几种水溶性CdSe量子点在无机离子识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全文共分六章,列出如下:
     第一章:绪论。简述了QDs的光学性质,及QDs的合成与表面改性,并对QDs与离子的相互作用作了讨论。
     第二章:制备并表征了ODE和Ole体系中合成的CdSe QDs。
     第三章:制备并表征了水溶性的TEA修饰的CdSe QDs。该QDs荧光只有当Hg2+离子和I-离子共存时才被猝灭。这种独特的猝灭行为可用于高选择性和灵敏度测定Hg2+离子和I-离子。实验表明,I-离子是Hg2+离子与QDs之间的桥梁,QDs和Hg2+通过I-离子形成稳定的络合物,有效的电子转移发生在从QDs到Hg2+离子,从而导致QDs的荧光猝灭。
     第四章:利用一种简便的方法通过在碱性水溶液直接取代Ole配体,制备了水溶性β-CD修饰的CdSe QDs。所制备的QDs具有良好稳定性。多元酸根阴离子,包括磷酸根,亚硫酸根和碳酸根,影响QDs的荧光。其中,磷酸二氢根离子有最大的猝灭效果。对于多元酸根离子,二氢根离子>一氢根离子>>无氢根离子。在碱性pH值时,QDs的荧光被光活化。与阳离子的研究结果表明,Ag+离子,Hg2+离子和Co2+离子对QDs的荧光具有显著的猝灭作用。并探讨了机理。
     第五章:制备了稳定性极好的MSA修饰的CdSe QDs。Cd2+离子可以被QDs吸附在表面,从而增强QDs的荧光。Ag+和Cu2’离子可以猝灭QDs的荧光,其它离子对QDs的荧光影响较小。最后我们详细的讨论了荧光猝灭和增强的机理。
     第六章:本章总结了研究结果,并对未来的研究方向进行了推测。
The thesis consists of six chapters and is listed as follow:
     Chapter 1:Introduction. We include a brief discussion on the attractive optical properties of QDs and on the importance of adequate control of the synthesis and surface modification of the luminescent QDs, in order to achieve the desired selectivity and sensitivity for sensing target analytes.
     Chapter 2:The preparation and Characterization of highly luminescent CdSe QDs with a diameter form 3 to 7nm in a mixture of ODE and Ole.
     Chapter 3:Water-soluble luminescent CdSe quantum dots surface-modified with triethanolamine (TEA-CdSe-QDs) were prepared with high stability. The fluorescence of the TEA-CdSe-QDs was greatly quenched only when Hg2+ and I- coexisted in the solution, whereas addition of either Hg2+ or I- individually has no noticeable effect on the fluorescence emission. Such a unique quenching effect could be used for reciprocal recognition of mercury (Ⅱ) ions and/or iodide anions in aqueous solution with rather high selectivity and sensitivity. The adequate experiments showed that iodine (Ⅰ) anions could bridge between TEA-CdSe-QDs and Hg2+ to form a stable complex (QDs-I--Hg2+) and the following effective electron transfer from the QDs to the Hg2+ could be responsible for the fluorescence quenching of QDs.
     Chapter 4:A facile method was developed for the preparation of water soluble P-Cyclodextrin (β-CD)-modified CdSe QDs (β-CD-QDs) by directly replacing the Oleic acid ligands on the QDs surface withβ-CD in an alkaline aqueous solution. The as-prepared QDs show good stability in aqueous solution for several months. Oxoanions, including phosphoric acid ion, sulfite acid ion and carbonic acid ion, affect the fluorescence ofβ-CD-QDs. Among them, H2PO4- exhibited the largest quenching effect. For the polyprotic acids (HO)3AO, the effect of acidic anions on the fluorescence ofβ-CD-QDs was in the order monoanion (HO)2AO2>dianion (HO)AO32->>trianion AO43-. After photo activation for several days in the presence of anions at alkaline pH, theβ-CD-QDs exhibited strong fluorescence emission. The effect of various heavy and transition metal ions on the fluorescence properties of the P-CD-QDs was investigated further. It was found that Ag+, Hg2+ and Co2+ have significant quenching effect on the fluorescence of theβ-CD-QDs. The Stern-Volmer quenching constants increased in the order Hg2+     Chapter 5:CdSe QDs have been prepared and modified with MSA. They are water-soluble and biocompatible. To improve their fluorescence intensity and stability in water solution, Cd2+ was absorbed onto their surface. Based on the quench of fluorescence signals of the functionalized CdSe QDs by Ag+ ions and Cu2+ ions at pH 7.2, a simple, rapid and specific method for Ag+ and Cu2+ determination was proposed.
     Chapter 6:This chapter highlights the overlap between QD and analytical chemistry and speculates on future research directions.
引文
[1]F. H. Julien and A. Alexandrou, QUANTUM DOTS Controlling Artificial Atoms. Science,1998,282:1429-1430.
    [2]A. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science.1996,271,933-937.
    [3]J. M. delaFuente, Soledad Penades. Glyconanoparticles:Types, synthesis and applications in glycoscience, biomedicine and material science. Biochimica et Biophysica Acta 2006,1760:636-651.
    [4]M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Semiconductor Nanocrystals as Fluorescent Biological Labels. Science,1998,281:2013-2016.
    [5]L. Spanhel, M. Haase, H. Weller, A. Henglein, Photochemistry of colloidal semiconductors.20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc.,1987,109 (19):5649-5655.
