不同给水和施肥条件对土壤微生物多样性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合理的水肥条件是保持土壤健康的主要因素之一。水分和养分是密不可分的,合理的水肥交互作用促进作物生长,有效地提高产量。土壤微生物可以敏感地指示土壤环境条件变化,其活性和群落结构可以反映土壤质量。为探讨农田生态系统不同水肥条件下土壤微生物多样性变化,采用微生物平板培养、BIOLOG及PLFAs3种试验方法,研究了中国科学院海伦农业生态试验站长期定位试验区精确水平衡场不同给水和施肥的土壤微生物数量、活性和多样性差异及动态变化。
     微生物数量结果研究表明,在农田生态系统中,施肥有利于土壤中细菌、真菌和放线菌三大类群的积累,其中有机肥的施用效果最为显著,适宜的给水措施促进细菌、真菌和放线菌三大菌群的生长。优势真菌数量的研究结果显示,施肥促进镰孢菌和木霉菌数量的增加,适宜的给水措施利于镰孢菌的代谢活动。
     土壤细菌活性和代谢功能多样性结果表明,在大豆鼓粒期,施肥提高土壤微生物丰富度、功能多样性和均匀性,其中有机肥的施用效果最为显著,适宜的土壤水分状况利于土壤功能的多样性和丰富度。
     土壤微生物功能多样性结果表明,不施肥区土壤中真菌特征脂肪酸含量最高,化肥配施有机肥最低;细菌特征脂肪酸以不施肥区土壤最低,化肥配施有机肥最高;化肥配施有机肥区土壤处于乏氧的土壤环境状况之中。不同的灌溉方式下,干旱区土壤的真菌特征脂肪酸最低,自然水区次之,足水区最高;细菌特征脂肪酸自然水区和充足水区土壤中相对丰度相似,干旱区稍低。
     土壤功能细菌研究结果表明,施用无机肥条件下自然降水使氨氧化细菌数量高于充足水和干旱处理,干旱使好气性自生固氮菌和反硝化细菌数量高于自然降水和充足水,在自然降水条件不同施肥使功能性细菌发生变化,施肥促进三种功能菌的生长,其中,有机肥配施化肥的效果最为显著。反硝化细菌各处理数量相近,有机肥数量稍高。
Reasonable water and fertilizer condition is one of the health basis fators to soil, it is inserparable, reasonable water and fertilizer condition enhances the output effectively. The microorganism in soil instructs sensitively the soil environment condition, the activeness and the community structure of the microbial may reflect the quality of the soil.In order to discuss the variations of the soil microbial diversity under different water and ferilizer conditions, three kinds of test methods including microbial plate culture、BIOLOG and PLFAs were applied to study the differences and dynamic of soil microbial quantity and activity in a long-term localization field test in Hailun agroecological experimental station, Chinese Academy of Sciences.
     The study of the microbial quantity indicated that fertilizer was advantageous to the bacterium, the fungus and actinomyces, in which organic fertilizer was the most notable, suitable water condition promoted the growing of the bacterium, the fungus and actinomyces. The results of studying the quantity of superiority fungus showed that fertilizer promoted the quantity of the Trichoderma and Fusarium, suitable water condition benefited to the metabolism activity of Fusarium.
     The results of studying the microbial activity and metabolism function showed that fertilizer enhanced the abundance of microbial, the function multiplicity and the uniformity in soil, in which organic fertilizer was the most notable, suitable water condition benefited to the microbial multiplicity and the abundance in soil.
     The results of the microbial function multiple indicated that, the fungi characteristic fat acid was the highest in no fertilizer condition, organic fertilizer was the lowest; The bacterium characteristic fatty acid was the lowest in no fertilizer condition, organic fertilizer was the highest. In the different water conditions, the quantity of fungus characteristic fatty acid in drought water conditions was the lowest, the adequate water condition is the highest; The bacterium characteristic fatty acid was similar, the drought water condition was slightly lower.
     The results indicated that the number of ammonia-oxidizing bacteria of the natural water treatment was higher than the drought water and adequate treatment, the number of aerobic nitrogens-fixing bacteria and denitrifying bacteria of the drought water treatment was higher,fertilization promoted the growth of the three types of bacterial physiological groups, in which the application of manure with chemical fertilizer increased significantly, the number of denitrifying bacteria was similar, the bacteria number of chemical fertilizer with manure treatment was slightly higher.
