基于氰基苯乙烯衍生物的功能分子凝胶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,氰基苯乙烯及其衍生物由于具有特殊的π-共轭结构,易于合成修饰,以及对外部环境敏感的性质而受到人们越来越多的关注。研究发现,大多数氰基苯乙烯类化合物被证实具有聚集诱导荧光增强的性质,并且在聚集态存在较强的分子间π-π堆积作用和氰基作用。在其他分子间相互作用(氢键、范德华力、金属配位等)的协同作用下,氰基苯乙烯及其衍生物易于形成有序的纳微米组装材料。值得注意的是,氰基苯乙烯结构单元易于与其他功能基团或体系的结合,进而使其衍生物在光学器件、传感、生物成像等领域展现出良好的应用前景。本论文以构筑新型的功能分子凝胶体系为目的,将氰基苯乙烯结构单元与具有方向性,强度适中的酰胺基团结合,设计合成了一系列新型的π-共轭氰基苯乙烯衍生物,着重研究它们形成凝胶的自组装特性和功能应用。
     首先,我们设计合成了三个具有不同分子构型的氰基苯乙烯酰胺类化合物,线型的PBA、V型的BPIA和星型的TPBTA,分别研究了它们在阴离子识别、聚集荧光增强和凝胶三方面的性质,并探究了分子的构型对上述三种性质的影响。研究发现此类酰胺化合物可以高选择性的比色识别氟离子,并对氯离子、溴离子、碘离子、磷酸二氢根离子、醋酸根离子等其他阴离子表现出显著的抗干扰能力。比色识别的本质主要来自于氟离子对酰胺基团NH的去质子化,同时作为生色基团的氰基苯乙烯将去质子化作用转变成可视的光学信号。虽然分子的构型对此类酰胺化合物在氟离子的选择性识别没有明显的影响,但是对其聚集荧光增强性质表现出显著的影响。化合物BPIA和TPBTA在掺水聚集过程中均表现出明显的聚集荧光增强的性质。在水体积分数为70%时,与星型的TPBTA分子相比,虽然V型的BPIA分子中含有较少的氰基苯乙烯结构单元,却在聚集态表现出相对较高的荧光量子效率。采用加热-冷却法对三者的凝胶化能力进行测试,发现只有星型的TPBTA可以在DMSO/H2O的混合溶剂中形成稳定凝胶,并且所制备的凝胶显示出显著的聚集诱导荧光增强性质,这充分表明氰基苯乙烯结构单元具有构筑成多功能组装材料的潜力。另外,其干凝胶的纤维网络结构可以有效的吸附水中的染料分子(甲基紫),这为处理污水中的有害物质提供了研究基础。
     其次,在V型结构BPIA的研究基础上,我们通过改变间苯二甲酸的端位取代基团(强极性的硝基和大体积的叔丁基)来调节分子在有机溶剂中的溶解与结晶平衡,从而成功地构筑了一类既不带胆甾又不含长烷基链的功能性凝胶因子。强极性硝基基团的引入,有利于增强分子间的作用,促使化合物BPNIA在不同的溶剂中既可以形成超声诱导凝胶又可以形成热致凝胶。利用氟离子对酰胺基团NH的去质子化作用,实现了BPNIA的凝胶对氟离子的双通道识别,即凝胶-溶液的转变和颜色的变化。同时质子性溶剂的加入又可使体系由溶液转变为凝胶,凝胶形态、颜色均可以复原。可逆的凝胶-溶液转变及显著的颜色变化是由氟离子和质子共同控制的。由此,我们得到了多刺激和多响应的超分子凝胶体系。空间立体结构较大的叔丁基基团的引入,增大了聚集态时分子间的距离,进而调节了分子在有机溶剂中的溶解-沉淀平衡,并促使BPBIA在三氯甲烷、二氯甲烷、二氯乙烷、乙腈、二氧六环等五种溶剂中形成凝胶。此外,通过简单地溶液挥发法,可以得到单分散、无杂质、形貌均一的超长一维荧光纳米线。单晶结构分析表明,上述分子的一维组装优势是制得纳米纤维及超长纳线的主要原因之一。值得注意的是所制备的凝胶纤维和一维纳米线在紫外光照射下都能发射出蓝色荧光,这为其在发光材料、荧光传感器等方面的应用奠定了基础。
     然后,我们将氰基苯乙烯与常见的凝胶结构单元胆固醇结合,设计合成了一类具有聚集荧光增强性质的ALS型凝胶因子。通过改变芳香基团(A)研究了π-共轭结构的变化对分子成胶能力的影响。利用2,7-萘二酚的酚羟基与凝胶因子中酰胺基团和氰基的作用,实现了凝胶对中性分子2,7-萘二酚的双通道识别,即凝胶-沉淀的转变和荧光消失。这种由凝胶相态转变引起的裸眼检测具有简便、快捷的特点,为2,7-萘二酚的识别提供了一种新的方法。基于π-共轭结构较大的化合物G2在芳香类有机溶剂中具有极强的成胶能力,我们通过引入辅助剂THF,实现了室温下芳香类溶剂与水的分离以及芳香类溶剂的回收。利用G2的相选择凝胶的性质,简便地净化了有机染料罗丹明B污染的水资源。这部分工作为设计具有新型功能的凝胶因子提供了思路。
Cyanostilbene and its derivatives have received great research attention becauseof their unique multi-responsive, modifiable and luminescent characteristics. Mostcyanostilbene-based compounds can produce typical aggregation-induced enhancedemission (AIEE) in the aggregated or solid states. It should be pointed out that thecyano moiety has the ability to interact with either other cyano groups or hydrogens inaromatic rings. The cyano interaction could cooperate with other intermolecularinteractions such as π-π stacking, to fabricate supramolecular architectures. On thebasis of their unique feature and easily bonded with other units or systems,cyanostilbene and its derivatives are promising to be used in optoelectronic devices,chemosensors and biological imaging. In order to obtain a new class ofsupramolecular gelators based on cyanostilbene amide derivatives, we combine thecyanostilbene with amide group to increase the intermolecular interactions.
