磷矿粉及其活化产物对土壤铅的钝化与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤中的铅不能被生物分解或化学降解,只能通过渗漏进入地下水,或直接被植物吸收进入食物链,最终对生态环境及人类和动物的健康造成严重的危害。本文研究了在黄褐土、砖红壤和潮土中施加磷矿粉后铅形态变化,探讨了磷矿粉施加量、培养时间、不同磷矿粉种类以及活化磷矿粉对土壤中铅形态的影响,采用X射线衍射(XRD)、X射线光电子能谱(XPS)、傅立叶变换红外光谱(FT-IR)以及扫描电镜和能谱分析(SEM/EDS)等手段分析了草酸活化磷矿粉与未活化磷矿粉在不同pH条件下对铅的钝化机理。主要结果如下:
     1)黄褐土和砖红壤中施加钟祥磷矿粉(ZPR)培养2d后,均能有效的减少土壤中交换态铅含量,增加残渣态铅含量,且磷矿粉施加量越高,效果越显著。随着磷矿粉施加量由0mgP/kg,50mg P/kg,500mg P/kg,2000mg P/kg增加,黄褐土和砖红壤中交换态铅含量与对照相比降低22.5%-54.4%和61.7%-72.8%;外源铅含量为200mg/kg时,两土壤中交换态和残渣态铅变化规律与无外源铅污染时相似,随磷矿粉施加量增加,黄褐土和砖红壤中交换态铅比对照减少23.9%-86.0%和20.9%-90.2%,以在ZPR用量最大时(2000mg P/kg)钝化效果最好。污染潮土中施加钟祥磷矿粉2d后,交换态铅含量有增加趋势,但增幅很小,交换态铅含量百分比变化范围为0.7%-1.3%,残渣态铅含量增加。
     2)外源铅污染的黄褐土和砖红壤设置为轻度污染(Y2、L2)与重度污染土壤(Y4、L4),向其中施加2000mg P/kg的ZPR后,其交换态铅含量随时间增加先表现很小的增幅,而后趋于稳定,而残渣态铅含量随时间增加先减少后增加;潮土中残渣态铅含量随时间增加而增加,增幅为1.3%-14.5%。
     3)黄褐土中施加不同用量的磷矿粉后,保康磷矿粉(BPR)钝化交换态铅效果最好,开阳磷矿粉(KPR)最差;而砖红壤中对交换态铅的钝化效果为,低磷矿粉用量时(50mg P/kg),ZPR钝化效果最好,BPR最差;中(500mg P/kg)、高(2000mg P/kg)磷矿粉用量时,BPR效果最好,KPR最差。两土壤施加不同用量的四种磷矿粉后,均能显著的减少土壤中交换态铅含量,增加残渣态铅含量。但供试磷矿粉对土壤中铅的钝化效果不同,BPR效果最优,ZPR和南漳磷矿粉(NPR)效果相当,KPR次之。说明磷矿粉的全磷和有效磷含量并非是钝化土壤中铅的决定因素,很可能由于BPR具有较大的比表面积,在对铅的钝化过程中磷酸盐诱导的吸附起主要作用。
     4)黄褐土中施加不同用量的活化磷矿粉(APRs)后,交换态铅含量,在低APRs用量时,活化保康磷矿粉(ABPR)效果最好,活化开阳磷矿粉(AKPR)最差;中APRs用量时,活化南漳磷矿粉(ANPR)效果最好,AKPR最差;高施加量时,检测不到交换态铅。砖红壤中无论低、中、高APRs用量,ABPR的钝化效果均优于其它三种APRS。两土壤中施加四种不同用量的APRs后,部分处理残渣态铅含量减少。四种APRs均能显著降低两土壤中交换态铅含量,效果优于PRs。说明磷矿粉被草酸活化后,释放的有效磷增多,能够与铅接触的机会增多。
     5)供试未活化磷矿粉(PRs)和草酸活化后的磷矿粉(APRs)分别与不同pH的200mg Pb/L的铅溶液反应,在pH3.0-5.0范围内均有效吸附溶液中的铅,溶液的pH≥3时,对铅的吸附率均在90%以上。随着溶液pH的降低,溶液中溶解的磷浓度升高,但不同pH对Pb的吸附影响很小。通过XRD分析表明,供试样品均可检测到氟磷灰石和方解石衍射峰。草酸活化后,均可检测到草酸钙或水合草酸钙。PRs与铅溶液反应后形成白铅矿,APRs与铅反应后生成磷氯铅矿。XPS表面分析通过对Pb4f的终结合能(135.05-135.55eV)对比显示,APRs对铅的去除要比PRs的更有效。SEM/EDS分析表明供试PRs样品包含大的块状结晶体并含大量的Ca,P,O,F和C,验证了氟磷灰石的存在;PRs经草酸活化后,变为无定形;PRs与铅溶液反应后,形成块状物质并含有Pb;在APRs与铅溶液反应后,形成不规则的块状粒子,同时检测到Pb。FT-IR图谱表明,在PRs被草酸活化后,C032-的特征吸收峰消失,P043-的峰强度减弱,同时出现C2O42-的特征吸收峰。表明CO32-在PRs与Pb溶液的反应中起主要作用,而APRs中P043-起主要作用。由于磷氯铅矿的溶解度低,建议采用APRs钝化土壤和水中的铅。
Lead in soil will percolate into ground water or enter the food chain by plant absorbing, instead of being decomposed by living organisms or degraded through chemical methods, hence doing severe harm to the health of human beings and animals and the ecology environment. In this study, changes of Pb forms in yellow cinnamon soil, latosol and meadow soil after being added with phosphorus rocks (PRs) were determined and the effects of PRs addition amount, incubation time and kinds of PRs on Pb forms in the soils were studied, to study the immobilization mechanism of activated and inactivated PRs to Pb under different pH conditions using the means of X-ray diffraction (XRD), X ray photoelectron spectrum (XPS), Fourier Transform Infrared (FTIR) and scanning electron microscope with X-ray energy dispersive spectroscopy (SEM/EDS), etc. The main results are described below.