    [6]P. V. Kamat and N. M. Dimitrijevic. Photoelectrochemistry in Semi conductor Particulate Systems.13. Surface Modification of CdS Semiconductor Colloids with Diethyldithiocarbamate. J. Phys. Chem.1989,93:4259-4263.
    [7]M. Y. Gao, S. Kirstein and H. Mohwald, A. L. Rogach, A. Kornowski, A. Eychmuller, and H. Weller. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. J. Phys. Chem. B 1998,102:8360-8363.
    [8]S. R. Cordero, P. J. Carson, R. A. Estabrook, G. F. Strouse, and S. K. Buratto. Photo-Activated Luminescence of CdSe Quantum Dot Monolayers. J. Phys. Chem. B 2000,104:12137-12142.
    [9]D. F. Underwood, T. Kippeny and S. J. Rosenthal. Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy. J. Phys. Chem. B 2001,105:436-443.
    [10]A. A. Bol and A. Meijerink, Factors influencing the luminescence quantum efficiency of nanocrystlline ZnS:Mn2+, Phys. Status Solidi B:Basic Res.2001, 224:291-294.
    [11]W. G. Becker and A. J. Bard. Photoluminescence and Photoinduced Oxygen Adsorption of Colloidal Zinc Sulfide Dispersions. J. Phys. Chem.1983, 87:4888-4893.
    [12]A. Henglein. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev.1989, 89,1861-1873.
    [13]A. Sengupta, B. Jiang, K. C. Mandal, J. Z. Zhang. Ultrafast Electronic Relaxation Dynamics in PbI2 Semiconductor Colloidal Nanoparticles:A Femtosecond Transient Absorption Study. J. Phys. Chem. B 1999,103: 3128-3137.
    [14]M. C. Brelle, C. L. Torres-Martinez, J. C. McNulty, R. K. Mehra, and J. Z. Zhang. Synthisis and characterization of CuxS nanopartices:Nature of infrared band and charge carrier dynamics. Pure Appl. Chem.2000,72:101-117.
    [15]M. C. Brelle, J. Z. Zhang, L. Nguyen, R. K. Mehra. Synthesis and Ultrafast Study of Cysteine- and Glutathione-Capped Ag2S Semiconductor Colloidal Nanoparticles. J. Phys. Chem. A 1999,103:10194-10201.
    [16]J. M. Costa-Fernandez, R. Pereiro, A. Sanz-Medel.The use of luminescent quantum dots for optical sensing. Trends in Analytical Chemistry,2006,25 (3): 207-218.
    [17]N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmulller, H. Weller. Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. J. Phys. Chem. B 2002,106: 7177-7185.
    [18]S. M. Stuczynski, J. G. Brennan and M. L. Steigerwald.Formation of Metal-chalcogen Bonds by the Reaction of Metal-alkyls with Silyl Chalcogenides. Inorganic Chemistry,1989,28(25):4431-4432.
    [19]C. B. Murray, D. J. Norris and M. G. Bawendi. Synthesis and Characterization of Nearly Monodisperse CdE(E=sulfur, selenium, tellurium) Semiconductor Nanocrystallites. J. Am. Chem. Soc.,1993,115(19):8706-8715.
    [20]Z. A. Peng and X. G. Peng. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc.,2001,123: 183-184.
    [21]W. W. Yu and X. G. Peng. Formation of High-quality CdS and other II-VI Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers. Angewandte Chemie-Internattonal Edittion,2002,41(13): 2368-2371.
    [22]Z. A. Peng and X. G. Peng. Nearly Monodisperse and Shape-Controlled CdSe Nanocrystals via Alternative Routes:Nucleation and Growth. J. Am. Chem. Soc.2002,124:3343-3353.22
    [23]Y. W. Lin, M. M. Hsieh, C. P. Liu and H. T. Chang, Photoassisted Synthesis of CdSe and Core-Shell CdSe/CdS Quantum Dots. Langmuir 2005,21: 728-734.
    [24]R. E. Bailey and S. M. Nie. Alloyed Semiconductor Quantum Dots:Tuning the Optical Properties without Changing the Particle Size. J. Am. Chem. Soc. 2003,125:7100-7106.
    [25]X. H. Zhong, M. Y. Han, Z. L. Dong, T. J. White and W. Knoll. Composition-Tunable ZnxCd1-xSe Nanocrystals with High Luminescence and Stability. J. Am. Chem. Soc.2003,125:8589-8594.
    [26]Y. T. Didenko and K. S. Suslick. Chemical Aerosol Flow Synthesis of Semiconductor Nanoparticles. J. Am. Chem. Soc.2005,127:12196-12197.
    [27]H. Nakamura, A. Tashiro, Y. Yamaguchi, M. Miyazaki, T. Watari, H. Shimizua and H. Maeda. Application of a microfluidic reaction system for CdSe nanocrystal preparation:their growth kinetics and photoluminescence analysis. LabChip,2004,4:237-240.
    [28]H. Z. Wang, X. Y. Li, M. Uehara, Y. Yamaguchi, H. Nakamura, M. Miyazaki, H. Shimizu and H. Maeda. Continuous synthesis of CdSe-ZnS composite nanoparticles in a microfluidic reactor. Chem. Commun.,2004, 48-49.
    [29]E. Bailey and S. M. Nie. Alloyed Semiconductor Quantum Dots:Tuning the Optical Properties without Changing the Particle Size. J. Am. Chem. Soc. 2003,125:7100-7106.