     First of all, we synthesized three kinds of cyanostilbene amide derivatives withdifferent molecular structures, and studied their properties in anion recognition, AIEE,and self-assemble. It was found that these cyanostilbene amide derivatives can act ashighly selective colorimetric sensors for fluoride ion, overcoming the interference ofH2PO4, AcO and other halide ions. The deprotonation of the NH groups induced byfluoride ion is responsible for the dramatic color change from colorless to yellow. Thedifferent molecular structures did not affect the detection of fluoride ion, but played asignificant role in their AIEE and self-assembly properties. Both BPIA and TPBTAexhibited typical AIEE in the aggregated state, but the conpound BPIA showed higherfluorescence quantum efficiency than that of TPBTA with three cyanostilbene unitswhen the water volume fraction is70%. Compared with PBA and BPIA, only TPBTAcan readily self-assemble into gels with nanofibers structure in the mixed solvents ofDMSO/H2O. Interestingly, the xerogels prepared from the TPBTA organogels showeda striking property of adsorbing crystal violet dyes from water. This dye-adsorptionability of gelators can be utilized in water purification by removing toxic dyes from wastewater.
     Secondly, we synthesized a novel class of gelators based on V-shapedcyanostilbene amide derivatives without steroidal units and long alkyl chains throughchanging the isophthalic acid substituted group (a highly polar nitro group and a largevolume of tert-butyl group) to favor the balance between their solubility andcrystallization. The introduction of strong polar nitro group may enhance theintermolecular interactions, which make BPNIA form thermoreversible gel inDMSO/H2O and ultrasound-stimulated gel in DMSO by the cooperative interplay ofintermolecular hydrogen bonding, π–π stacking and cyano interactions. On the basisof the deprotonation of NH groups induced by fluoride ion, introducing of fluoride notonly changed the color of the system but also disrupted the preformed gel to solution.Subsequently, the addition of polar protic solvents could make the solution regelatedand the red color faded. Therefore, the reversible gel-sol transition and noticeablecolor change were controlled by the use of fluoride stimulus and proton control. Theintroduction of larger steric hindrance of tert-butyl group not only may weaken thetight molecular stacking and strong intermolecular interactions, but also could balancethe solubility and deposition, leading to the formation of the gel. Meanwhile,well-defined ultralong1D nanowires of BPBIA with lengths up to several millimetersalso have been fabricated from a simple slow evaporation approach. More importantly,the individually-dispersed nanowires with uniform morphology are independent ofsubstrates and solvents. The single-crystal X-ray analysis of compound BPBIAprovided reasonable explanation for the formation of1D nano-or microstructures. Itis worth noting that the generated nanofibrous gels and the nanowires emit strong bluelight under UV irradiation, revealing that these1D nanomaterials show potentialapplications in emitting materials as well as fluorescent chemosensors.
     Finally, we synthesized a class of ALS-type organic gelators based oncyanostilbene amide derivatives and studied the influence of π-conjugated structureon their gellability by changing the aromatic groups. It was found that the compoundG2with larger π-conjugated structure showed great ability to gel a variety of organic observed for compounds G2after gelation. Owing to the phenolic hydroxyl of2,7-naphthalenediol could destroy the intermolecular hydrogen bonds and cyanointeractions between gelators, the organogel of G2exhibited a high selectivitytowards2,7-naphthalenediol instead of the other phenolic derivatives, which exhibiteda two channel response through gel–sol transition and fluorescence disappearance.Such responsive systems are highly desirable for the development of sensor devices orin applications like drug delivery. Additionally, G2showed phase-selective gelationproperties in aromatic solvents–water mixtures at room temperature by introducing ofthe assistant solvent. Most importantly the gelator molecule can be recovered andreused several times, indicating its potential application in collection of aromaticsolvents and purification of water. Interestingly, the gelator G2can purify water viaphase-selective gelation process. Thus, this part of work offers a new way fordesigning new functional gelators.
