位论文,2008.
    [64]郎四维.中国建筑环境设备发展动向.上海2003中日建筑环境设备高级论坛论文集[C].上海,2003.
    [65]李雅昕.桩基式土壤源热泵管群换热及恢复特性的研究[D].同济大学硕士学位论文,2007.
    [66]刑玉民,崔海亭,袁修千.高温熔岩相变储热系统的数值模拟[J].北京航空航天大学报,2002,28(3):295-295.
    [67]林怡辉.有机-无机纳米复合相变储热材料的研究[D].华南理工大学博士学位论文,2001.
    [68] Hasnain. S. M. Review on sustainable thermal energy storage techno loge, PARTI: Heat Storage Materials and techno loges[J]. Energy Convers and Management,1998,39(11):1127-1138.
    [69]李晗,白胜喜.电热固体蓄热装置的蓄热原理及传热分析[J].电站系统工程,2003,19(3):29-30.
    [70]赵广播,董亢.电热固体蓄热装置发热过程的试验研究[J].电站系统工程, 2003,19(6):13-14.
    [71] Dincer Ibrahim. On Thermal Energy Storage Systems and Applications inBuilding[J].2002,34(l):377-388.
    [72]李仕群,胡佳山.磷铝酸盐水泥耐高温性能的初步研究[J].铝酸盐通报. 2001(04):45-51.
    [73]郭成州,黎锦清.新型混凝土储热材料的研制[J].国外建材科技, 2007,28(4):23-25.
    [74]朱教群,周卫兵,白风武.高温储热混凝土储热材料及其热性能研究[J].高科技与产业化,2008,11:31-33.
    [75]陈霞,易俊新,曾力等.掺粉煤灰和磷渣粉混凝土的性能研究[J].粉煤灰综合利用,2006(1):22-23.
    [76] Itcin. The durability characteristics of high performance concrete: a reveiw[J].Cem.Concr.Res.2003,30(9):1356-1369.
    [77]南京化工学院等.水泥工艺原理[M].北京:中国建筑工业出版社,1980.
    [78]钱觉时译.混凝土设计与控制[M].重庆:重庆大学出版社,2005.
    [79]徐定华,冯文元.混凝土材料实用指南[M].北京:中国建筑工业出版社, 2005.
    [80]王战娥,田国新.保温材料的研究与选用[J].砖瓦,2008(3):65-67.
    [81]李义.几种新型绝热材料的介绍[J].资源节约与环保, 2007,23(6):46-49.
    [82]徐烈,等.绝热技术[M].北京:国防工业出版社,1990.
    [83]邹宁宁,鹿成滨,张德信.绝热材料应用技术[M].北京:中国石化出版社,2005.
    [84]侯作富,李卓球,胡胜良.导电混凝土导热系数分析的电热有限元法[J].实验力学,2002,17(4):464-469.
    [85]尹飞.冻土导热系数的仪器研制和稳态法模拟试验研究[D].吉林大学硕士学位论文,2008.
    [86]肖衡林,吴雪洁,周锦华.岩土材料导热系数计算研究[J].路基工程, 2007(3):54-56.
    [87]陈则韶,葛新石,顾毓沁.量热技术与热物性测定[M].合肥:中国科学技术大学出版社,1990.
    [88] Ingersoll L.R, H.J.Plass.Theory of the ground pipe heat source for the heat pump[J]. ASHRAE Trans,1948,47(2):119-122.
    [89] D Deerman, S P Kavanaugh.Simulation of vertical U-tube ground-coupled heat pump systems using the eylindrical heat source solution[J].ASHRAEtrans,1991,97(l):287-295. .
    [90] S P Kavanaugh.Field test of a vertical ground-coupled heat pump in Alabama[J].ASHRAE Trans,1992,98(2):607-615.
    [91] S P Kavanaugh.Ground source heat pumps[J]. ASHRAE Trans , 1992,40(10):31-35.
    [92] Gu Y O, Neal D L.Development of an equivalent diameter expressi on for vertical U-tube in ground-coupled heat pumps[J]. ASHRAE Trans,1998,104(2):347-355.