    [30]M. Bruchez, M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos, Semiconductor Nanocrystals as Fluorescent Biological Labels. Science,1998, 281:2013-2016.
    [31]W. C. W. Chan, S. M. Nie, Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science,1998,281:2016-2018
    [32]W. C. W. Chan, D. J. Maxwell, X.H. Gao, R.E. Bailey, M.Y. Han, S.M. Nie. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol.2002,13:40-46.
    [33]Y. F. Chen and Z. Rosenzweig. Luminescent CdS Quantum Dots as Selective Ion Probes. Anal. Chem.2002,74:5132-5138.
    [34]J. L. Chen, C. Q. Zhu. Functionalized cadmium sulfide quantum dots as fluorescence probe for silver ion determination. Anal. Chim. Acta,2005,546: 147-153.
    [35]W. Bae, R. Abdullah, R. K. Mehra, Cysteine-mediated synthesis of CdS bionanocrystallites. Chemosphere,1998,37:363-385.
    [36]R. Kho, L. Claudia, T. Martinez, R.K. Mehra. A Simple Colloidal Synthesis for Gram-Quantity Production of Water-Soluble ZnS Nanocrystal Powders. J. Colloid Interf. Sci.2000,227:561-566.
    [37]J. G. Liang, X. P. Ai, Z. K. He and D. W. Pang. Functionalized CdSe quantum dots as selective silver ion chemodosimeter. Analyst,2004,129: 619-622.
    [38]Zhu. Functionalized CdS quantum dots-based luminescence probe for detection of heavy and transition metal ions in aqueous solution. Spectrochimica Acta Part A 2008,69:1044-1052.
    [39]W. B. Chang, K. A. Li, General Handbook of Analytical Chemistry,1st ed., Peking University Publication, Beijing, China,1981.
    [40]K. M. Gattas-Asfura and R. M. Leblanc. Peptide-coated CdS quantum dots for the optical detection of copper(Ⅱ) and silver(Ⅰ). Chem. Commun.,2003, 2684-2685.
    [41]C. L. Wu and Y. B. Zhao. CdS quantum dots as fluorescence probes for the sensitive and selective detection of highly reactive HSe- ions in aqueous solution. Anal Bioanal Chem 2007,388:717-722.
    [42]P. V. Kamat, B. Patrick. Photophysics and photochemistry of quantized zinc oxide colloids. J Phys Chem 1992,96:6829-6834.
    [43]P. V. Kamat, N. M. Dimitrijevic, R. W. Fessenden. Photoelectrochemistry in Particulate Systems.6. Electron-Transfer of small CdS colloids in acetonitrile. J Phys Chem.1987,91:396-401.
    [44]A. V. Isarov, J. Chrysochoos. Surface Patterns Induced by Cu2+ Ions on BPEI/PAA Layer-by-Layer Assembly. Langmuir.1997,13:3142-3149.
    [45]X. C. Wu, A. M. Bittner, K. Kern. Synthesis, Structure and Optical Properties of CdS/dendrimers nanocomposites. J Phys Chem B.2005,109: 230-239.
    [46]B. B. Campos, M. Algarra, B. Alonso, C. M. Casado and J. C. G. Esteves da Silva. Mercury(Ⅱ) sensing based on the quenching of fluorescence of CdS-dendrimer nanocomposites. Analyst,2009,134:2447-2452.
    [47]H. Goncalves, C. Mendonca and J. C. G. Esteves da Silva, PARAFAC Analysis of the Quenching of EEM of Fluorescence of Glutathione Capped CdTe Quantum Dots by Pb(Ⅱ). J. Fluoresc.,2009,19:141-149.
    [48]J. M. M. Leitao, H. Goncalves, C. Mendonca and J. C. G. Esteves da Silva. Multiway chemometric decomposition of EEM of fluorescence of CdTe quantum dots obtained as function of pH. Anal. Chim. Acta,2008,628: 143-154.
    [49]S. J. Lai, X. J. Chang, C. Fu. Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (Ⅱ) ion determination. Microchim Acta 2009,165:39-44.
    [50]L. K. Leung, N. J. Komplin and A. B. Ellis, Dielectric properties of poly(tetra fluoroethylene) "whiskers". J. Phys. Chem.,1991,95:5918-5924.
    [51]W. J. Jin, J. M. Costa-Fernandez, R. Pereiro, A. Sanz-Medel. Surface-modified CdSe quantum dots as luminescent probes for cyanide determination. Analytica Chimica Acta 2004,522:1-8.
    [52]W. J. Jin, M. T. Fernandez-Arguelles, J. M. Costa-Fernandez, R. Pereiro and A. Sanz-Medel. Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem. Commun.,2005,883-885.
    [53]A.Y. Nazzal, L. Qu, X. Peng, M. Xiao, Photoactivated CdSe Nanocrystals as Nanosensors for Gases. Nano Lett.2003,3:819-822.
    [54]S. R. Cordero, P. J. Carson, R. A. Estabrook, G. F. Strouse, S. K. Buratto. Photo-Activated Luminescence of CdSe Quantum Dot Monolayers. J. Phys. Chem. B 2000,104:12137-12142.
    [55]W. Guo, J. J. Li, Y. A. Wang, X. G. Peng. Luminescent CdSe/CdS Core/Shell Nanocrystals in Dendron Boxes:Superior Chemical, Photochemical and Thermal Stability. J. Am. Chem. Soc.2003,125:3901-3909.