引文
[1] Lehn J M. Cryptates: inclusion complexes of macropolycyclic receptormolecules. Pure and Applied Chemistry,1978,50:871-892.
    [2] Sangeetha N M and Maitra U. Supramolecular gels: functions and uses.Chemical Society Reviews,2005,34:821-836.
    [3] Lin Y C, Kachar B and Weiss R G. Novel family of gelators of organic fluids andthe structure of their gels. Journal of the American Chemical Society,1989,111:5542-5551.
    [4] George M and Weiss R. Molecular organogels. soft matter comprised oflow-molecular-mass organic gelators and organic liquids. Accounts of ChemicalResearch,2006,39:489-497.
    [5] Wu J C, Yi T, Shu T M, et al. Ultrasound switch and thermal self-repair ofmorphology and surface wettability in a cholesterol-based self-assembly system.Angewandte Chemie International Edition,2008,47:1063-1067.
    [6] Wang S, Shen W, Feng Y L, et al. A multiple switching bisthienylethene and itsphotochromic fluorescent organogelator. Chemical Communications,2006,1497-1499.
    [7] Peng J X, Liu K Q, Liu X F, et al. New dicholesteryl-based gelators: gellingability and selective gelation of organic solvents from their mixtures with waterat room temperature. New Journal of Chemistry,2008,32:2218-2224.
    [8] Svobodová H, Noponen V, Kolehmainen E, et al. Recent advances in steroidalsupramolecular gels. RSC Advances,2012,2:4985-5007.
    [9] Fages F, V gtle F and inic M. Systematic design of amide-and urea-typegelators with tailored properties. Topics in Current Chemistry,2005,256:77-131.
    [10] Frkanec L and ini M. Chiral bis(amino acid)-and bis(aminoalcohol)-oxalamide gelators. gelation properties, self-assembly motifs andchirality effects. Chemical Communications,2010,46:522-537.
    [11] Suzuki M and Hanabusa K. L-Lysine-based low-molecular-weight gelators.Chemical Society Reviews,2009,38:967-975.
    [12] Zhang P, Wang H T, Liu H M, et al. Fluorescence-enhanced organogels andmesomorphic superstructure based on hydrazine derivatives. Langmuir,2010,26:10183-10190.
    [13] Kim T H, Choi M S, Sohn B H, et al. Gelation-induced fluorescenceenhancement of benzoxazole-based organogel and its naked-eye fluoridedetection. Chemical Communications,2008,2364-2366.
    [14] Johnson E K, Adams D J and Cameron P J. Peptide based low molecular weightgelators. Journal of Materials Chemistry,2011,21:2024-2027.
    [15] George S J and Ajayaghosh A. Self-assembled nanotapes of oligo(p-phenylenevinylene)s: sol-gel-controlled optical properties in fluorescent π-electronic gels.Chemistry-A European Journal,2005,11:3217-3227.
    [16] Ajayaghosh A, and Praveen V K. π-Organogels of self-assembledp-phenylenevinylenes: soft materials with distinct size, shape, and functions.Accounts of Chemical Research,2007,40:644-656.
    [17] Hoeben F J M, Jonkheijm P, Meijer E W, et al. About supramolecular assembliesof π-conjugated systems. Chemical Reviews,2005,105:1491-1546.
    [18] Park C, Lee J and Kim C. Functional supramolecular assemblies derived fromdendritic building blocks. Chemical Communications,2011,47:12042-12056.
    [19] Jang W D, Jiang D L and Aida T. Dendritic physical gel: hierarchicalself-organization of a peptide-core dendrimer to form a micrometer-scale fibrousassembly. Journal of the American Chemical Society,2000,122:3232-3233.
    [20] Huang B Q, Hirst A R, Smith D K, et al. A direct comparison of one-andtwo-component dendritic self-assembled materials: elucidating molecularrecognition pathways. Journal of the American Chemical Society,2005,127:7130-7139.
    [21] Feng Y, Liu Z T, Liu J, et al. Peripherally dimethyl isophthalate-functionalizedpoly(benzyl ether) dendrons: a new kind of unprecedented highly efficientorganogelators. Journal of the American Chemical Society,2009,131:7950-7951.
    [22] Kim C, Kim K T and Chang Y. Supramolecular assembly of amide dendrons.Journal of the American Chemical Society,2001,123:5586-5587.
    [23] Ji Y, Kuang G C, Jia X R, et al. Photoreversible dendritic organogel. ChemicalCommunications,2007,4233-4235.
    [24] Smith D K. Dendritic gels—many arms make light work. Advanced Materials,2006,18:2773-2778.
    [25] Yang X C, Lu R, Gai F Y, et al. Rigid dendritic gelators based on oligocarbazoles.Chemical Communications,2010,46:1088-1090.