引文
[1]王子龙,付强,姜秋香.土壤肥力综合评价研究进展.农业系统科学与综合研究,2007,23(4):15-18.
    [2]Kowalchuk GA,Buma DS,Boer WD,Klinkhamer PG,et al.Effects of above- ground plant species composition and diversity on the diversity of soil-borne microorganisms.Antonie Van Leeuwenhoek,81,509-520.
    [3]Jone W.D..Soil Heath as an Indicator of Sustainable Management.Agriculture Ecosystems & Environment.2002,88:107-110.
    [4]Findlay R H,Dobbs F C.Quantitative description of microbial communities using lipid analysis.Boca.Raton,FL 33431:Lewis Publ.,1993,271-284.
    [5]胡亚林,汪思龙,颜绍馗.影响土壤微生物活性与群落结构因素研究进展.土壤通报,2006,37(1):170-176.
    [6]Garland J.L.,Mills A.L..Classification and Characterization of Heterotrophic Microbial Communities on the basis of Patterns of Community -Level -Sole -Carbon -Source-Utilization.Applied and Enviromnental Microbiology.1991,57(8):2351 - 2359.
    [7]周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望.生物多样性,2007,15(3):306-311.
    [8]Alvey S,Yang CH,Buerkert A,et al.Ce-real/legume rotation effects on rhizosphere bacterial community structure in west African Soils.Biology and Fertility of Soils,37,73-82.
    [9]陈国相.微生物及其在农业中的应用.石家庄,河北人民出版社,1980,1-184.
    [10]胡正嘉.农业微生物学.北京,农业出版社,1982,1-94.
    [11]张薇,魏海雷,高洪文,等.土壤微生物多样性及其环境影响因子研究进展.生态学杂志.2005,24(1):48-52.
    [12]金剑,六晓冰,王光华等.水肥耦合对春小麦群体叶面积及产量的影响.吉林农业大学学报,2005,27(3):241-244.
    [13]张广涛,汪可欣,王丽学等.水肥耦合技术在辽宁地区农业可持续发展中的应用分析.安徽农业科学,2007,35(24):7531,7555.
    [14]乔云发,韩晓增,苗淑杰等.黑土区水肥耦合对大豆产量的影响.大豆通报,2007,1:25-27.
    [15]刘岳燕,姚槐应,黄昌勇.水分条件对水稻土微生物群落多样性及活性的影响.土壤学报,2006,43(5):818-834.
    [16]Mckinley V.L.,Peacook A.D.,White D.C..Microbial Community PLFA and PHB Responses to Ecosystem Restoration in Tallgrass Prairie Soils.Soil Biol.Biochem..2005, 37(10):1946-1958.
    [17]蒋静艳,汤伟,朱秋兰等.不同水分条件下不同土壤微生物类群产N2O量的初步研究.农业环境科学学报,2006,25(6):1535-1540.
    [18]Uhlirova E,Elhottova D,Triska J,et al.Physiology and microbial community structure in soil at extreme water content.Folia Microbio-logical,2005,50(2):161-166.
    [19]黄进勇,李春霞.土壤微生物多样性的主要影响因子及其效应.河南科技大学学报(农学版),2004,24(4):10-13.
    [20]Tiquia S.M.,Lloyd J.,Herms D.A.,et al..Effects of Mulching and Fertilizationon Soil Nutrients,Microbial Activity and Rhizosphere Bacterial Community Structure Determined by Analysis of T-RFLPs of PCR-amplified 16S rRNA Genes.Applied Soil Ecology.2002,21:31-48.
    [21]宋春雨,张兴义.不同施肥措施对黑土土壤水分及保水性的影响[J].农业系统科学与综合研究,2007,23(2):161-171.
    [22]Marsehner P,Kandeler E,Marsehner B.Structure and function of the soil micro bial community in a long-term fertilizer experiment.Soil Biology& Biochemist ry,2003,35:453461.
    [23]白震,张明,闫颖等.长期施用及有机肥对农田黑土PLFA的影响.浙江大学学报,2008,34(1):73-80.
    [24]李振高.小麦苗期根系分泌物对根际反硝化细菌的影响[J].土壤学报,1995,32(4):408-413.
    [25]王英,王爽,李伟群等.长期定位施肥对土壤微生物区系的影响.东北农业大学学报,2007,38(5):632-636.