    [56]M. T. Fernandez-Arguelles, W. J. Jin, J. M. Costa-Fernandez, R. Pereiro, A. Sanz-Medel. Surface-modified CdSe quantum dots for the sensitive and selective determination of Cu (Ⅱ) in aqueous solutions by luminescent measurements. Analytica Chimica Acta 2005,549:20-25.
    [57]J. L. Chen, Y. C. Gao, Z. B. Xu, G. H. Wu, Y. C. Chen, C. Q. Zhu. A novel fluorescent array for mercury (Ⅱ) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Analytica Chimica Acta 2006,577:77-84.
    [58]M. F. Frasco, V. Vamvakaki, N. Chaniotakis. Porphyrin decorated CdSe quantum dots for direct fluorescent sensing of metal ions. J Nanopart Res
    [59]B. Tang, J. Y. Niu, C. G. Yu, L. H. Zhuo and J. C. Ge. Highly luminescent water-soluble CdTe nanowires as fluorescent probe to detect copper (Ⅱ). Chem. Commun.,2005,4184-4186.
    [60]J. Li, D. S. Bao, X. Hong, D. Li, J. H. Li, Y. B. Bai, T. J. Li. Luminescent CdTe quantum dots and nanorods as metal ion probes. Colloids and Surfaces A: Physicochem. Eng. Aspects 2005,257-258:267-271.
    [61]J. Wang, J. G. Liang, Z. H. Sheng, H. Y. Han. A novel strategy for selective detection of Ag+ based on the red-shift of emission wavelength of quantum dots. Microchim Acta 2009,167:281-287.
    [62]S. Ghosh, A. Priyam, S. C. Bhattacharya, A. Saha. Mechanistic Aspects of Quantum Dot Based Probing of Cu (Ⅱ) Ions:ROle of Dendrimer in Sensor Efficiency. J Fluoresc 2009,19:723-731.
    [63]J. H. Wang, H. Q. Wang, H. L. Zhang, X. Q. Li, X. F. Hua, Y. C. Cao, Z. L. Huang, Y. D. Zhao. Purification of denatured bovine serum albumin coated CdTe quantum dots for sensitive detection of silver (I) ions. Anal Bioanal Chem 2007,388:969-974.
    [64]Y. S. Xia, C. Cao, C. Q. Zhu. Two distinct photoluminescence responses of CdTe quantum dots to Ag (Ⅰ). Journal of Luminescence 2008,128:166-172
    [65]J. L. Duan, L. X. Song and J. H. Zhan. One-Pot Synthesis of Highly Luminescent CdTe Quantum Dots by Microwave Irradiation Reduction and Their Hg2+-Sensitive Properties. Nano Res 2009,2:61-68.
    [66]L. J. Zhang, C. L. Xu, B. X. Li. Simple and sensitive detection method for chromium (VI) in water using glutathione-capped CdTe quantum dots as fluorescent probes. Microchim Acta 2009,166:61-68.
    [67]P. Wu, Y. Li, and X. P. Yan. CdTe Quantum Dots (QDs) Based Kinetic Discrimination of Fe2+ and Fe3+, and CdTe QDs-Fenton Hybrid System for Sensitive Photoluminescent Detection of Fe2+. Anal. Chem.2009,81: 6252-6257.
    [68]H. Goncalves, C. Mendonca, J. C. G. Esteves da Silva. PARAFAC Analysis of the Quenching of EEM of Fluorescence of Glutathione Capped CdTe Quantum Dots by Pb (Ⅱ). J Fluoresc 2009,19:141-149.
    [69]B. Y. Han, J. P. Yuan and E. K. Wang. Sensitive and Selective Sensor for Biothiols in the Cell Based on the Recovered Fluorescence of the CdTe Quantum Dots-Hg (Ⅱ) System. Anal. Chem.2009,81:5569-5573.
    [70]L. Shang, L. H. Zhang and S. J. Dong. Turn-on fluorescent cyanide sensor based on copper ion-modified CdTe quantum dots. Analyst,2009,134:107-113.
    [71]H. Y. Xie, J. G. Liang, Z. L. Zhang, Y. Liu, Z. K. He, D. W. Pang. Luminescent CdSe-ZnS quantum dots as selective Cu2+ probe. Spectrochimica Acta Part A,2004,60:2527-2530.
    [72]A. Torrado, G. K. Walkup, B. Imperiali. Exploiting Polypeptide Motifs for the Design of Selective Cu (Ⅱ) Ion Chemosensors. J. Am. Chem. Soc.1998,120: 609-610.
    [73]C. Harford, B. Sarkar. Amino Terminal Cu (Ⅱ)- and Ni (Ⅱ)-Binding (ATCUN) Motif of Proteins and Peptides:Metal Binding, DNA Cleavage, and Other Properties. Acc. Chem. Res.1997,30:123.
    [74]C. Y. Chen, C. T. Cheng, C. W. Lai, P. W. Wu, K. C. Wu, P. T. Chou, Y. H. Chou and H. T. Chiu. Potassium ion recognition by 15-crown-5 functionalized CdSe/ZnS quantum dots in H2O. Chem. Commun.,2006,263-265.
    [75]E. M. Ali, Y. G. Zheng, H. H. Yu and J. Y. Ying. Ultrasensitive Pb2+ Detection by Glutathione-Capped Quantum Dots. Anal Chem 2007,79: 9452-9458.