    [26] Liu Z X, Feng Y, Yan Z C, et al. Multistimuli responsive dendritic organogelsbased on azobenzene-containing poly(aryl ether) dendron. Chemistry ofMaterials,2012,24:3751-3757.
    [27] Hirst A R and Smith D K. Two-component gel-phase materials—highly tunableself-assembling systems. Chemistry-A European Journal,2005,11:5496-5508.
    [28] Hanabusa K, Miki T, Taguchi Y, et al. Two-component, small molecule gellingagents. Journal of the Chemical Society, Chemical Communications,1993,1382-1384.
    [29] Anderson K M, Day G M, Paterson M J, et al. Structure calculation of an elastichydrogel from sonication of rigid small molecule components. AngewandteChemie International Edition,2008,47:1058-1062.
    [30] Maitra U, Kumar P V, Chandra N, et al. First donor–acceptor interactionpromoted gelation of organic fluids. Chemical Communications,1999,595-596.
    [31] Hahma A, Bhat S, Leivo K, et al. Pyrene derived functionalized low molecularweight organic gelators and gels. New Journal of Chemistry,2008,32:1438-1448.
    [32] Moffat J R. and Smith D K. Metastable two-component gel—exploring thegel–crystal interface. Chemical Communications,2008,2248-2250.
    [33] Babu P, Sangeetha N M, Vijaykumar P, et al. Pyrene-derived novel one-andtwo-component organogelators. Chemistry-A European Journal,2003,9:1922-1932.
    [34] Escuder B, Rodríguez-Llansola F and Miravet J F. Supramolecular gels as activemedia for organic reactions and catalysis. New Journal of Chemistry,2010,34:1044-1054.
    [35] Tam A Y Y and Yam V W W. Recent advances in metallogels. Chemical SocietyReviews,2013,42:1540-1567.
    [36] Liu Q T, Wang Y L, Li W, et al. Structural characterization and chemical responseof a Ag-coordinated supramolecular gel. Langmuir,2007,23:8217-8223.
    [37] Lee H, Jung S H, Han W S, et al. A chromo-fluorogenic tetrazole-based CoBr2coordination polymer gel as a highly sensitive and selective chemosensor forvolatile gases containing chloride. Chemistry-A European Journal,2011,17:2823-2827.
    [38] Zhang S Y, Yang S Y, Lan J B, et al. Helical nonracemic tubular coordinationpolymer gelators from simple achiral molecules. Chemical Communications,2008,6170-6172.
    [39] Xing B G, Choi M F and Xu B. Design of coordination polymer gels as stablecatalytic systems. Chemistry-A European Journal,2002,8,5028-5032.
    [40] Jin Q X, Zhang L, Cao H, et al. Self-assembly of copper(II) ion-mediatednanotube and its supramolecular chiral catalytic behavior. Langmuir,2011,27:13847-13853.
    [41] Applegarth L, Clark N, Richardson A C, et al. Modular nanometer-scalestructuring of gel fibres by sequential self-organization. ChemicalCommunications,2005,5423-5425.
    [42] Kishimura A, Yamashita T and Aida T. Phosphorescent organogels via“metallophilic” interactions for reversible RGB-color switching. Journal of theAmerican Chemical Society,2005,127:179-183.
    [43] Au V K M, Zhu N Y and Yam V W W. Luminescent metallogels ofbis-cyclometalated alkynylgold(III) complexes. Inorganic Chemistry,2013,52:558-567.
    [44] Roubeau O, Colin A, Schmitt V, et al. Thermoreversible gels as magneto-opticalswitches. Angewandte Chemie International Edition,2004,43:3283-3286.
    [45] Tam A Y Y, Wong K M C, Zhu N Y, et al. Luminescent alkynylplatinum(II)terpyridyl metallogels stabilized by Pt···Pt, π π, and hydrophobic hydrophobicinteractions. Langmuir,2009,25:8685-8695.
    [46] Zhang J J, Lu W, Sun R W Y, et al. Organogold(III) supramolecular polymers foranticancer treatment. Angewandte Chemie International Edition,2012,51:4882-4886.
    [47] Gronwald O and Shinkai S. Sugar-integrated gelators of organic solvents.Chemistry-A European Journal,2001,7:4328-4334.
    [48] John G, Jung J H, Masuda M, et al. Unsaturation effect on gelation behavior ofaryl glycolipids. Langmuir,2004,20:2060-2065.
    [49] Cui J X, Liu A H, Guan Y, et al. Tuning the helicity of self-assembled structure ofa sugar-based organogelator by the proper choice of cooling rate. Langmuir,2010,26:3615-3622.
    [50] Kang C Q, Bian Z, He Y B, et al. An organogel formed from a cyclicβ-aminoalcohol. Chemical Communications,2011,47:10746-10748.
    [51]周义锋,环境响应的智能小分子有机凝胶材料.化学进展,2011,23,125-135.
    [52] Ishi-i T and Shinkai S. Dye-based organogels: stimuli-responsive soft materialsbased on one-dimensional self-assembling aromatic dyes. Topics in CurrentChemistry,2005,258:119-160.
