芝麻香型白酒酿造微生物多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芝麻香型白酒是近几十年来才发展起来的新香型,该香型白酒风格突出、自成一格。尽管目前对工艺技术特点和香味成分的基本特征有了初步认识,但其微生物的消长规律及香味特征成分的形成机理,以及工艺技术的进一步改进,仍需要进一步的探索。因此,研究芝麻香型白酒高温大曲、堆积过程及窖泥中微生物,有利于揭示芝麻香型白酒香味的形成机制。本论文综合运用PLFA、DGGE等免培养方法研究了芝麻香型白酒高温大曲、堆积过程和窖泥微生物的生物量及其群落结构特征。通过鉴定和评价芝麻香型白酒麸曲中的酵母菌,为提高芝麻香型白酒品质和产量的稳定性提供参考。
     PLFAs谱图分析表明偶数碳不饱和脂肪酸和直链饱和脂肪酸是高温大曲和整个堆积过程的优势脂肪酸,而不同窖泥中的优势PLFAs存在差异。同时,细菌是高温大曲、整个堆积过程及窖泥中的优势微生物种群,G-是细菌中的优势菌群。高温大曲的细菌生物量和真菌生物量较接近,制曲温度较低时细菌/真菌生物量的比值变小。但是代表细菌特征性脂肪酸的种类较多,真菌的种类较少。在整个堆积过程,PLFAs的种类和数量呈现一定的变化规律,可以反映微生物群落结构的变化。堆积的时间和温度对生物量的含量影响显著。厌氧菌和好氧菌在不同的样品中差异较大。
     通过PCR-DGGE图谱分析高温大曲、堆积过程及窖泥细菌群落结构,并对目的条带进行测序确定其优势细菌的种属信息。结果表明,芝麻香型白酒高温大曲主要由Thermoactinomyces, Staphylococcu, Lactobacillus, Solitalea, Pediococcus,Acinetobacter构成。其中,Staphylococcus xylosus和Thermoactinomyces是细菌微生物中的优势菌。同时,制曲温度对大曲微生物的多样性影响显著,温度越高,多样性越低。整个堆积过程的优势细菌为Thermoactinomyces和Bacillus,Lactobacillus和Acinetobacter是堆积后期的次优势菌。同时,堆积后期微生物的多样性明显高于前期。而窖泥微生物结构简单,新窖泥和老窖泥微生物的组成存在差异。
     麸曲含有的5种酵母菌,经过分子鉴定分别属于Wickerhamomyces酵母属和酿酒酵母属。利用PCR-SSCP谱图分析酵母菌的类别表明,PCR扩增区域的保守性及片段大小对结果影响较大。通过生长曲线和发酵力的比较发现,5种酵母中的酿酒酵母生长迅速,发酵力较强。
The Sesame-flavor Liquor is a new flavor which has been only developed inrecently years. The flavor style prominent, unique flavor, and the basic of technologycharacteristics and flavor components have got an initial understanding, but themicrobial variation, the formation mechanism of characteristic flavor and furtherimprovement in technology need further exploration. So it is helpful to reveal theformation mechanism of the Sesame-flavor Liquor through analysis of microorganismin high temperature Daqu, stacking fermentation and Pit Mud. In this paper, wecomprehensively used two types of culture-independent methods as PLFA and DGGEtechnology to research the biomass and the microorganism’s community structuralfeatures of high temperature Daqu, stacking fermentation and Pit Mud. Throughidentification and evaluation5yeasts of bran koji of the Sesame-flavor Liquor,References would be provided to improve the quality and yield.
     PLFA profiles showed Straight chain saturated fatty acids and even-carbonunsaturated fatty acids were the predominant PLFAs in high temperature Daqu andstacking fermentation, but they have differences in different Pit Mud. Besides, thepredominant microorganism was bacteria and G-was the predominant bacteria in hightemperature Daqu, stacking fermentation and Pit Mud. Bacterial and fungal biomassof different high temperature Daqu were almost the same, the ratio of bacterial/fungalbiomass was smaller when the producing temperature of high temperature Daqu islower. There were more types of bacteria PLFAs and fewer types of fungal PLFAs.The types and numbers of microorganisms PLFAs show certain variation rules duringstacking fermentation can reflect the changes in microbial community structure. Theimpacts of stack temperature and time on microbial biomass were obvious. Theanaerobic and aerobic bacteria are quite different in different samples.