    [26]王景伟,朱铁林,王海泽.水肥耦合对大豆生长发育的正交设计实验研究.大豆通报,2007,6:17-20.
    [27]李阜棣,胡正嘉.微生物学.北京,中国农业出版社,2000,4-301.
    [28]张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法.生态学报,2003,22(5):988-995.
    [29]Amann R I,Ludwig W,Schleifer K H.Phylogenetic identification and in situ detection of individual microbial cells without cultivation.Microbiological Reviews,59:143-169.
    [30]沈萍.微生物学.北京:科学出版社,2000:130-131.
    [31]郑华,欧阳志云,方治国等.BIOLOG在土壤微生物群落功能多样性研究中的应用.土壤学报,2004,41(3):456-461.
    [32]Haack S.K.,Garchow H.,Klug M.J.,et al..Analysis of Factors Affecting the Accuracy,Reproducibility and Interpretation of Microbial Community Carbon Source Utilization Patterns.Applied and Environmental Microbiology.1995,61:1458-1468.
    [33]席劲瑛,胡洪营,钱易.Biolog方法在环境微生物群落研究中的应用.微生物学报, 2003,43(1):139-141.
    [34]谢家仪,王永力.BIOLOG细菌自动鉴定系统的应用与研究.微生物学通报,1996,23(5):264-267.
    [35]王光华,金剑,徐美娜等.生防细菌BRF-1和BRF-2鉴定及生物学特征.中国生物防治.2007,23(1):49-54.
    [36]赵友福,魏亚东,高崇省等.利用BIOLOG鉴定系统快速鉴定菜豆萎蔫病菌的研究.植物病理学报,1997,27(2):139-144。
    [37]程池,李金霞,姚粟等.Biolog微生物自动鉴定系统在酿酒酵母鉴定中的应用.酿酒科技,2006,7:58-61.
    [38]金剑,王光华,陈雪丽等.Biolog-ECO解析不同大豆基因型R1期根际微生物群落功能多样性特征.大豆科学,2007,26(4):565-570.
    [39]Gladys Loranger-Merciris,Laure Barthes,Alexandra Gastine,et al..Rapid Effects of Plant Species Diversity and Identity on Soil Microbial Communities in Experimental Grassland Ecosystems.Soil Biology & Biochemistry.2006,38:2336- 2343.
    [40]CHANDER K,BROOKES P C.Synthesis of microbial biomass from added glucose in metal-contaminated and non-contaminated soils following repeated fumigation.Soil Biol Biochem,1992,24:613-614.
    [41]郁红艳,曾光明,习兴梅等.蔬菜秸秆废物堆肥化中细菌群落变化研究.微生物学报,2007,47(1):98-102.
    [42]Kaiser S K,Guckert J B,Gledhill D W.Comparison of activated sludge microbial communities using biologTM microplates.Water Science and Technology,1998,37(425):57-63.
    [43]白震,何红波,张威等.磷脂脂肪酸技术及其在土壤微生物研究中的应用.生态学报,2006,26(7):2387-2394.
    [44]Zelles L.Fatty acid pattems of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil:A review Biol.Fert Soils,1999,29:111-129.
    [45]Christopher T,Green K,Scow M,et al.Analysis of phospholipid fatty acids(PLFAs) to characterize microbial communities in aquifers.Hydrogeology J,2000,8:126-141.
    [46]陈振翔,于鑫,夏明芳等.磷脂脂肪酸分析方法在微生物生态学中的应用.生态学杂志,2005,24(7):828-832.
    [47]吴振斌,王亚芬,周巧红等.利用磷脂脂肪酸表征人工湿地微生物群落结构.中国环境科学,2006,26(6):737-741.
    [48]Bossio D A,Scow K M,Gunapala N,et al.Determinants of soil microbial communities:Effects of agricultural management,season,and soil type on phospholipid fatty acid profiles.Microbial Ecol.,1998,36:1-12.
    [49]白震,张旭东,何红波等.长期氮肥施用对农业黑土NLFA与PLFA特性的影响.土壤学报,2007,44(4):709-716.
    [50]Kieft T L,Ringelberg D B,White D C.Changes in Ester-linked phos-pholipid fatty acid profiles of subsurface bacteria during starvation and desiccation in a porous medium.Applied and Environmental Microbiology,1994,60(9):3292-3299.
    [51]文倩,林启美,赵小蓉等.北方农牧交错带林地、耕地和草地土壤微生物群落结构特征的PLFA分析.土壤学报,2008,45(2):321-327.