     1) For both the yellow cinnamon soil and the latosol after being added with Zhongxiang PR for2days, the exchangeable Pb content decreased effectively while the residue Pb content increased, which was positively correlated with the PR addition amount. Compared with the control experiment, the exchangeable Pb content in yellow cinnamon soil decreased from22.5%to54.4%, while the decreasing range of exchangeable Pb content in latosol was61.7%-72.8%, with the increase of the PRs amount from0mg P/kg,50mg P/kg,500mg P/kg to2000mg P/kg; when the exogenous Pb content was at200mg/kg, the exchangeable and residue Pb contents in the two soils showed a similar result to the condition that the soils were not Pb pollution, and the exchangeable Pb content decreased from86.0%to23.9%for yellow cinnamon soil,90.2%-20.9%for latosol, reaching the optimum immobilization effect with the PR addition amount of2000mg P/kg. After the contaminated meadow soil was added with Zhongxiang PR for2days, its residue Pb content tended to rise, and the reduction range of its exchangeable Pb content was only0.7%-1.3%.
     2) The yellow cinnamon soil and the latosol polluted by exogenous lead were set as light pollution (Y2, L2) and heavy pollution (Y4, L4) soils respectively. After they were added with Zhongxiang PR of2000mg P/kg, as time went by, their exchangeable Pb contents increased slightly first and then tended to be stable, while the residue Pb contents revealed contrary trend; the increasing range of the residue Pb content in meadow soil was1.3%-14.5%.
     3) After four kinds of PRs were added into the yellow cinnamon soil and the latosol, the exchangeable Pb content in the soils was reduced remarkably and the residue Pb content increased. The immobilization effects can be summarized as follows:Baokang PR (BPR) was the best, Zhognxiang PR (ZPR) was not better than Nanzhang PR (NPR), and Kaiyang PR (KPR) was inferior to others. Although KPR contains the most amount of total and available phosphorus, it showed the worst effects to immobilize Pb in soils, which proved that the total and available phosphorus contents in PRs were not the determinants in the immobilization process, and most probably for the reason that high specific surface area of PRs could absorb Pb2+
     4) Different amount activated PRs (APRs) was added into the yellow cinnamon soil, the changes of exchangeable Pb contents were:with low APRs addition amount, the effect of activated Baokang PR (ABPR) was the best and activated Kaiyang PR (AKPR) was the worst; with medium APR addition amount, the effect of activated Nanzhang PR (ANPR) was the best while AKPR was worse than others; when the APR addition amount was high, little exchangeable Pb was detected. Whatever APR amount was applied to the latosol, ABPR showed the best immobilization effect among all the APRs. After different kinds and amount APRs were added to the two soils, some of the residue Pb content was reduced. The exchangeable Pb content in both the soils decreased remarkably after being added with four APRs, and the effects was much better than that with PR, which demonstrated that PRs could release more available phosphorus and provide more opportunities to react with Pb after activated by oxalic.
     5) Reacting with200mg Pb/L Pb solution with different pH, both the PRs and the PRs activated by oxalic (APRs) could absorb Pb effectively with the pH of3.0-5.0; and when pH≥3, the Pb adsorption rate was over90%. With the solution pH deceased, more phosphorus was dissolved but pH had a little effect on Pb adsorption. XRD analysis showed that clearly defined fluorapatite and calcite peaks could be observed in all samples. The formation of weddellite or whewellite was observed in all samples after treatment with oxalic. The presence of cerussite was detected in all raw PRs reacting with the Pb solution, whereas the peaks of pyromorphite were observed in all APRs. XPS surface analysis confirmed that the Pb removal was more efficient with APRs than PRs by comparing the end BE of Pb4f(135.05-135.55eV). The SEM/EDS indicated that the tested sample of raw PR powders contained large agglomerate crystals containing a significant amount of Ca, P, O, F and C, which proved the existence of fluorapatite; after PR was treated with oxalic acid, the original cluster crystal structures were changed to amorphous; a mass was formed after raw PR reacted with the Pb solution; after the oxalic acid-treated PR reacted with the Pb solution, anomalous block shaped particles and Pb was observed. The FT-IR spectra showed that after PR was activated by oxalic acid, the absorption patterns of CO32-disappeared, peak intensity of PO43-decreased greatly, and corresponding characteristic absorption patterns of C2O42-began to appear. It suggested that CO32-played a key role in the reaction between PR and Pb solution, while PO43-determined the reaction between APR and lead solution. APRs were recommended as an adsorbent to immobilize Pb in soils and remove Pb from aqueous solution because of the low solubility of pyromorphite.