     Bacteria community structure of high temperature Daqu, stacking fermentation andPit Mud were investigated using PCR-DGGE. The sequencing ofDGGE-distinguished bands was proceeded to obtain the dominant bacterialpopulation information. The profile of DGGE showed that bacteria community structure of high temperature Daqu was composed of Thermoactinomyces,Staphylococcus, Lactobacillus, Solitalea, Pediococcus, Acinetobacter. And thedominant bacteria were Staphylococcus xylosus and Thermoactinomyces. The hightemperature Daqu microbial diversity decreased as the craftwork temperature of Daquincreasing. The dominant bacteria were Thermoactinomyces and Bacillus duringstacking fermentation, the second dominant bacteria were Lactobacillus andAcinetobacter in the late stage of stacking fermentation. The microbial diversity in thelate stage of stacking fermentation was higher than the early stage. The bacterialcommunity structure of Pit Mud was simple, and it has differences between new PitMud and old Pit Mud.
     The5yeasts of bran koji belong to Wickerhamomyces and Saccharomycescerevisiae after molecular identification. PCR-SSCP fingerprinting analysis of thetype of yeasts showed the conserved and size of PCR amplified region has greaterimpact on results. Comparison of fermentation capacity and the growth curve of5yeasts indicated Saccharomyces cerevisiae growth rapidly and fermentation capacitywas higher.
引文
[1]戚元民.对芝麻香型白酒生产的认识[J].酿酒科技,2009(8):140-142.
    [2]黄业立,张彬,武金华.试论芝麻香型白酒[J].酿酒科技,2008(10):116-119.
    [3]周恒刚.酱香型白酒生产工艺的堆积[J].酿酒科技,1999(001):15-17.
    [4]唐现洪,钟雨,谢旭,等.高温堆积发酵工艺在浓香型双沟大曲酒生产中的应用[J].酿酒科技,2006(8):59-62.
    [5]貟娟莉,颜霞,朱博,等.太白酒发酵过程中酒醅微生物区系分析[J].酿酒科技,2007(12):40-42.
    [6]廖永红,沈晗,石文娟,等.曲中产香酵母分离及Biolog系统鉴定分析[J].中国酿造,2009(012):12-16.
    [7]Fasoli S M M R L. Bacterial composition of commercial probiotic products as evaluated byPCR-DGGE analysis [Z].2003,82:59-70.
    [8]Hunter-Cevera J C. The value of microbial diversity[J]. Current Opinion in Microbiology,1998,1(3):278-285.
    [9]刘宏媛,李光辉,罗惠波,等.大曲中酵母菌的分离及Biolog微生物系统分析鉴定[J].食品与发酵科技,2011,47(001):1-3.
    [10]Garland J L, Mills A L. Classification and characterization of heterotrophic microbialcommunities on the basis of patterns of community-level sole-carbon-source utilization [J].Applied and Environmental Microbiology,1991,57(8):2351-2359.
    [11]Zak J C, Willig M R, Moorhead D L, et al. Functional diversity of microbial communities: aquantitative approach [J]. Soil Biology and Biochemistry,1994,26(9):1101-1108.
    [12]Werker A G, Becker J, Huitema C. Assessment of activated sludge microbial community analysisin full-scale biological wastewater treatment plants using patterns of fatty acid isopropyl esters(FAPEs)[J]. Water research,2003,37(9):2162-2172.
    [13]White D C, Davis W M, Nickels J S, et al. Determination of the sedimentary microbial biomassby extractible lipid phosphate [J]. Oecologia,1979,40(1):51-62.
    [14]Pinkart H C, Ringelberg D B, Piceno Y M, et al. Biochemical approaches to biomassmeasurements and community structure analysis [J]. Manual of environmental microbiology,2002,2:101-113.
    [15]车玉伶,王慧,胡洪营.微生物群落结构和多样性解析技术研究进展[J].生态环境,2005,001(14):127-133.