    [53] Ajayaghosh A, George S J and Schenning A P H J. Hydrogen-bonded assembliesof dyes and extended π-conjugated systems. Topics in Current Chemistry,2005,258:83-118.
    [54] Cravotto G and Cintas P. Molecular self-assembly and patterning induced bysound waves. the case of gelation. Chemical Society Reviews,2009,38:2684-2697.
    [55] Yang X Y, Zhang G X and Zhang D Q. Stimuli responsive gels based on lowmolecular weight gelators. Journal of Materials Chemistry,2012,22:38-50.
    [56] Sui X F, Feng X L, Hempenius M A, et al. Redox active gels: synthesis,structures and applications. Journal of Materials Chemistry B,2013,1:1658-1672.
    [57] Segarra-Maset M D, Nebot V J, Miravet J F, et al. Control of molecular gelationby chemical stimuli. Chemical Society Reviews,2013, DOI:10.1039/C2CS35436E.
    [58] Rodríguez-Llansola F, Escuder B, Miravet J F, et al. Selective and highlyefficient dye scavenging by a pH-responsive molecular hydrogelator. ChemicalCommunications,2010,46:7960-7962.
    [59] Li Y G, Liu K Q, Liu J, et al. Amino acid derivatives of cholesterol as “latent”organogelators with hydrogen chloride as a protonation reagent. Langmuir,2006,22:7016-7020.
    [60] Lloyd G O and Steed J W. Anion-tuning of supramolecular gel properties. NatureChemistry,2009,1:437-442.
    [61] Maeda H. Anion-responsive supramolecular gels. Chemistry-A EuropeanJournal,2008,14:11274-11282.
    [62] Maeda H, Haketa Y and Nakanishi T. Aryl-substituted C3-bridged oligopyrrolesas anion receptors for formation of supramolecular organogels. Journal of theAmerican Chemical Society,2007,129:13661-13674.
    [63] D oli Z, Cametti M, Cort A D,et al. Fluoride-responsive organogelator based onoxalamide-derived anthraquinone. Chemical Communications,2007,3535-3537.
    [64] Wang C, Zhang D Q and Zhu D B. A chiral low-molecular-weight gelator basedon binaphthalene with two urea moieties: modulation of the CD spectrum aftergel formation. Langmuir,2007,23:1478-1482.
    [65] Teng M J, Kuang G C, Jia X R, et al. Glycine-glutamic-acid-basedorganogelators and their fluoride anion responsive properties. Journal ofMaterials Chemistry,2009,19:5648-5654.
    [66] Zhang Y M, Lin Q, Wei T B, et al. A novel smart organogel which could allow atwo channel anion response by proton controlled reversible sol–gel transition andcolor changes. Chemical Communications,2009,6074-6076
    [67] Liu J W, Yang Y, Chen C F, et al. Novel anion-tuning supramolecular gels withdual-channel response: reversible sol gel transition and color changes. Langmuir,2010,26:9040-9044.
    [68] Mukhopadhyay P, Iwashita Y, Shirakawa M, et al. Spontaneous colorimetricsensing of the positional isomers of dihydroxynaphthalene in a1D organogelmatrix. Angewandte Chemie International Edition,2006,45:1592-1595.
    [69] Sáez J A, Escuder B and Miravet J F. Selective catechol-triggered supramoleculargel disassembly. Chemical Communications,2010,46:7996-7998.
    [70] Kawano S, Fujita N and Shinkai S. A coordination gelator that shows a reversiblechromatic change and sol-gel phase-transition behavior upon oxidative/reductivestimuli. Journal of the American Chemical Society,2004,126:8592-8593.
    [71] Liu J, He P L, Yan J L, et al. An organometallic super-gelator withmultiple-stimulus responsive properties. Advanced Materials,2008,20:2508-2511.
    [72] Kitahara T, Shirakawa M, Kawano S, et al. Creation of a mixed-valence statefrom one-dimensionally aligned TTF utilizing the self-assembling nature of alow molecular-weight gel. Journal of the American Chemical Society,2005,127:14980-14981.
    [73] Akutagawa T, Kakiuchi K, Hasegawa T, et al. Molecularly assemblednanostructures of a redox-active organogelator. Angewandte ChemieInternational Edition,2005,44:7283-7287.
    [74] Wang C, Zhang D Q and Zhu D B. A low-molecular-mass gelator with anelectroactive tetrathiafulvalene group: tuning the gel formation bycharge-transfer interaction and oxidation. Journal of the American ChemicalSociety,2005,127:16372-16373.
    [75] Wang C, Chen Q, Sun F, et al. Multistimuli responsive organogels based on anew gelator featuring tetrathiafulvalene and azobenzene groups: reversibletuning of the gel-sol transition by redox reactions and light irradiation. Journal ofthe American Chemical Society,2010,132:3092-3096.