    [76]Y. Zheng, S. Gao, J. Y. Ying. Synthesis and Application in Cell Imaging of Glutathione-capped CdTe Quantum Dots. Adv. Mater.2007,19:376-380.
    [77]Y. Zheng, Z. Yang, J. Y. Ying. Aqueous Synthesis and Characterization of Glutathione-capped ZnSe and ZnxCd1-xSe Alloyed Quantum Dots. Adv. Mater. 2007,19:1475-1479.
    [78]H. B. Li, Y. Zhang, X. Q. Wang. L-Carnitine capped quantum dots as luminescent probes for cadmium ions. Sensors and Actuators B 2007,127: 593-597.
    [79]H. B. Li, Y. Zhang, X. Q. Wang, Z. N. Gao. A luminescent nanosensor for Hg (II) based on functionalized CdSe/ZnS quantum dots. Microchim Acta 2008, 160:119-123.
    [80]H. B. Li, Y. Zhang, X. Q. Wang, D. J. Xiong, Y. Q. Bai. Calixarene capped quantum dots as luminescent probes for Hg2+ ions. Materials Letters 2007,61: 1474-1477.
    [81]M. J. Ruedas-Rama and E. A. H. Hall. A quantum dot-lucigenin probe for Cl-. Analyst,2008,133:1556-1566.
    [82]Y. H. Zhang, H. S. Zhang, X. F. Guo, H. Wang. L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper (Ⅱ) determination. Microchemical Journal 2008,89:142-147.
    [83]J. F. Callan, R. C. Mulrooney, S. Kamila, B. McCaughan. Anion Sensing with Luminescent Quantum Dots-A Modular Approach Based on the Photoinduced Electron Transfer (PET) Mechanism. J Fluoresc 2008,18: 527-532.
    [84]N. Singh, R. C. Mulrooney, N. Kaur, J. F. Callan. Fluorescent Recognition of Potassium and Calcium Ions Using Functionalised CdSe/ZnS Quantum Dots. J Fluoresc.2009,19:777-782.
    [85]L. I. Berger. Semiconductor Materials, USA:CRC Press,1997,201-203.
    [86]E. Y. Tonkov. High Pressure Phase Transformations. Luxembourg:Taylor &Francis.1996.59
    [87]M. B. Jr, M. Moronne, P. Gin, et al. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science.1998,281:2013-2015.
    [88]S. K. Poznyak, D. V. Talapin, E. V. Shevchenko, et al. Quantum Dot Chemiluminescence. Nano Letters.2004,4(4):693-698.
    [89]J. Hu, L. S. Li, W. Yang, et al., Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods. Science.2001,292:2060-2063.
    [90]D. V. Talapin. Experimental and theoretical studies on the formation of highly luminescent Ⅱ-Ⅵ,Ⅲ-Ⅴ and core-shell semiconductor. Nanocrystals. Ph.D,2002.
    [91]M. A. Hines, P. Guyot-Sionnest. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. Journal of Physical Chemistry. 1996,100:468-471.
    [92]T. Trindade, P. O'Brien, N. L. Pickett. Nanocrystalline Semiconductors: Synthesis, Properties, and Perspectives. Chem. Mater.2001,13:3843-3858.
    [93]C. C. Esteves, T. Trindade. Synthetic studies on II/VI semiconductor quantum dots. Current Opinion in Solid State and Materials Science.2002, (6): 347-353.
    [94]B. L. Cushing, V. L. KOlesnichenko, C. J. O'Connor. Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles, Chem. Rev.2004,104: 3893-3946.
    [95]Y. Wang, N. Herron. Nanometer-Sized Semiconductor Clusters:Materials Synthesis, Quantum Size Effects, and Photophysical Properties. J. Phy. Chem. 1991,95:525-532.
    [96]A. Eychmuller. Structure and Photophysics of Semiconductor Nanocrystals. J. Phy. Chem. B.2000,104:6514-6528.
    [97]J. G. Brennan, T. Siegrist, P. J. Carroll, et al. The Preparation of Large Semiconductor Clusters via the Pyrolysis of a MOlecular Precursor. J. Am. Chem. Soc.1989,111(11):4141-4143.
    [98]J. G. Brennan, T. Siegrist, P. J. Carroll, et al. Bulk and Nanostructure Group Ⅱ-Ⅵ Compounds from MOlecular Organometallic Precursors. Chem. Mater.1990, (2):403-409.
    [99]C. B. Murray, D. J. Norris, M. G. Bawendi. Synthesis and Characterization of Nearly Monodisperse CdE (E=S,Se,Te) Semiconductor Nanocrystallites. J. Am. Chem. Soc.1993,115(19):8706-8715.
    [100]L. Qu, Z. A. Peng, X. Peng. Alternative Routes toward High Quality CdSe Nanocrystals. Nano Lett.2001,1(6):333-337.
    [101]L. I. Berger. Semiconductor Materials. USA:CRC Press,1997.201-203.
    [102]J. Hambrock, A. Birkner, R. A. Fischer. Synthesis of CdSe nanoparticles using various organometallic cadmium precursors. J. Mater. Chem.2001,11: 3197-3201.
    [103]Z. A. Peng, X. Peng. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor. J. Am. Chem. Soc.2001,123(1): 183-184.