引文
1.蔡志坚.γ-聚谷氨酸活化磷矿粉对Pb污染土壤铅形态及小白菜生长的影响.华中农业大学硕士学位论文,2010
    2.曹恭,梁鸣早.锌--平衡栽培体系中植物必需的微量元素.土壤肥料,2003(6):12-13
    3.陈芳,董元华,安琼,钦绳武.长期肥料定位试验条件下土壤中重金属的含量变化.土壤,2005,37(3):308-311
    4.陈奉明,聂永有.循环经济条件下城市生活垃圾的一个治理模型.特区经济,2010,(2):303-304
    5.陈怀满.土壤-植物系统中的重金属污染.北京:科学出版社,1996
    6.陈世宝,朱永官,马义兵.磷对降低土壤中铅的生物有效性的x衍射及电镜分析.环境科学学报,2006,26(6):924-929
    7.陈守莉,孙波,王平祖,宗良纲.污染水稻土中重金属的形态分布及其影响因素.土壤,2007,39(3):375-380
    8.陈同斌.我国土壤污染的现状.金属世界,1999,3:10-11
    9.陈薇薇,李悦铭,郭平.长春市土壤重金属化学形态与土壤微生物量、微生物商和代谢商之间的关系.东北师大学报.42(4):144-149
    10.陈有鑑,陶澍,邓宝山,张学青,黄艺.作物根际环境对土壤重金属形态的影响.土壤学报,2001,38(1):54-59
    11.慈云祥,周天泽.分析化合物中的配位化合物.北京大学出版社,1986,pp110
    12.戴树桂.环境分析化学的一个重要方向-形态分析的发展.上海环境科学,1992,11(11):20-27
    13.高怀友,赵玉杰,师荣光,傅学起.区域土壤环境质量评价基准研究.农业环境科学学报,2005,24:342-345
    14.高怀友.基于食品安全的区域土壤环境质量评价方法研究与信息系统开发.南开大学博士论文,2005,16-20
    15.郭平.长春市土壤重金属污染机理与防治对策.吉林大学博士学位论文,2005
    16.国家环境监测总站.中国环境年鉴2000.北京:中国环境年鉴社,2000
    17.国家技术监督局.GB/T 1871-1995,磷矿石和磷精矿中五氧化二磷、氧化钙、氧化镁、氧化铝和氧化铁含量的测定.中国标准出版社,北京,1995,2-5
    18.胡华锋,刘世亮,介晓磊等.低分子量有机酸对矿物的溶解作用.中国农学通报,2005,21(4):105-110
    19.黄昌勇.土壤学.北京:中国农业出版社,2000
    20.黄细花,赵振纪,刘永厚,姚益云.铜对紫云英生长发育影响的研究.农业环境保护,1993,12(1):1-6
    21.蒋廷惠,胡蔼堂,秦怀英.土壤中锌、镉、铁、锰的形态与有效性的关系.土壤通报,1989,20(5):228-231
    22.李法云,曲向荣,吴龙华.污染土壤生物修复理论基础与技术.北京:化学工业出版社,2005
    23.李非里,刘从强,宋照亮.土壤中重金属形态的化学分析综述.中国环境检测,2005,21(4):21-27
    24.李国学,孟凡华,姜华,史亚娟.添加钝化剂对污泥堆肥处理中重金属(Cu,Zn,Mn)形态影响.中国农业大学学报,2000,5(1):105-111
    25.李庆逵.中国磷矿的农业利用.南京:江苏科学技术出版社,1992
    26.李文学和陈同斌.超富集植物吸收富集重金属的生理和分子生物学机制.应用生态学报,2003,14(4):627-631
    27.李晓林.铅、铬对茶树生长的影响及其在茶树体内的吸收积累特性研究.四川农业大学硕士学位论文,2008
    28.李勇,黄占斌,王文萍,黄震,颜丙磊,曹杨,王诗宇.重金属铅镉对玉米生长及土壤微生物的影响.农业环境科学学报,2009,28(11):2241-2245
    29.林电,王丽华,张永发.海南香蕉园土壤重金属现状及变化趋势分析.安全与环境学报,2006,6(6):54-58
    30.林芗华,刘佳敏.福建漳州市香蕉园土壤重金属污染调查分析.亚热带植物科学,2011,40(1):31-33
    31.刘登义,沈章军,严密,王友保,李晶.铜陵铜矿区凤丹根际和非根际土壤酶活性.应用生态学报,2006,17(7):1315-1320
    32.刘可星,郑超,廖宗文.磷资源危机与磷的高效利用技术.化肥工业,2006,33(3):21-23
    33.刘乃富.湖北磷矿开采现状与展望.化工矿物与加工,2004,9:1-3
    34.刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展.环境科学,1996,17(1):89-92
    35.刘威和束文圣.宝山堇菜(Viola baoshanensis)-一种新的福超富集植物.科学通报,2003,48(19):2046-2049
    36.刘霞,刘树庆,王胜爱.河北主要土壤中重金属镉、铅形态与土壤酶活性的关系.河北农业大学学报,2002,25(1):5-6
    37.刘永红,姜冠杰,蔡志坚等.低分子量有机酸对三种中低品位磷矿粉的活化.中国土壤学会.土壤资源持续利用和生态环境安全论文集.2009:480-488.