    [16]Jany J L, Barbier G. Culture-independent methods for identifying microbial communities incheese [J]. Food microbiology,2008,25(7):839-848.
    [17]Wang H Y, Zhang X J, Zhao L P, et al. Analysis and comparison of the bacterial community infermented grains during the fermentation for two different styles of Chinese liquor [J]. Journal ofindustrial microbiology&biotechnology,2008,35(6):603-609.
    [18]Butler M J, Day A W. Fungal melanins: a review[J]. Canadian Journal of Microbiology,1998,44(12):1115-1136.
    [19]Kirk J L, Beaudette L A, Hart M, et al. Methods of studying soil microbial diversity [J]. Journalof microbiological methods,2004,58(2):169-188.
    [20]Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations bydenaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genescoding for16S rRNA.[J]. Applied and environmental microbiology,1993,59(3):695-700.
    [21]Lee J S, Heo G Y, Lee J W, et al. Analysis of kimchi microflora using denaturing gradient gelelectrophoresis[J]. International journal of food microbiology,2005,102(2):143-150.
    [22]Cocolin L, Bisson L F, Mills D A. Direct profiling of the yeast dynamics in wine fermentations[J].FEMS Microbiology Letters,2000,189(1):81-87.
    [23]Zhao J, Dai X, Liu X, et al. Changes in microbial community during Chinese traditional soybeanpaste fermentation[J]. International Journal of Food Science&Technology,2009,44(12):2526-2530.
    [24]Gala E, Landi S, Solieri L, et al. Diversity of lactic acid bacteria population in ripened ParmigianoReggiano cheese[J]. International journal of food microbiology,2008,125(3):347-351.
    [25]Liu W T, Marsh T L, Cheng H, et al. Characterization of microbial diversity by determiningterminal restriction fragment length polymorphisms of genes encoding16S rRNA.[J]. Appliedand environmental microbiology,1997,63(11):4516-4522.
    [26]郭艳,张进良.堆肥微生物的分子生物学研究进展[J].中国农学通报,2010,26(16):170-174.
    [27]AG T. Separation of DNA strands facilitates detection of point mutations by PCR-SSCP[J].BioTechniques,1997,22(4):604-606.
    [28]Solaiman Z, Marschner P. DGGE and RISA protocols for microbial community analysis in soil[J]. Advanced techniques in soil microbiology,2007:167-180.
    [29]Borneman J, Triplett E W. Molecular microbial diversity in soils from eastern Amazonia:evidence for unusual microorganisms and microbial population shifts associated withdeforestation[J]. Applied and Environmental Microbiology,1997,63(7):2647-2653.
    [30]Fisher M M, Triplett E W. Automated approach for ribosomal intergenic spacer analysis ofmicrobial diversity and its application to freshwater bacterial communities[J]. Applied andEnvironmental Microbiology,1999,65(10):4630-4636.
    [31]Brown M V, Schwalbach M S, Hewson I, et al. Coupling16S‐ITS rDNA clone libraries andautomated ribosomal intergenic spacer analysis to show marine microbial diversity: developmentand application to a time series[J]. Environmental microbiology,2005,7(9):1466-1479.
    [32]Ranjard L, Poly F, Lata J C, et al. Characterization of bacterial and fungal soil communities byautomated ribosomal intergenic spacer analysis fingerprints: biological and methodologicalvariability[J]. Applied and Environmental Microbiology,2001,67(10):4479-4487.
    [33]Kent A D, Triplett E W. Microbial communities and their interactions in soil and rhizosphereecosystems[J]. Annual Reviews in Microbiology,2002,56(1):211-236.
    [34]Welkie D G, Stevenson D M, Weimer P J. ARISA analysis of ruminal bacterial communitydynamics in lactating dairy cows during the feeding cycle[J]. Ecology/environmentalmicrobiology,2010,16(2):94-100.
    [35]Arteau M, Labrie S, Roy D. Terminal-restriction fragment length polymorphism and automatedribosomal intergenic spacer analysis profiling of fungal communities in Camembert cheese[J].International Dairy Journal,2010,20(8):545-554.
    [36]Sapp M, Wichels A, Wiltshire K H, et al. Bacterial community dynamics during the winter–spring transition in the North Sea[J]. FEMS microbiology ecology,2007,59(3):622-637.