    [104]Y. W. Jun, S. M. Lee, N. J. Kang, et al. Controlled Synthesis of Multi-armed CdS Nanorod Architectures Using Monosurfactant System. J. Am. Chem. Soc.2001,123(21):5150-5151.
    [105]L. Manna, E. C. Scher, A. P. Alivisatos. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. J. Am. Chem. Soc.2000,122(51):12700-12706.
    [106]W. W. Yu, Y. A. Wang, X. Peng. Formation and Stability of Size-, Shape-, and Structure-Controlled CdTe Nanocrystals:Ligand Effects on Monomers and Nanocrystals. Chem. Mater.2003,15:4300-4308.
    [107]L. Qu, X. Peng. Control of Photoluminescence Properties of CdSe Nanocrystals in Growth. J. Am. Chem. Soc.2001,124(9):2049-2055.
    [108]P. Reiss, J. Bleuse, A. Pron. Highly Luminescent CdSe/ZnSe Core/Shell Nanocrystals of Low Size Dispersion, Nano Lett.2002,2(7):781-784.
    [109]J. Joo, H. B. Na, Yu T, et al. Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals. J. Am. Chem. Soc.2003,125: 11100-11105
    [110]L. Manna, E. C. Scher, A. P. Alivisatos. Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals. J. Am. Chem. Soc.2000,122(51):12700-12706.
    [111]J. Joo, H. B. Na, T. Yu, et al. Generalized and Facile Synthesis of Semiconducting Metal Sulfide Nanocrystals. J. Am. Chem. Soc.2003,125: 11100-11105.
    [112]D. V. Talapin, A. L. Rogach, A. Kornowski,et al. Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecyl amine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett.2001,1(4): 207-211.
    [113]D. V. Talapin. Experimental and theoretical studies on the formation of highly luminescent Ⅱ-Ⅵ,Ⅲ-Ⅴ and core-shell semiconductor nanocrystals. Ph.D, 2002.
    [114]R. Elbaum, S. Vega, G. Hodes. Preparation and Surface Structure of Nanocrystalline Cadmium Sulfide (Sulfoselenide) Precipitated from Dimethyl Sulfoxide Solutions. Chem. Mater.2001,13:2272-2280.
    [115]N. Pradhan, B. Katz, S. Efrima, Synthesis of High-Quality Metal Sulfide Nanoparticles from Alkyl Xanthate Single Precursors in Alkylamine Solvents. J. Phy. Chem. B.2003,107:13843-13854.
    [116]Yu W W, Peng X, Formation of High-Quality CdS and Other Ⅱ-Ⅵ Semiconductor Nanocrystals in Noncoordinating Solvents:Tunable Reactivity of Monomers, Angew. Chem. Int. Ed.,2002,41(13):2368-2371.
    [117]S. Asokan, K. M. Krueger, A. Alkhawaldeh, et al., The use of heat transfer fluids in the synthesis of high-quality CdSe quantum dots, core/shell quantum dots, and quantum rods, Nanotechnology,2005,16(10):2000-2011.
    [118]Z. T. Deng, L. Cao, F. Q. Tang, et al., A new route to zinc-blende CdSe nanocrystals:Mechanism and synthesis, Journal of Physical Chemistry B,2005, 109(35):16671-16675.
    [119]J. Jasieniak, C. Bullen, J. van Embden, et al. Phosphine-free synthesis of CdSe nanocrystals, Journal Of Physical Chemistry B,2005,109(44): 20665-20668.
    [120]E. M..Boatman, G. C. Lisensky, K. J. Nordell. A Safer, Easier, Faster synthesis for CdSe Quantum Dot Nanocrystals. J. Chem. Educ.,2005.
    [121]X. Peng, L. Manna, W. D. Yang, J. Wickha, E. Scher, A. Kadacanich, A. P. Alivisatos. Nature,2000,404,59.
    [122]X. Peng, J. Wickham, A. P. Alivasatos. Kinetics of Ⅱ-Ⅵ and Ⅲ-Ⅴ Colloidal Semiconductor Nanocrystal Growth:"Focusing" of Size Distributions, J. Am. Chem. Soc.1998,120,21:5343-5344.
    [123]J. N. Demasa, G. A. Crosby. Measurement of photoluminescence quantum yields. Review Journal of physical Chemistry.1971,75(8):991-1024.
    [124]F. Seker, K. Meeker, T. F. Kuech, A.B. Ellis. Surface Chemistry of Prototypical Bulk Ⅱ-Ⅵ and Ⅲ-Ⅴ Semiconductors and Implications for Chemical Sensing. Chem. Rev.2000,100:2505-2536.
    [125]F. M. Raymo, I. Yildiz. Luminescent chemosensors based on semiconductor quantum dots. Phys. Chem. Chem. Phys.2007,9:2036-2043.
    [126]J. M. Costa-Fernandez, R. Pereiro, A. Sanz-Medel. The use of luminescent quantum dots for optical sensing. Trends Anal. Chem.2006,25(3): 207-218.
    [127]I. Sondi, O. Siiman, E. Matijevic. Synthesis of CdSe nanoparticles in the presence of aminodextran as stabilizing and capping agent. J. Colloid Interface Sci.,2004,275:503-507.
    [128]Y. Wang, J. F. Wong, X. Teng, X. Z. Lin, H. Yang. "Pulling" nanoparticles into water:Phase transfer of Oleic acid stabilized monodisperse nanoparticles into aqueous solutions. Nano Lett.,2003,3:1555-1559.