    38.刘永红,姜冠杰,杨海征,付庆灵,胡红青.土壤重金属污染及其修复技术研究进展,土壤科学与社会可持续发展(下)(李保国,张福锁主编),中国农业大学出版社,2008,356-362
    39.刘毓谷.卫生毒理学基础.北京:人民卫生出版社,1996,78-80
    40.柳正.我国磷矿资源的开发利用现状及发展战略.中国非金属矿工业导刊,2006,1:21-23
    41.龙健,李娟,滕应,黄昌勇.贵州高原喀斯特环境退化过程土壤质量的生物学特性研究.水土保持学报,2003,17(2):47-50
    42.南京农业大学.土壤农化分析.中国农业出版社,北京,1992,311-312
    43.牛一乐,刘云国,路培,周鸣.中国矿山生态破坏现状及治理技术研究进展.环境科学与管理,2005,30(5):59-611
    44.任顺容,邵玉翠,高宝岩,王德芳.长期定位施肥对土壤重金属含量的影响.水土保持学报,2005,19(4):96-99
    45.尚爱安,党志,梁重山.土壤/沉积物中微量重金属的化学萃取方法进展.农业环境保护,2001,20(4):266-269
    46.邵孝侯,邢光熹,侯文华.连续萃取法区分土壤重金属元素形态的研究及其应用.土壤学进展,1994,22(3):40-46
    47.沈东升,王君琴,贺永华,蔡宝林,梁晓咏.进口废电器拆解过程的主要污染因子及其排污系数研究.浙江大学学报,2004,30(3):237-240
    48.束文圣,叶志鸿,张志权,黄铭洪,蓝崇钰.华南铅锌尾矿生态恢复的理论与实践.生态学报,2003,23(8):1629-1643
    49.宋和付,夏畅斌,何湘柱等.天然沸石对Pb(Ⅱ)和Ni(Ⅱ)离子的吸附作用研究。矿产与地质,2004,14(4):276-278
    50.宋照亮,刘从强,彭渤.逐级提取(SEE)技术及其在沉积物和土壤元素形态中的应用.地球与环境,2004,34(2):70-77
    51.孙健,铁柏清,钱湛,周浩,毛晓茜,杨佘维,赵婷.Cd、Pb、Cu、Zn、As复合污染对杂交水稻苗的联合生理毒性效应及临界值.土壤通报,2006,37(5):981-985
    52.汤鸿宵译.世界卫生组织报告.镉的环境卫生评价AMBIO,1977
    53.汤鸿霄.试论重金属的水环境容量.中国环境科学,1985,5(5):38-43
    54.王海霞,姚瑞珍,康西,叶繁,赵辉.城市生活垃圾处理的形势与前景.黄石理工学院学报,2009,25(6):30-35
    55.王宏康,阎寿沧.污泥施肥时铜对农作物的污染.环境科学,1993,1(3):6-11
    56.王焕校.污染生态学基础.昆明:云南大学出版社,1990,91-108
    57.王鹏.电子废弃物的污染防治与资源化.中国资源综合利用,2005(9):30-34
    58.王亚平,黄毅,王苏明,许春雪,刘妹.土壤和沉积物中元素的化学形态及其顺序提取法.地质通报,2005,24(8):728-734
    59.王英辉,赵艳林,陈学军,祁士华.金属矿山土壤污染修复治理措施.矿业研究与开发,2007,27(3):66-68
    60.王志楼.典型矿区重金属污染特性及其土壤酶活性研究.东华大学硕士学位论文,2010
    61.韦朝阳和陈同斌.重金属超富集植物及植物修复技术研究进展.生态学报,2001,21(7):1996-1203
    62.温俊明,吴俊锋.中国城市生活垃圾特性及焚烧处理现状.上海电气技术,2009,2(1):43-48.