    [37]Fierer N, Jackson J A, Vilgalys R, et al. Assessment of soil microbial community structure by useof taxon-specific quantitative PCR assays[J]. Applied and Environmental Microbiology,2005,71(7):4117-4120.
    [38]Wawrik B, Paul J H, Tabita F R. Real-time PCR quantification of rbcL (ribulose-1,5-bisphosphate carboxylase/oxygenase) mRNA in diatoms and pelagophytes[J]. Applied andenvironmental microbiology,2002,68(8):3771-3779.
    [39]Schena M, Heller R A, Thenault T P, et al. Microarrays: biotechnology's discovery platform forfunctional genomics[J]. Trends in Biotechnology,1998,16(7):301-306.
    [40]Small J, Call D R, Brockman F J, et al. Direct detection of16S rRNA in soil extracts by usingoligonucleotide microarrays[J]. Applied and Environmental Microbiology,2001,67(10):4708-4716.
    [41]Liu B R, Jia G M, Chen J, et al. A Review of Methods for Studying Microbial Diversity inSoils1[J]. Pedosphere,2006,16(1):18-24.
    [42]胡佳.利用免培养法对浓香型白酒曲药细菌菌群的解析研究[J].四川大学硕士论文,2007.
    [43]孟镇,熊正河,钟其顶,等.应用PCR-DGGE技术解析白酒大曲细菌群落结构[J].食品与发酵工业,2010(010):159-162.
    [44]罗惠波黄治国,李浩,张强,等.浓香型大曲原核微生物群落的PCR-SSCP解析[J].微生物学通报,2009,36(9):1363-1367.
    [45]Li X R, Ma E B, Yan L Z, et al. Bacterial and fungal diversity in the traditional Chinese liquorfermentation process[J]. International Journal of Food Microbiology,2011,146:31-37.
    [46]陆健,曹钰,方华,等.绍兴黄酒麦曲中真菌的初步研究[J].食品与生物技术学报,2008,27(2):78-83.
    [47]马荣山,刘婷,郭威.麸曲酱香酒醅中酵母菌的分离,筛选及应用[J].中国酿造,2008(001):17-18.
    [48]Wang C, Shi D, Gong G. Microorganisms in Daqu: a starter culture of Chinese Maotai-flavorliquor[J]. World Journal of Microbiology and Biotechnology,2008,24(10):2183-2190.
    [49]李健容,蔡爱群.民间传统酒曲主要微生物的分离及鉴定[J].酿酒科技,2007,5:111-115.
    [50]汪江波,张晶,方尚玲,等.稻花香包包曲制曲过程微生物区系动态变化研究[J].酿酒,2010(002):35-37.
    [51]赵东,牛广杰,彭志云,等.五粮液包包曲发酵过程中微生物区系变化及其理化因子动态演变的研究[J].酿酒,2009(006):38-40.
    [52]李浩,罗惠波,侯华,等.采用BIOLOG微平板技术研究浓香型大曲微生物多样性[J].酿酒,2009(001):54-56.
    [53]罗惠波,李浩,黄治国,等. BIOLOG微生物鉴定系统在大曲微生物多样性研究中的应用初探[J].中国酿造,2009(004):92-94.
    [54]徐占成,王加辉.代谢指纹技术在曲药分析中的应用[J].酿酒,2002,29(005):72-74.
    [55]Shi J H, Xiao Y P, Li X R, et al. Analyses of microbial consortia in the starter of Fen Liquor[J].Letters in applied microbiology,2009,48(4):478-485.
    [56]高亦豹,王海燕,徐岩.利用PCR-DGGE未培养技术对中国白酒高温和中温大曲细菌群落结构的分析[J].微生物学通报,2010,37(7):999-1004.
    [57]Wang H Y, Gao Y B, Fan Q W, et al. Characterization and comparison of microbial communityof different typical Chinese liquor Daqus by PCR–DGGE[J]. Letters in Applied Microbiology,2011,2(53):134-140.
    [58]Peters S, Koschinsky S, Schwieger F, et al. Succession of microbial communities during hotcomposting as detected by PCR-single-strand-conformation polymorphism-based genetic profilesof small-subunit rRNA genes[J]. Applied and Environmental Microbiology,2000,66(3):930-936.