    [129]J. Feng, S. Ding, M. P. Tucker, M. E. Himmela, Y. Kim, S. B. Zhang, B. M. Keyes, G. Rumbles. Cyclodextrin driven hydrophobic/hydrophilic transformation of semiconductor nanoparticles. Appl. Phys. Lett.2005,86: 033108-1.
    [130]R. J. Hurtubise, A. H. Ackerman, B. W. Smith. Mechanistic Aspects of the Oxygen Quenching of the Solid-Matrix Phosphorescence of Perdeuterated Phenanthrene on Partially Hydrophobic Paper. Appl. Spectrosc.2001,55: 490-495.
    [131]A. Hasselbarth, A. Eychmuller, R. Eichberger, M. Giersig, A. Mews, H. Weller. Chemistry and photophysics of mixed cadmium sulfide/mercury sulfide colloids. J. Phys. Chem.1993,97:5333-5340.
    [132]A. Eychmuller, A. Hasselbarth, H. Weller. Quantum-sized HgS in contact with quantum-sized CdS colloids. J. Lumin.1992,53:113-115.
    [133]W. Piasecki. Effective adsorption energy distribution function as a new mean-field characteristic of surface heterogeneity in adsorption systems with lateral interactions. Langmuir 2006,22:6761-6763.
    [134]K. A. Connors. The Stability of Cyclodextrin Complexes in Solution. Chem. Rev.1997; 97:1325-1357.
    [135]J. Szejtli. Introduction and General Overview of Cyclodextrin Chemistry. Chem. Rev.1998; 98:1743-1753.
    [136]C. Luo, F. Zuo, Z. Zheng, X. Cheng, X. Ding, Y. Peng. Tunable Smart Surface of Gold Nanoparticles Achieved by Light-Controlled Molecular Recognition Effection. Macromol. Rapid Commun.2008; 29:149-154.
    [137]C. H. B. Ng, J. Yang, W. Y. Fan. Synthesis and Self-Assembly of One-Dimensional Sub-10 nm Ag Nanoparticles with Cyclodextrin. J. Phys. Chem. C 2008; 112:4141-4145.
    [138]S. Giuffrida, G. Ventimiglia, S. Petralia, S. Conoci, S. Sortino. Facile light-triggered one-step synthesis of small and stable platinum nanoparticles in an aqueous medium from a beta-cyclodextrin host-guest inclusion complex. Inorg. Chem.2006; 45:508-510.
    [139]M. Shimizu, M. Kawamoto and Y. Niwa. Highly stereocontrolled access to a tetrahydroxy long chain base using anti-selective additions. Chem. Commun. 1999; 12:1151-1152.
    [140]Y. Liu, K. B. Male, P. Bouvrette, J. H. T. Luong. Control of the Size and Distribution of Gold Nanoparticles by Unmodified Cyclodextrins. Chem. Mater. 2003; 15:4172-4180.
    [141]H. B. Li and C. P. Han, Sonochemical Synthesis of Cyclodextrin-Coated Quantum Dots for Optical Detection of Pollutant Phenols in Water. Chem. Mater.2008; 20:6053-6059.
    [142]R. Freeman, T. Finder, L. Bahshi, I. Willner. β-Cyclodextrin-Modified CdSe/ZnS Quantum Dots for Sensing and Chiroselective Analysis. Nano Lett. 2009; 9:2073-2076.
    [143]K. Palaniappan, C. H. Xue, G. Arumugam, S. A. Hackney, J. Liu. Water-Soluble, Cyclodextrin-Modified CdSe-CdS Core-Shell Structured Quantum Dots. Chem. Mater.2006; 18:1275-1280.
    [144]D. Dorokhin, N. Tomczak, M. Han, D. N. Reinhoudt, A. H. Velders, G. J. Vancso. Reversible Phase Transfer of (CdSe/ZnS) Quantum Dots between Organic and Aqueous Solutions. ACS Nano.2009; 3:661-667.
    [145]D. Dorokhin, S. H. Hsu, N. Tomczak, D. N. Reinhoudt, J. Huskens, A. H. Velders, G. J. Vancso. Fabrication and Luminescence of Designer Surface Patterns with β-Cyclodextrin Functionalized Quantum Dots via Multivalent SupramOlecular Coupling. ACS Nano.2010; 4:137-142.
    [146]J. Zhang, H. Sun, P. X. Ma. Host-Guest Interaction Mediated Polymeric Assemblies:Multifunctional Nanoparticles for Drug and Gene Delivery. ACS Nano.2010; 4:1049-1059.
    [147]R. C. Somers, M. G. Bawendi and D. G. Nocera. CdSe nanocrystal based chem-/bio-sensors. Chem. Soc. Rev.2007; 36:579-591.
    [148]J. M. Costa-Fernandez. Optical sensors based on luminescent quantum dots. Anal Bioanal Chem.2006; 384:37-40.
    [149]J. Feng, S. Ding, M. P. Tucker, M. E. Himmela, Y. Kim, S. B. Zhang, B. M. Keyes, G. Rumbles. Cyclodextrin driven hydrophobic/hydrophilic transformation of semiconductor nanoparticles. Appl. Phys. Lett.2005; 86: 033108.
    [150]L. Spanhel, M. Haase, H. Weller, A. Henglein. Photochemistry of Colloidal Semiconductors.20. Surface Modification and Stability of Strong Luminescing CdS Particles. J. Am. Chem. Soc.1987; 109:5649-5655.