    63.吴燕玉,陈涛,张学询.沈阳张士灌区Cd污染生态的研究.生态学报,1989,9(1):21-26
    64.杨海征.鸡粪堆肥对重金属污染土壤茼蒿品质、土壤Cu、Cd形态和酶活性的影响.华中农业大学硕士学位论文,2009
    65.杨金燕,杨肖娥,何振立.平衡时间及含水量对潮土有效态铅提取量的影响.土壤通报,2005,36(4):595-597
    66.杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展.安徽农业科学,2006,34(3):549-552
    67.袁东星,王小如,杨芃原,黄本立.化学形态分析.分析测试通报,1992,11(4):1-9
    68.张辉,马东升.城市生活垃圾向土壤释放重金属研究.环境化学,2001,20(1):43-47
    69.张祖锡,白瑛.改良城市污水农灌的作物与土壤效应.农业环境保护,1988,7(2):23-24
    70.周启星,宋玉芳.污染土壤修复原理与方法,北京:科学出版社,2004
    71.周天泽.无机微量元素形态分析方法学简介.分析实验室,1991,10(3):44-50
    72.朱嬿婉,沈壬水,钱钦文.土壤重金属元素五个组分的连续提取法.土壤,1989,10(5):163-166
    73.Adriano D C. Trace elements in terrestrial environments:biogeochemistry, bioavailability and risks of metals,2nd edn. Springer, New York,2001
    74.Alhakawati M S, Banks C J. Removal of copper from aqueous solution by Ascophyllum nodosum immobilised in hydrophilic polyurethane foam. J Environ Manage,2004,72,195-204
    75.Baker A J M, MeGrath S P, Reeves R D, Smith J A C. Metal hyperaccumulator plants:a review of the ecology and Physiology of a biochemical resource for phytoremediation of metal-polluted soils. In:phytoremediation of contaminated soil and water. Terry N, Bafiuelos G, Eds:Lewis Publishers, BocaRaton, FL, USA; 2000,85-107
    76.Basta N T, Gradwohl R, Snethen K L, Schroder J L. Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate, J Environ Qual,2001,30:1222-1230
    77.Basta N T, McGowan S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut, 2004,127:73-82
    78.Belen-Hinojosa M, Carreira J A, Garcla-Rulz R, Dick R P. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils. Soil Biol Biochem,2004,36(10): 1559-1568
    79.Bhadang K A, Gross K A. Influence of fluorapatite on the properties of thermally sprayed hydroxyapatite coatings. Biomaterials,2004,25:4935-4945
    80.Blake L, Goulding K W T, Mott C J B, Johnston A E. Changes in soil chemistry accompanying acidification over more than 100 years under woodland and grass at Rothamsted Experimental Station UK. Eur. J Soil Sci,1999,50:401-412
    81.Blake L, Johnston A E, Goulding K W T. Mobilization of Alumium in soil by acid deposition and its uptake by grass cut for hay a Chemical Time Bomb. Soil Use Manage,1994,10:51-55
    82.Bolan N S, Adriano D C, Duraisamy P, Mani A. Immobilization and phytoavailability of cadmium in variable charge soils. Effect of phosphate addition. Plant and soil,2003,250:83-94
    83.Bolan N S, Adriano D C, Naidu R. Role of phosphorous in (im)mobilization and bioavailability of heavy metal in the soil-plant system. Reviews of Environmental Contamination and Toxicology,2003,177:1-44
    84.Burser J, Diaz-Barriga F, Marafante E, Pounds J, Robson M. Methodologies to examine the importance of host factors in bioavailability of metals. Ecotox Environ Safe,2003,56:20-31
    85.Cao X D, Ma L Q, Chen M, Singh S P, Harris W G. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site. Environ Sci Technol, 2002,36(24):5296-5304
    86.Cao X D, Ma L Q, Rhue D R, Appel C S. Mechanisms of lead, copper and zinc retention by phosphate rock. Environ Poll,2004,131:435-444
    87.Cao X D, Wahbi A, Ma L, Li B, Yang Y L. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. J Hazard Mater. 2009,164:555-564
    88.Cao X R, Ma L Q, Chen M, Singh S P, Harris W G. Phosphate induced metal immobilization in a contaminated site. Environ Pollut,2003,122:19-28
    89.Casarin V, Plassard C, Hinsinger P, Arvieu J-C. Quantification of ectomycorrhizal fungal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster. New Phytolo,2004,163:177-185
    90.Chaney R L, Ryan J A. Risk Based Standards for Arsenic, Lead, and Cadmium in Urban Soils. Dechema, Frankfurt, Germany,1994
    91.Chen M, Ma L Q, Singh S P, Cao R X, Melamed R. Field demonstration of in situ immobilization of soil Pb using P amendments. Adv Environ Res,2003,8(1): 93-102
    92.Chen S B, Ma Y B, Chen L, Wang L Q, Guo H T. Comparison of Pb(Ⅱ) Immobilized by Bone Char Meal and Phosphate Rock:Characterization and Kinetic Study. Archi Environ Con Tox,2010,58:24-32
    93.Chen S B, Xu M G, Ma Y B, Yang J C. Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotox Environ Safe, 2007,67(2):278-285
    94.Chen S B, Zhu Y G, Ma Y B, McKay G. Effect of bone char application on Pb bioavailability in a Pb-contaminated soil. Environ Pollut,2006,139:433-439
    95.Danadevi K, Rozati R., Banu S B, Rao P H, Grover P. DNA damage in workers exposed to lead using comet assay. Toxicology,2003,187:183-193
    96.Duponnoisa R, Colombeta A, Hienb V, Thioulouse J. The mycorrhizal fungus Glomus intraradices and rock phosphate amendment influence plant growth and microbial activity in the rhizosphere of Acacia holosericea. Soil Biol Biochem, 2005,37:1460-1468