    [52]Brhme L,Langer U,Brhme F.Microbial biomass enzyme and microbial community structure in two European long-team field experiments.Agriculture,Ecosystems and Environment,2005,109(1-2):141-152.
    [53]Elsas J D,Duarte G F,Rosado A S,et al.Microbiological and mo-lecular biological methods monitoring microbial inoculants and their effects in the soil environment.Mcrobiol.Meth.,1998,32:133-154.
    [54]PalleroniNJ.Anton VanLeeuwenhoek,1997,72:3-19.
    [55]OmarNB,AmpeF.Appl Environ Microbiol,2000,66:3664-3673.
    [56]Lee D.H.,Zo Y.G.,Kim S.J..Nonradioactive Method to Study Genetic Profiles of Natural Bacterial Communities by PCR-Single-Strand-Conformation Polymorphis m.Appl Environ Microbiol..1996,62:3112-3120.
    [57]Muyzer G,De Waal E C,Uitterlinden A G.Profiling of complex microbial population by denaturing gradient gel electrophoresis anal-ysis of polymerase chain reaction - amp lifted genes encoding for 16SrRNA.Appl Environ.Microbiol.1993,59(3 ):695-700.
    [58]Stefan Weidner,Walter Arnold,Alfred Puhler.Diversity of Uncultured Microor ganisms Associated with the Seagrass Halophila stipulacea Estimated by Restriction Fragment length Polymorphism Analysis of PCR-Amplified 16S rRNA Genes.Applied and Environmental Microbiology.1996,62(3):766-771.
    [59]Kitts C L.Terminal restriction fragment pattem:a tool for comparing microbial communities and assessing community dynamics.Curr.Issues Intest Microbiol.,2001,2:17-25.
    [60]章家恩,蔡燕飞,高爱霞等.土壤微生物多样性实验研究方法概述.土壤,2004,36(4):346-350.
    [61]许光辉,郑洪元.土壤微生物分析手册[M].北京:农业出版社,1986:35-39.
    [62]Jone W.D..Soil Heath as an Indicator of Sustainable Management.Agriculture Ecosystems & Environment.2002,88:107-110.
    [63]Wang Y,Zhang YP.NH+4 adsorption in a Eum-Orthic Anthrosol at diferent solution/soil ratios and temperatures[J].Pedosphere,2004,14(2):253-257.
    [64]耿玉清,孙向阳.北京低山区森林土壤硝化和反硝化作用的研究.北京林业大学学报, 1999,2(1):38-43.
    [65]刘新晶,许艳丽,李春杰等.大豆轮作系统对土壤细菌生理菌群的影响.大豆科学,2007,26(5):721-727.
    [66]高美英.刘和.冀常军 覆盖对果园土壤氨化细菌数量年变化的影响[J]土壤通报.2000,31(6):273-274.
    [67]蒲一涛,钟毅沪.固氮菌和纤维素分解菌对固氮的影响[J].深圳大学学报,1999,16(4):61-65.
    [68]Rosch C,Mergel A,Bothe H.Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil[J].Appl Environ Microbiol,2002,68(8):3818-3829.
    [69]李振高.小麦苗期根系分泌物对根际反硝化细菌的影响[J].土壤学报,1995,32(4):408-413.
    [70]钟文辉,蔡祖聪,尹力初等.种植水稻和长期施用无机肥对红壤氨氧化细菌多样性和硝化作用的影响[J].土壤学报,2008,45(1):105-111.
    [71]王英,王爽,李伟群等.长期定位施肥对土壤微生物区系的影响.东北农业大学学报,2007,38(5):632-636.
    [72]于广武,许艳丽.大豆连作障碍机制研究初报.大豆科学,1993,12(3):237-243.
    [73]张明,白震,张威等.长期施肥对农田黑土r-K策略菌群的影响.生态学杂志,2007,
    [74]Hooper D.U.,Vitousek P.M..The Effects of Plant Composition and Diversity on Ecosystem Processes.Science.1997,277:1302-1305.
    [75]Bossio D A,Scow K M.Impact of carbon and flooding on soil microbial commtmities:phospholipid fattyacid profiles and substrate utilization patterns.Microbial Ecology,1998,35:265-278.
    [76]李世清,任书杰,李生秀.土壤微生物体氮的季节性变化及其与土壤水分和温度的关系.植物营养与肥料学报.2004,10(1):18-23.