    [151]S. F. Wuister, I. Swart, F. V. Driel, S. F. Hickey, C. de. M. Donega. Highly Luminescent Water-Soluble CdTe Quantum Dots. Nano Lett.2003; 3:503-507.
    [152]Z. L. Wang. Characterization of Nanophase Materials. WILEY-VCH Verlag GmbH & Co. KGa.
    [153]H. Zhang, Z. Zhou, B. Yang, M. Y. Gao. The Influence of Carboxyl Groups on the Photoluminescence of Mercaptocarboxylic Acid-Stabilized CdTe Nanoparticles. J. Phys. Chem. B 2003; 107:8-13.
    [154]M. Tomasulo, I. Yildiz, F. M. Raymo. pH-Sensitive Quantum Dots. J. Phys. Chem. B 2006; 110:3853-3855.
    [155]M. Y. Gao, S. Kirstein, H. Mohwald, A. L. Rogach, A. Kornowski, A. Eychmuller, H. Weller. Strongly Photoluminescent CdTe Nanocrystals by Proper Surface Modification. J. Phys. Chem. B 1998; 102:8360-8363.
    [156]D. H. Yu, Z. Wang, Y. Liu, L. Jin, Y. M. Cheng, J. G. Zhou, S. G. Cao. Quantum dot-based pH probe for quick study of enzyme reaction kinetics. Enzyme Microb. Tech.2007; 41:127-132.
    [157]S. R. Cordero, P. J. Carson, R. A. Estabrook, G. F. Strouse, S. K. Buratto. Photo-Activated Luminescence of CdSe Quantum Dot Monolayers. J. Phys. Chem. B 2000; 104:12137-12142.
    [158]Y. Wang, Z. Tang, M. A. Correa-Duarte, L. M. Liz-Marzan, N. A. Kotov. Multicolor Luminescence Patterning by Photoactivation of Semiconductor Nanoparticle Films. J. Am. Chem. Soc.2003; 125:2830-2831.
    [159]W. Guo, J. J. Li, Y. A. Wang, X. G. Peng. Luminescent CdSe/CdS Core/Shell Nanocrystals in Dendron Boxes:Superior Chemical, Photochemical and Thermal Stability. J. Am. Chem. Soc.2003; 125:3901-3909.
    [160]B. C. Hess, I. G. Okhrimenko, R. C. Davis, B. C. Stevens, Q. A. Schulzke, K. C. Wright, C. D. Bass, C. D. Evans and S. L. Summers. Surface Transformation and Photoinduced Recovery in CdSe Nanocrystals. Phys. Rev. Lett.2001; 86:3132-3135.
    [161]L. Manna, E. C. Scher, L. S. Li and A. P. Alivisatos. Epitaxial Growth and Photochemical Annealing of Graded CdS/ZnS Shells on Colloidal CdSe Nanorods. J. Am. Chem. Soc.2002; 124:7136-7145.
    [162]A. Y. Nazzal, L. Qu, X. Peng and M. Xiao. Photoactivated CdSe Nanocrystals as Nanosensors for Gases. Nano Lett.2003; 3:819-822.
    [163]A. Y. Nazzal, X. Wang, L. Qu, W. Yu, Y. Wang, X. Peng and M. Xiao. Environmental Effects on Photoluminescence of Highly Luminescent CdSe and CdSe/ZnS Core/Shell Nanocrystals in Polymer Thin Films. J. Phys. Chem. B 2004; 108:5507-5515.
    [164]A. A. Bol, A. Meijerink. Luminescence Quantum Efficiency of Nanocrystalline ZnS:Mn2+.2. Enhancement by UV Irradiation. J. Phys. Chem. B 2001; 105:10203-10209.
    [165]Y. Fan, Y. Q. Feng, S. L. Da, P. Y. Feng. Evaluation of β-Cyclodextrin Bonded Silica as a Selective Sorbent for the Solid-Phase Extraction of 4-Nitrophenol and 2,4-Dinitrophenol. Anal. Sci.2003; 19:709-714.
    [166]J. Taraszewska, J. Wojcik. Complexation of inorganic anions by β-cyclodextrin studied by polarography and 1H NMR. Supramol. Chem.1993; 2: 337-343.
    [167]Y. B. Jiang, X. Z. Huang, G. Z. Chen. A Study of The Effects of Inorganic Salts on the Microenvironment of P-Cyclodextrin with Fluorescent Probe. Anal. Chim. Acta.1992; 50:157-162.
    [168]S. Kivakar. Disposition of Copper (Ⅱ) in β-Cyclodextrin. J. Inclusion Phenom. Mol. Recognit. Chem.1994; 17:119-125.
    [169]P. K. Bose, P. L. Polavarapu. Evidence for covalent binding between copper ions and cyclodextrin cavity:a vibrational circular dichroism study. Carbohydr. Res.2000; 323:63-72.
    [170]Z. Zhelev, R. Bakalova, H. Ohba, R. Jose, Y. Imai and Y. Baba. Uncoated, Broad Fluorescent, and Size-Homogeneous CdSe Quantum Dots for Bioanalyses。Anal. Chem.2006,78:321-330
    [171]C. C. Huang, H. T. Chang. Selective Gold-Nanoparticle-Based "Turn-On" Fluorescent Sensors for Detection of Mercury (Ⅱ) in Aqueous Solution. Anal. Chem.2006,78:8332-8338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700