    [93]柳晓雷,王德林,方肇洪.垂直埋管地源热泵的圆柱面传热模型及简化计算[J].山东建筑工程学院学报,2001,16(l):47-51.
    [94]崔萍,刁乃仁,方肇洪.地热换热器间歇运行工况分析[J].山东建筑工程学院学报,2001,16(1):52-57.
    [95]刁乃仁,曾和义,方肇洪.竖直U型管地热换热器的准三维传热模型[J].热能动力工程,2003,18(4):387-390.
    [96]曾和义,刁乃仁,方肇洪.竖直埋管地热换热器钻孔内的传热分析[J].太阳能学报,2004,25(3):399-405.
    [97]周亚素,张旭,陈沛霖.土壤热源热泵系统垂直U形埋地换热器传热过程及合理间距的分析[J].东华大学学报(自然科学版),2001,27(5):10-15.
    [98] Zeng H Y,Diao N.R and Fang Z.H.A finite line-source model for bore holes in geothermal heat exchangers [J].Heat Transfer-Asian Research,2002,31(7):558-67.
    [99] Zeng H Y,Diao N.R and Fang Z.H.Efficiency of vertical geothermal heat exehangers in ground source heat pump systems[J].Journal of Thermal Science,2003,12(1):77-81.
    [100] Steve Kavanaugh.Design consideration forg roundand Water source heat pumps in southern climates[J].ASHRAE trans , 1989,95(l):1139-1148.
    [101]仇君,李莉叶,朱晓慧.地源热泵埋管换热器传热模型的研究进展[J].广西大学学报(自然科学版),2007,6(32):1-3.
    [102] Ingersoll L R,Plass H J.Theory of the Ground pipe heat source for the heat pump. heating piping and air conditioning. HPAC,1948,20(7):119-122.
    [103] Hart D P, Couvillion R. Earth Coupled Heat Transfer[M]. Publication of the National water ell Association, 1986.
    [104]于明志,彭晓峰等.基于线热源模型的地下岩土热物性测试方法[J].太阳能学报,2006,27(3):279-283.
    [105]赵军,段征强,宋著坤等.基于圆柱热源模型的现场测量地下岩土热物性方法[J].太阳能学报,2006,27(9):934-936.
    [106] HELLSTROM G. Duct ground heat storage model. Manual for Computer Code. Lund: University of Lund, 1989.
    [107] YAVUZTURK C. Modeling of vertical ground loop heat exchange for ground source heat pump sysyems[D].Oklahoma State University, 1999.
    [108] ESKILSON P T. Thermal analysis of heat extraction boreholes[D].University of Lund,1987.
    [109] V.C.Mei,S.K.Fishcer. Vertieal Concentric Tube Gorund-CouPled Heat Exehnage. ASHRAE Transactinos,1983.89(28):391-406.
    [110] DEERMAN J D, KAVANAUGH S P.Simulation of vertical U-tube ground-coupled heat pump systems using the cylindrical heat source solution[J].ASHRAE Transactions,1991,97(1):287-294.
    [111]王景刚,马一太等.地源热泵的运行特性模拟研究[J].工程热物理学报, 2003,24(3):361-366.
    [112]孔祥谦.有限单元法在传热学中的应用(第三版)[M].北京:科学出版社, 1998.
    [113]张朝晖.ANSYS8.0热分析教程与实例分析[M].北京:中国铁道出版社, 2005.
    [114]陶文铨.数值传热学(第二版) [M].西安:西安交通大学出版社,2001.
    [115] BOSE J E. Closed-loop ground-coupled heat pump design manual[C].Engineering Technology Extension, Oklahoma State University, 1984.
    [116]姚仲鹏,王瑞君,张习俊.传热学[M].北京:北京理工大学出版社,1995.
    [117]中华人民共和国城镇建设行业标准CJ 128—2000中热量计算标准[S].中华人民共和国建设部,2001.6.1.
    [118]陈晓东,金旭,管彦武等.长春地区地表温度日变、年变对地温测量的影响[J].地球物理学进展,2006,21(3):1008~1011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700