    97.FAO. Use of phosphate rock for sustainable agriculture, by Zapata F, Roy R N. Roman,2004
    98.Farhadian M, Vachelard C, Duchez D, Larroche C. In situ bioremediation of monoaromatic pollutants in groundwater:a review. Bioresource Technol,2008, 99:5296-5308
    99.Fisher I J, Pain D J, Thomas V G. A review of lead poisoning from ammunition sources in terrestrial birds. Biol Conserv,2006,131,421-432
    100.Fisher J B. Distribution and occurrence of aliphatic acid anions in deep subsurface waters. Geochimi Cosmochim Ac,1987,51:2459-2468
    101.Gadd G M. Bioremedial potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol,2000,11:271-279
    102.Garrido F, Illera V, Campbell C G, and Garcia-Gonzalez M T. Regulating the mobility of Cd, Cu and Pb in an acid soil with amendments of phosphogypsum, sugar foam, and phosphoric rock. Eur J Soil Sci,2006,57(2):95-105
    103.Gasser U G, Dahlgren R A. Solid-phase speciation and surface association of metals in serpentinitic soils. Soil Sci,1994,158:409-421
    104.Geological Survey U S(USGS). Lead in December 2001, Mineral industry survey, Minerals Information Publications Services,984 National Center, Reston, Virginia,2002
    105.Gleyzes C, Tellier S, Astruc M. Fractionation studies of trace elements in contaminated soils and sediments:a review of sequential extraction procedures. Trac-trend Anal Chem,2002,1(6-7):451-467
    106.Hettiarachchi G M, Pierzynski G M, Ransom M D. In situ stabilization of soil lead using phosphorus and manganese oxide. Environ Sci Technol,2000,34 (21): 4614-4619
    107.Hettiarachchi G M, Pierzynski G M, Ransom M D. In situ stabilization of soil Lead using phosphorus. J Environ Quality,2001,30:1214-1221
    108.Janssen C R, Hejierek G G, Schamphelaere K A C D. Environmental risk assessment of metal:tools for incorporating bioavailability. Environ Int,2003,28: 793-800
    109.Jurinak J J, Dudley L M, Allen M F, Knight W G. The role of calcium oxalate in the availability of phosphorus in soil of semiarid regions:a thermodynamic study. Soil Sci,1986,142:251-261
    110.Kahle H. Response of roots of trees to heavy metals. Environ Experi Bot,1993, 33:99-119
    111.Keller C,Vedy J C. Distribution of copper and cadmium fractions in two forest soils. J Environ Qual,1994,23:987-999
    112.Kim K Y, McDonald G A, Jordan D. Solubilisation of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Fert Soils,1997,24(4):347-352
    113.Knox A S, Kaplan D I, Adriano D C, Hinton T G, Wilson M D. Apatite and Phillipsite as Sequestering Agents for Metals and Radionuclides. J Environ Qual, 2003,32:515-525
    114.Kot A, Namiesnik J. The role of speciation in analytical chemistry. Trend Anal Chem,2000,19(2-3):69-79
    115.Kpomblekou-A K, Tabatabai M A. Effect of low-molecular weight organic acids on phosphorus release and phytoavailability of phosphorus in phosphate rocks added to soils. Agr Ecosyst Environ,2003,100:275-284
    116.Lalhruaitluanga H, Jayaram K, Prasad M N V, Kumar K K. Lead(II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)-A comparative study. J Hazard Mater,2010,175:311-318
    117.Lambers H, Shane M W, Cramer M D, Pearse S J, Veneklaas E J. Root Structure and Functioning for Efficient Acquisition of Phosphorus:Matching Morphological and Physiological Traits. Ann Bot,2006,98:693-713
    118.Lamy L, Boutgeviset S, Bermond A. Soil cadmium mobility as a consequence of sewage sludge dvsposal. J Environ Qual,1993,22:731-737
    119.Lanno R, Wells J, Conder J, Bradham K, Basta N. The bioavailability of chemicals in soil for earthworms. Ecotox Environ Safe,2004,57:39-47
    120.Laperche V, Traina S J, Gaddam P, Logan T J. Chemical and mineralogical characterization of Pb in a contaminated soil, reactions with synthetic apatite. Environ Sci Technol,1996,30:3321-3326
    121.Liang L N, He B, Jiang G B, Chen D Y, Yao Z W. Evaluation of mollusks as biomonitors to investigate heavy metal contaminations along the Chinese Bohai Sea. Sci Total Environ,2004,324(1-3):105-113
    122.Ma L Q, Gade N R. Effects of Phosphate Rock on Sequential Chemical Extraction of Lead in Contaminated Soils. J Environ Quality,1997,26:788-794
    123.Ma L Q, Rao G N. Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. J Environ Qual,1997,26(1):259-264
    124.Ma Q Y, Logan T J, Traina S J. Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ Sci Technol,1995,29: 1118-1126
    125.Ma Q Y, Traina S J, Logan T J, Ryan J A. Effects of NO3-, Cl-, F- SO42-, and CO32- on Pb immobilization by hydroxyapatite. Environ Sci Technol,1994a,28: 408-418
    126.Ma Q Y, Traina S J, Logan T J, Ryan J A. In situ Pb immobilization by apatite. Environ Sci Technol,1993,27:1803-1810