    [59]罗惠波,黄治国,李浩,等.浓香型大曲真核微生物群落的PCR—SSCP解析[J].中国酿造,2009(008):42-45.
    [60]Zhang W, Qiao Z, Shigematsu T, et al. Analysis of the bacterial community in Zaopei duringproduction of Chinese Luzhou-flavor liquor[J]. Journal of the Institute of Brewing,2005,111(2):215-222.
    [61]Zhang W, Qiao Z, Tang Y, et al. Analysis of the fungal community in Zaopei during theproduction of Chinese Luzhou-flavour liquor[J]. Journal of the Institute of Brewing,2007,113(1):21-27.
    [62]王海燕,张晓君,徐岩,等.浓香型和芝麻香型白酒酒醅中微生物菌群的研究[J].酿酒科技,2008,2:87-88.
    [63]施思,张文学,邓宇,等.用DGGE技术构建白酒酿造微生物指纹图谱的初步研究[J].中国酿造,2010(001):118-120.
    [64]施思,邓宇,李波,等. DGGE法在盛夏习酒酒醅的微生物菌群结构解析中的应用[J].酿酒科技,2010(003):51-53.
    [65]王化斌.泥窖在浓香型大曲白酒生产中的作用[J].酿酒科技,2007(7):65-67.
    [66]胡承,应鸿,许德富,等.窖泥微生物群落的研究及其应用[J].酿酒科技,2005(3):34-38.
    [67]汪江波,万朕,李莉,等.稻花香窖泥微生物群落变化研究[J].酿酒科技,2010(011):36-39.
    [68]岳元媛,张文学,刘霞,等.浓香型白酒窖泥中兼性厌氧细菌的分离鉴定[J].微生物学通报,2007,34(2):251-255.
    [69]罗惠波,甄攀,黄治国.浓香型白酒窖池细菌群落[J].微生物学通报,2010,37(11):1621-1627.
    [70]黄治国,甄攀,罗惠波.浓香型白酒窖池古菌群落研究[J].西南大学学报:自然科学版,2011(12):91-96.
    [71]郑佳,张良,沈才洪.浓香型白酒窖池微生物群落结构特征[J].应用生态学报,2011,22(4):1020-1026.
    [72]乔宗伟,张文学,张丽莺,等.浓香型白酒发酵过程中酒醅的微生物区系分析[J].酿酒,2005,32(001):18-22.
    [73]唐玉明,姚万春,任道群,等.酱香型白酒窖内发酵过程中糟醅的微生物分析[J].酿酒科技,2007(012):50-53.
    [74]吴飞.浓香型白酒窖池发酵过程中酵母类微生物的分析[J].四川大学硕士论文,2006.
    [75]周晓杨,肖仁普.分子生物学方法在微生物生态学研究中的应用[J].重庆文理学院学报:自然科学版,2007,26(4):57-60.
    [76]许伟,张晓君,李崎,等.微生物分子生态学技术在传统发酵食品行业中的应用研究进展[J].食品科学,2007,28(12):521-525.
    [77]Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification[J]. Canadianjournal of biochemistry and physiology,1959,37(8):911-917.
    [78]沈怡方.白酒生产技术全书[M].中国轻工业出版社,1998.
    [79]Frostegard A, Baath E, Tunlio A. Shifts in the structure of soil microbial communities in limedforests as revealed by phospholipid fatty acid analysis[J]. Soil Biology and Biochemistry,1993,25(6):723-730.
    [80]Vestal J R, White D C. Lipid analysis in microbial ecology[J]. Bioscience,1989,39(8):535-541.
    [81]White D C, Stair J O, Ringelberg D B. Quantitative comparisons ofin situ microbial biodiversityby signature biomarker analysis[J]. Journal of Industrial Microbiology&Biotechnology,1996,17(3):185-196.
    [82]Fierer N, Schimel J P, Holden P A. Variations in microbial community composition through twosoil depth profiles[J]. Soil Biology and Biochemistry,2003,35(1):167-176.
    [83]姚万春,唐玉明,任道群,等.泸州老窖国窖曲曲坯层次间微生物差异研究[J].酿酒,2005,32(005):35-37.