    [77]Bravford D.The Identification of Fusarium Species.UK:InternationalMycological Institute,1993:1 - 119.
    [78]方中达.植病研究方法.北京,中国农业出版社,1996:1-427.
    [79]Boothc.The Genus Fusarium.UK(Kew) and USA(Surrey):Commonweahh Mycological Institute,1971:1-237.
    [80]Howell C R,Hanson L E,Stipanovic R D,et al.Induction of terpenoid synthesis in cotton roots and control of Rhi-zoctonia solani by seed treatment with Trichoderm a virens.Phytopathology,2000,90:248-252.
    [81]梁志远,魏宝阳,魏林等.哈茨木霉在水稻体内的定殖及对水稻生理生化特性的影响.湖南农业科学,2008,(4):51-53.
    [82]张翔,朱洪,孙春河等.长期施肥对土壤微生物和腐殖质组分的影响.华北农学 报.1998,13(2):87-92.
    [83]De Fede,et al.Characterization of dilution enrichment cultures obtained from sizefractionated soil bacteria by BIOLOGcommu-nity-level physiological profiles and restriction analysis of 16SrRNA genes.Soil Biology and Biochemistry,2001,33(11):1555-1562.
    [84]徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89-95.
    [85]向光明,张颖,张旭东等.东北黑土在不同处理条件下微生物量与菌群多样性的变化.江西农业学报,2007,19(6):68-71.
    [86]Yang C M,Yang L Z,Yan T M.Chemical and microbiological paramoters of paddy soil quality as affected by different nutrient and water regimes Pedosphere,2005,15(3):369-378.
    [87]Zell L.Fatty acid patterns of phospholipids and lipopolysa-ccharids in the characterisation of microbial communities in soils:a reviews.Biol.Fertil.Soils.1999,29:111-129.
    [88]Findlay R H,Dobbs F C.Quantitative description of microbial communities using lipid analysis.Boca.Raton.,FL 3343 1:Lewis Pub1.,1993.271-284.
    [89]Wilkinson S G.Gram-negative bacteria.In:Ratledge C,Wilkinson S G.eds.Microbial Lipids.Vol.1.London:Academic Press.1988,299-488.
    [90]O'Leary W M,Wilkinson S G.Gram-negative bacteria.In:Ra-tledge C,Wilkinson S G.eds.Microbial Lipids,Vol 1.London:Academic Press.1988,117-202.
    [91]Zell L.Fatty acids patterns of microbial phospholipids and lipopolysa-ccharide.In:sahinner F,Ohiliunger R,Margesin R.eds.Methods in Soil Biology.London:Springer,1996,77-92.
    [92]Narasimmalu Rajendran,Osamu Matsuda,Norifumi lmamura,etal.Variation in microbial biomass and community structure in sediments of eutrophic bays as determined by phospholipidester-linked fatty acids.Applied and Environmental Microbiology,1992,58(2):562-571.
    [93]Vestal J R,White D C.Lipid analysis in microbial ecology.Bioscience,1989,39(8):535-541.
    [94]Vestal J R,White D C.Lipid analysis in microhial ecology:Quantitative approaches to the study of microbial communities Bio.Science.1989,39:535-541.
    [95]Richard D B,Walkerb L R.The measurement of soil fungal:Bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands.Bio 1.Fertil.Soil,1999,29(3):282-290.
    [96]张华勇,林先贵,李忠佩等.单季不施氮肥对太仓水稻土的微生物功能多样性的影响[J].土壤,2005,37(6):12-14.
    [97]王美兰,白福秋,陈重等.大豆需水规律与增产措施的研究.黑龙江水利科技,1998,(2):9-20.
    [98]钟文辉,蔡祖聪,尹力初等.种植水稻和长期施用无机肥对红壤氨氧化细菌多样性和硝化作用的影响.土壤学报,2008,45(1):105-111.
    [99]王淑彬,黄国勤.稻田水早轮作(第三年度)的土壤微生物效应.江苏农业大学学报,2002,24(3):320-323.
    [100]王春凤,朱洪德,冯丽娟.水分和施肥量对高蛋白大豆农艺性状及品质的效应.大豆科学,2008,27(2):233-237.
    [101]倪君蒂,李振国.淹水对大豆生长的影响[J].大豆科学,2000,19(1):42-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700