    127.Madrid F, Romero A S, Madrid L, Maqueda C. Reduction of availability of trace metals in urban soils using inorganic amendments. Environ Geochem Hlth,2006, 28:365-373
    128.Malik A. Metal bioremediation through growing cells. Environ Int,2004,30: 261-278
    129.Melamed R, Cao X D, Chen M, and Ma L Q. Field assessment of lead immobilization in a contaminated after phosphate application. Sci Total Environ, 2003,305,117-127
    130.Meyer J S. The utility of the terms "bioavailability" and "bioavailable fraction" for metals. Mar Environ Res,2002,53:417-423
    131.Miretzky P, Fernandez-Cirelli A. Phosphates for Pb immobilization in soils:a review. Environ Chemistry Lett,2008,6:121-133
    132.Mohamed Ali A, Arunai Nambi Raj N, Kalainathan S, Palanichamy PMicrohardness and acoustic behavior of calcium oxalate monohydrate urinary stone. Mater Lett,2008,62:2351-2354
    133.Naidu R, Kookana R S, Sumner M E. Cadmium sorption and transport in variable charge soils. J Environ Quality,1997,26:602-617
    134.Nissen L R, Lepp N W, Edwards R. Synthetic zeolites as amendments for sewage sludge-based compost. Chemosphere,2000,41:265-269
    135.Nriagu J O, Lead orthophosphates-IV formation and stability in the environment, Geochim Cosmochim Acta,1974,38:887-898
    136.Nriagu J O. Formation and stability of base metal phosphates in soils and sediments, In:Nriagu, J O, Moore P (eds) Phosphate minerals. Springer, London, 1984,318-329
    137.Ouyang J M, Zheng H, Deng S P. Simultaneous formation of calcium oxalate (mono-, di-, and trihydrate) induced by potassium tartrate in gelatinous system. J Cryst Growth,2006,293:118-123
    138.Palomo L, Claassen N, Jones D L. Differential mobilization of P in the maize rhizosphere by citric acid and potassium citrate. Soil Biol Biochem,2006,38: 683-692
    139.Pardo M T. Cadmium sorption-desorption by soils in the absence and presence of phosphate. Commun Soil Sci Anal,2004,35:1553-1568
    140.Park J H, Bolan N, Megharaj M, Naidu R. Comparative value of phosphate sources on the immobilization of lead, and leaching of lead and phosphorus in lead contaminated soils. Sci Total Environ,2011,409:853-860
    141.Park J H, Bolan N, Megharaj M, Naidu R. Concomitant rock phosphate dissolution and lead immobilization by phosphate solubilizing bacteria (Enterobacter sp.) J Environ Manage,2011,92:1115-1120
    142.Park J H, Bolan N, Megharaj M, Naidu R. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater,2011, 185:829-836
    143.Quevauller P H, Rauret G, Griepink B. Single and sequential extraction in sediments and soils. Intern Environ Anal Chem,1993, (51):231-235
    144.Radhika V, Subramanian S, Natarajan K A. Bioremediation of zinc using Desulfotomaculum nigrificans:bioprecipitation and characterization studies. Water Res,2006,40:3628-3636
    145.Ruby M V, Davis A, Nicholson A. In situ formation of lead phosphates in soils as a method to immobilize lead. Environ Sci Technol,1994,28 (4):646-654
    146.Ryan J A, Scheckel K G, Berti W R, Brown S L, Casteel S W, Chaney R L, Doolan M, Grevatt P, Hallfrisch J, Maddaloni M, Mosby D. Reducing children's risk to soil pb:summary of a field experiment. Environ Sci Technol,2004,38: 18A-24A
    147.Ryan J A, Zhang P C, Hesterberg D, Chou J, Sayers D E. Formation of chloro-pyromorphite in a lead-contaminated soil amended with hydroxyapatite. Environ Sci Technol,2001,35(18):3798-3803
    148.Seaman J C, Hutchison J M, Jackson B P, Vulava V M. In situ treatment of metals in contaminated soils with phytate. J Environ Qual,2003,32:153-161
    149.Seheekel K G, Ryan J A. Effects of aging and pH on dissolution kinetics and stability of chloropyromophite. Environ Sci Technol,2002,36:2198-3324
    150.Semple T K, Doick J K, Jones C K. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated. Environ Sci Technol,2004,38: 228-231
    151.Shahwan T, Zunbul B, Tunusoglu O, Eroglu A E. AAS, XRPD, SEM/EDS, and FTIR characterization of Zn2+ retention by calcite, calcite-kaolinite, and calcite-clinoptilolite minerals. J Colloid Interf Sci,2005,286,471-478
    152.Shen Y H, Li S K, Xie A J, Xu W H, Qiu L G, Yao H, Yu X R, Chen Z X. Controlled growth of calcium oxalate crystal in bicontinuous microemulsions containing amino acids. Colloid Surface B:Biointerfaces,2007,58:298-304
    153.Shuman L M. Fractionation method for soil microelements. Soli Science,1985, 140:11-22
    154.Singh S P, Ma L Q, Hendry M J. Characterization of aqueous lead removal by phosphatic clay:equilibrium and kinetic studies. J Hazard Mater,2006,136: 654-662
    155.Slosarczyk A, Paszkiewicza Z, Paluszkiewicz C. FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J Mol Struct, 2005:744-747,657-661