    [76] Ajayaghosh A, Praveen V K and Vijayakumar C. Organogels as scaffolds forexcitation energy transfer and light harvesting. Chemical Society Reviews,2008,37:109-122.
    [77] Sagawa T, Fukugawa S, Yamada T, et al. Self-assembled fibrillar networksthrough highly oriented aggregates of porphyrin and pyrene substituted bydialkyl L-glutamine in organic media. Langmuir,2002,18:7223-7228.
    [78] Nakashima T and Kimizuka N. Light-harvesting supramolecular hydrogelsassembled from short-legged cationic L-glutamate derivatives and anionicfluorophores. Advanced Materials,2002,14:1113-1116.
    [79] Sugiyasu K, Fujita N and Shinkai S. Visible-light-harvesting organogelcomposed of cholesterol-based perylene derivatives. Angewandte ChemieInternational Edition.2004,43:1229-1233.
    [80] Guerzo A D, Olive A G L, Reichwagen J, et al. Energy transfer in self-assembled
    [n]-acene fibers involving≥100donors per acceptor. Journal of the AmericanChemical Society,2005,127:17984-17985.
    [81] Ajayaghosh A, Praveen V K, Vijayakumar C, et al. Molecular wire encapsulatedinto π organogels: efficient supramolecular light-harvesting antennae withcolor-tunable emission. Angewandte Chemie International Edition,2007,46:6260-6265.
    [82] Hoeben F J M, Herz L M, Daniel C, et al. Efficient energy transfer in mixedcolumnar stacks of hydrogen-bonded oligo(p-phenylene vinylene)s in solution.Angewandte Chemie International Edition,2004,43:1976-1979.
    [83] Hoeben F J M, Shklyarevskiy I O, Pouderoijen M J. et al. Direct visualization ofefficient energy transfer in single oligo(p-phenylene vinylene) vesicles.Angewandte Chemie International Edition,2006,118:1254-1258.
    [84] Zhang J, Hoeben F J M, Pouderoijen M J, et al. Hydrogen-bondedoligo(p-phenylenevinylene) functionalized with perylene bisimide: self-assemblyand energy transfer. Chemistry-A European Journal,2006,12:9046-9055.
    [85] Giansante C, Raffy G, Sch fer C, et al. White-light-emitting self-assemblednanofibers and their evidence by microspectroscopy of individual objects.Journal of the American Chemical Society,2011,133:316-325.
    [86] Bhattacharya S and Krishnan-Ghosh Y. First report of phase selective gelation ofoil from oil/water mixtures. possible implications toward containing oil spills.Chemical Communications,2001,185-186.
    [87] Basak S, Nanda J and Banerjee A. A new aromatic amino acid based organogelfor oil spill recovery. Journal of Materials Chemistry,2012,22:11658-11664.
    [88] Jadhav S R, Vemula P K, Kumar R, et al. Sugar-derived phase-selectivemolecular gelators as model solidifiers for oil spills. Angewandte ChemieInternational Edition,2010,49:7695-7698.
    [89] Xue M, Gao D, Liu K Q, et al. Cholesteryl derivatives as phase-selective gelatorsat room temperature. Tetrahedron,2009,65:3369-3377.
    [90] Debnath S, Shome A, Dutta S, et al. Dipeptide-based low-molecular-weightefficient organogelators and their application in water purification. Chemistry-AEuropean Journal,2008,14:6870-6881.
    [91] Mukherjee S and Mukhopadhyay B. Phase selective carbohydrate gelator. RSCAdvances,2012,2:2270-2273.
    [92] Ono Y, Nakashima K, Sano M, et al. Organic gels are useful as a template for thepreparation of hollow fiber silica. Chemical Communications,1998,1477-1478.
    [93] Amabilino D B and Puigmartí-Luis J. Gels as a soft matter route to conductingnanostructured organic and composite materials. Soft Matter,2010,6:1605-1612.
    [94] Das D, Kar T and Das P K. Gel-nanocomposites: materials with promisingapplications. Soft Matter,2012,8:2348-2365.
    [95] Jung J H, Park M and Shinkai S. Fabrication of silica nanotubes by usingself-assembled gels and their applications in environmental and biological fields.Chemical Society Reviews,2010,39:4286-4302.
    [96] Yang Z M and Xu B. Supramolecular hydrogels based on biofunctionalnanofibers of self-assembled small molecules. Journal of Materials Chemistry,2007,17:2385-2393.
    [97] Zhao F, Ma M L and Xu B. Molecular hydrogels of therapeutic agents. ChemicalSociety Reviews,2009,38:883-891.
    [98] Wang J Y, Wang Z H, Gao J, et al. Incorporation of supramolecular hydrogelsinto agarose hydrogels-a potential drug delivery carrier. Journal of MaterialsChemistry,2009,19:7892-7896.
    [99] Yang Z M, Liang G L and Xu B. Enzymatic hydrogelation of small molecules.Accounts of Chemical Research,2008,41:315-326.