    [84]Wilkinson S C, Anderson J M, Scardelis S P, et al. PLFA profiles of microbial communities indecomposing conifer litters subject to moisture stress[J]. Soil Biology and Biochemistry,2002,34(2):189-200.
    [85]信春晖.芝麻香酒典型风格的形成[J].酿酒科技,2006(6):104-105.
    [86]崔利.酱香型白酒中吡嗪类化合物的生成途径及环节[J].酿酒,2007,34(005):39-40.
    [87]Green C T, Scow K M. Analysis of phospholipid fatty acids (PLFA) to characterize microbialcommunities in aquifers[J]. Hydrogeology Journal,2000,8(1):126-141.
    [88]Findlay R H, Dobbs F C. Quantitative description of microbial communities using lipidanalysis[J]. Handbook of methods in aquatic microbial ecology,1993:271-284.
    [89]刘晓光,谢和,屈直.酱香型白酒风味物质的形成与微生物关系的研究现状与进展[J].贵州农业科学,2007,35(2):131-134.
    [90]来安贵,赵德义,曹建全.芝麻香型白酒的发展历史,现状及发展趋势[J].酿酒,2009(001):91-93.
    [91]秦臻,郑佳,彭昱雯,等.生物标记法剖析传统酿造用大曲微生物群落结构[J].食品科学,2011,32(11):165-170.
    [92]蔡鹏飞.芝麻香型白酒风味物质产生的两条途径[J].酿酒,2010(005):46-47.
    [93]Arteau M, Labrie S, Roy D. Terminal-restriction fragment length polymorphism and automatedribosomal intergenic spacer analysis profiling of fungal communities in Camembert cheese[J].International Dairy Journal,2010,20(8):545-554.
    [94]Wang Y P, Li Q B, Shi J Y, et al. Assessment of microbial activity and bacterial communitycomposition in the rhizosphere of a copper accumulator and a non-accumulator[J]. Soil Biologyand Biochemistry,2008,40(5):1167-1177.
    [95]明红梅,刘宇驰,卓毓崇,等.制曲温度对酱香型大曲质量的影响[J].中国酿造,2010(007):157-160.
    [96]Yoon J H, Park Y H. Phylogenetic analysis of the genus Thermoactinomyces based on16S rDNAsequences.[J]. International journal of systematic and evolutionary microbiology,2000,50(3):1081-1086.
    [97]谢玉球,钟雨,谢旭,等.乳酸菌在固态法白酒生产中的地位与作用[J].酿酒科技,2008(011):83-86.
    [98]刘莉萌,张斌,东秀珠,等.浓香型白酒窖池中片球菌的分离与鉴定[J].酿酒科技,2007,152(2):22-25.
    [99]王月梅,赵迎路.芽孢杆菌对汾酒风味的影响[J].酿酒科技,2002(005):31-32.
    [100]明红梅,刘宇驰,卓毓崇,等.制曲温度对酱香型大曲质量的影响[J].中国酿造,2010(007):157-160.
    [101]刘洋.对中高温大曲的认识[J].酿酒,2010(002):87.
    [102]Kurtzman C P, Robnett C J. Identification and phylogeny of ascomycetous yeasts from analysis ofnuclear large subunit (26S) ribosomal DNA partial sequences[J]. Antonie van Leeuwenhoek,1998,73(4):331-371.
    [103]Narisawa N, Haruta S, Arai H, et al. Coexistence of antibiotic-producing and antibiotic-sensitivebacteria in biofilms is mediated by resistant bacteria[J]. Applied and environmental microbiology,2008,74(12):3887-3894.
    [104]宋维娟,程池. PCR-SSCP技术在假丝酵母属菌种鉴别中的应用[J].微生物学通报,2009,36(6):918-922.
    [105]梁宏伟,王长忠,李忠,等.聚丙烯酰胺凝胶快速,高效银染方法的建立[J].遗传,2008,30(10):1379-1382.
    [106]Yue-xia W. Research Progress in Food-borne Salmonella spp. Detection by PCR Technique [J].Journal of Anhui Agricultural Sciences,2009,24:11435-11436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700