    156.Sparks D L. Kinetics of soil chemical processes. Academic Press, San Diego, 1989
    157.Spuller C, Weigand H, Marb C. Trace metal stabilization in a shooting range soil: mobility and phytotoxicity. J Hazard Mater,2007,141:378-387
    158.Strobel B W. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma,2001,99:169-198
    159.Strom L, Owen A G, Godbold D L, Jones D L. Organic acid behavior in a calcareous soil implications for rhizosphere nutrient cycling. Soil Biol Biochem, 2005,37:2046-2054
    160.Stumm W, Brauner P A. Chemical speciation. In:Chemical Oceanography.Ch.3. Riley J P, Skirrow G(eds) New York:Academic Press,1975,173-297
    161.Tack F M G, Verloo M G. Estimated soild phase distribution of the metals released in the acid extractable and reducible steps of a sequential extraction. Intern J Environ Anal Chem,1996,64:171-177
    162.Tang X Y, Zhu Y G, Chen S B, Tang L L, Chen X P. Assessment of the effectiveness of different phosphorus fertilizers to remediate Pb-contaminated soil using in vitro test. Environ Int,2004, (30):531-537
    163.Templeton D M, Ariese F, Cornelis R, Danielsson L G, Muntau H W, Vanleeuwen H P. IUPAC guide lines for terms related to Chemical Speciation and Fractionation of Trace Elements. Definitions, Structural Aspects and Methodological Approaches. J Pure Appl Chem,72(8):1453-1470
    164.Tessier A, Campbell P G C. Conmaent on "Pitfalls of sequential extractions" by F. M. M. MOREL. Water Research,1991,25(1):115-117
    165.Tessier A. Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem,1979,51:844-851
    166.Theodoratos P, Papassiopi N, Xenidis A. Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion. J Hazard Mater,2002, B94:135-146
    167.Urasa I T, Macha S F. Speciation of heavy metals in soils, sediments, and sludge using DC-plasma a atomic emission spectrometry coupled with ion chromatograph. Inter J Environ Anal Chem,1996,64(2):83-95
    168.Ure A M. Single extraction schemes for soil analysis and related applications. Sci Total Environ,1996,178:3
    169.Van Cappellen P, Berner R A. Fluorapatite crystal-growth from modified seawater solutions. Geochim Cosmochim Ac,1991,55(5):1219-1234
    170. Van Hees P A W, Jones D L, Nyberg L, Holmstrom S J M, Godbold D L, Lundstrom U S. Modelling low molecular weight organic acid dynamics in forest soils. Soil Biol Biochem,2009,35(8):1015-1026
    171.Wang B L, Xie Z M, Chen J J, Jiang J T and Su Q F. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil. J Environ Sci,2008,20:1109-1117
    172. Wang B L, Xie Z M, Chen J J, Jiang J T, Su Q F. Effects of field application of phosphate fertilizers on the availability and uptake of lead, zinc and cadmium by cabbage (Brassica chinensis L.) in a mining tailing contaminated soil. J Environ Sci,2008,20:1109-1117
    173.Wang Y P, Shi J Y, Wang H, et al. The influence of soil heavy metals pollution soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotox Environ Safe,2007,67:75-81
    174.Wei S, Da S T, Jaime A and Zhou Q. Agro-improving method of Phytoextracting heavy metal contaminated soil. J Hazardous Mater,2008,150(3):662-668
    175.Wu P X, Liao Z W. Study on structural characteristics of pillared clay modified phosphate fertilizers and its increase efficiency mechanism. J Zhejiang University Sci B,2005,6 (3):195-201
    176.Wu W T, Liou S H, Lin K J, Liu T E, Liu S H, Chen C Y, Sung F C, Wu T N. Changing blood lead levels and DNA damage (comet assay) among immigrant women in Taiwan. Sci Total Environ,2009,407:5931-5936
    177.Xu R K, Zhu Y G, Chittleborough D. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids. J Environ Sci,2004, 16(1):5-8
    178.Zhang P, Ryan J A. Formation of pyromorphite in anglesite-hydroxyapatite suspensions under varying pH conditions. Environ Sci Technol,1998,32: 3318-3324
    179.Zhang W F, Ma W Q, Ji Y X, Fan M S, Oenema O, Zhang F S. Efficiency, economics, and environmental implications of phosphorus resource use and the fertilizer industry in China. Nutr Cycl Agroecosyst,2008,80:131-144
    180.Zhu Y G, Chen S B, Yang J C. Effects of soil amendments on lead uptake by two vegetable crops from a lead-contaminated soil from Anhui. China. Environ Int, 2004,30:351-356
    181.Zhu Y N, Zhang X H, Chen Y D, Xie Q L, Lan J K, Qian M F, He N,2009. A comparative study on the dissolution and solubility of hydroxylapatite fluorapatite at 25℃ and 45℃. Chem Geol,268,89-96
    182.Zorpas A A, Constantinides T, Vlyssides A G. Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresource Technol, 2000,72:113-119

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700