    [100] Seo S H and Chang J Y. Organogels from1H-imidazole amphiphiles:entrapment of a hydrophilic drug into strands of the self-assembled amphiphiles.Chemistry of Materials,2005,17:3249-3254.
    [101] Tzeli D, Theodorakopoulos G, Petsalakis I D, et al. Conformations andfluorescence of encapsulated stilbene. Journal of the American Chemical Society,2012,134:4346-4354.
    [102] Zhang J, Whitesell J K and Fox M A. Photoreactivity of self-assembledmonolayers of azobenzene or stilbene derivatives capped on colloidal goldclusters. Chemistry of Materials,2001,13:2323-2331.
    [103] Grabowski Z R and Rotkiewicz K. Structural changes accompanyingintramolecular electron transfer: focus on twisted intramolecular charge-transferstates and structures. Chemical Reviews,2003,103:3899-4031.
    [104] Arzhantsev S, Zachariasse K A and Maroncelli M. Photophysics oftrans-4-(dimethylamino)-4′-cyanostilbene and its use as a solvation probe. TheJournal of Physical Chemistry A,2006,110:3454-3470.
    [105] Amatatsu Y. Skeletal relaxation effect on the charge transfer state formation of4-dimethylamino,4′-cyanostilbene. The Journal of Physical Chemistry A,2006,110:8736-8743.
    [106] An B K, Gierschner J and Park S Y. π-Conjugated cyanostilbene derivatives: aunique self-assembly motif for molecular nanostructures with enhanced emissionand transport. Accounts of Chemical Research2012,45:544-554.
    [107] Oelkrug D, Tompert A, Gierschner J, et al. Tuning of fluorescence in films andnanoparticles of oligophenylenevinylenes. The Journal of Physical Chemistry B,1998,102:1902-1907.
    [108] An B K, Kwon S K, Jung S D, et al. Enhanced emission and its switching influorescent organic nanoparticles. Journal of the American Chemical Society,2002,124:14410-14415.
    [109] Li Y P, Li F, Zhang H Y, et al. Tight intermolecular packing throughsupramolecular interactions in crystals of cyano substitutedoligo(para-phenylene vinylene): a key factor for aggregation-induced emission.Chemical Communications,2007,231-233.
    [110] Upamali K A N, Estrada L A, De P K, et al. Carbazole-based dyano-stilbenehighly fluorescent microcrystals. Langmuir,2011,27:1573-1580.
    [111] Zheng Y S and Hu Y J. Chiral recognition based on enantioselectivelyaggregation-induced emission. The Journal of Organic Chemistry,2009,74:5660-5663.
    [112] Lim C K, Kim S, Kwon I C, et al. Dye-condensed biopolymeric hybrids:chromophoric aggregation and self-assembly toward fluorescent bionanoparticlesfor near infrared bioimaging. Chemistry of Materials,2009,21:5819-5825.
    [113] Jang K, Kinyanjui J M, Hatchett D W, et al. Morphological control ofone-dimensional nanostructures of T-shaped asymmetric bisphenazine.Chemistry of Materials,2009,21:2070-2076.
    [114] Barclay T M, Cordes A W, MacKinnon C D, et al. Oligothiophenes end-cappedby nitriles. preparation and crystal structures of α,ω-dicyanooligothiophenesNC(C4H2S)nCN (n=3-6). Chemistry of Materials,1997,9:981-990.
    [115] An B K, Gihm S H, Chung J W, et al. Color-tuned highly fluorescent organicnanowires/nanofabrics: easy massive fabrication and molecular structural origin.Journal of the American Chemical Society,2009,131:3950-3957.
    [116] Javed I, Zhou T L, Muhammad F, et al. Quinoacridine derivatives withone-dimensional aggregation-induced red emission property. Langmuir,2012,28:1439-1446.
    [117] Chung J W, An B K, Kim J W, et al. Self-assembled perpendicular growth oforganic nanoneedles via simple vapor-phase deposition: one-step fabrication of asuperhydrophobic surface. Chemical Communications,2008,2998-3000.
    [118] An B K, Lee D S, Lee J S, et al. Strongly fluorescent organogel systemcomprising fibrillar self-assembly of a trifluoromethyl-based cyanostilbenederivative. Journal of the American Chemical Society,2004,126:10232-10233.
    [119] Chung J W, Yoon S J, Lim S J, et al. Dual-mode switching in highly fluorescentorganogels: binary logic gates with optical/thermal inputs. Angewandte ChemieInternational Edition,2009,48:7030-7034.
    [120] Chung J W, An B K and Park S Y. A thermoreversible and proton-inducedgel-sol phase transition with remarkable fluorescence variation. Chemistry ofMaterials,2008,20:6750-6755.
    [121] Seo J, Chung J W, Cho I, et al. Concurrent supramolecular gelation andfluorescence turn-on triggered by coordination of silver ion. Soft Matter,2012,8:7617-7622.
    [122] Xu Y, Xue P C, Xu D F, et al. Multicolor fluorescent switches in gel systemscontrolled by alkoxyl chain and solvent. Organic&Biomolecular Chemistry,2010,8:4289-4296.
    [123] Xue P C, Zhang Y, Jia J H, et al. Solvent-dependent photophysical and anionresponsive properties of one glutamide gelator. Soft Matter,2011,7:8296-8304.
    [124] Zhu L L, Yan H, Nguyen K T, et al. Sequential self-assembly for construction ofPt(ii)-bridged [3]rotaxanes on gold nanoparticles. Chemical Communications,2012,48:4290-4292.
    [125] Zhu L L, Yan H, Ang C Y, et al. Photoswitchable supramolecular catalysis byinterparticle host-guest competitive binding. Chemistry-A European Journal,2012,18:13979-13983.
    [126] Zhu L L, Li X, Ji F Y, et al. Photolockable ratiometric viscosity sensitivity ofcyclodextrin polypseudorotaxane with light-active rotor graft. Langmuir,2009,25:3482-3486.
    [127] Zhu L L, Ang C Y, Li X, et al. Luminescent color conversion oncyanostilbene-functionalized quantum dots via in-situ photo-tuning. AdvancedMaterials,2012,24:4020-4024.
    [1] Lim C K, Kim S, Kwon I C, et al. Dye-condensed biopolymeric hybrids:chromophoric aggregation and self-assembly toward fluorescent bionanoparticlesfor near infrared bioimaging. Chemistry of Materials,2009,21:5819-5825.
    [2] An B K, Kwon S K, Jung S D, et al. Enhanced emission and its switching influorescent organic nanoparticles. Journal of the American Chemical Society,2002,124:14410-14415.
    [3] Dou C D, Chen D, Iqbal J, et al. Multistimuli-responsive benzothiadiazole-coredphenylene vinylene derivative with nanoassembly properties. Langmuir,2011,27:6323-6329.
    [4] Dou C D, Han L, Zhao S S, et al. Multi-stimuli-responsive fluorescenceswitching of a donor acceptor π-conjugated compound. The Journal of PhysicalChemistry Letters,2011,2:666-670.
    [5] Mikroyannidis J A, Kabanakis A N, Sharma S S, et al. A simple and effectivemodification of PCBM for use as an electron acceptor in efficient bulkheterojunction solar cells. Advanced Functional Materials,2011,21:746-755.
    [6] Xu Y L, Zhang H Y, Li F, et al. Supramolecular interaction-inducedself-assembly of organic molecules into ultra-long tubular crystals with waveguiding and amplified spontaneous emission. Journal of Materials Chemistry,2012,22:1592-1597.
    [7] Zhu L L and Zhao Y L. Cyanostilbene-based intelligent organic optoelectronicmaterials. Journal of Materials Chemistry C,2013,1:1059-1065.
    [8] Zhu L L, Qu D H, Zhang D, et al. Dual-mode tunable viscosity sensitivity of arotor-based fluorescent dye. Tetrahedron,2010,66:1254-1260.
    [9] Barclay T M, Cordes A W, MacKinnon C D, et al. Oligothiophenes end-cappedby nitriles. preparation and crystal structures of α,ω-dicyanooligothiophenesNC(C4H2S)nCN (n=3-6). Chemistry of Materials,1997,9:981-990.
    [10] Jang K, Kinyanjui J M, Hatchett D W, et al. Morphological control ofone-dimensional nanostructures of T-shaped asymmetric bisphenazine.Chemistry of Materials,2009,21:2070-2076.
    [11] An B K, Gierschner J and Park S Y. π-Conjugated cyanostilbene derivatives: aunique self-assembly motif for molecular nanostructures with enhanced emissionand transport. Accounts of Chemical Research,2012,45:544-554.
    [12] Xue P C, Lu R, Jia J H, et al. A smart gelator as a chemosensor: application tointegrated logic gates in solution, gel, and film. Chemistry-A European Journal,2012,18:3549-3558.
    [13] Prins L J, Reinhoudt D N and Timmerman P. Noncovalent synthesis usinghydrogen bonding. Angewandte Chemie International Edition,2001,40:2382-2426.
    [14] Fages F, V gtle F and ini M. Systematic design of amide-and urea-typegelators with tailored properties. Topics in Current Chemistry,2005,256:77-131.
    [15] Crosby G A and Demas J N. Measurement of photoluminescence quantum yields.Journal of Physical Chemistry,1971,75:991-1024.
    [16] Zheng Y S, Hu Y J, Li D M, et al. Enantiomer analysis of chiral carboxylic acidsby AIE molecules bearing optically pure aminol groups. Talanta,2010,80:1470-1474.
    [17] Suksai C T and Tuntulani T. Chromogenic anion sensors. Chemical SocietyReviews,2003,32:192-202.
    [18] Gale P A. Structural and molecular recognition studies with acyclic anionreceptors. Accounts of Chemical Research,2006,39:465-475.
    [19] Bondy C R and Loeb S J. Amide based receptors for anions. CoordinationChemistry Reviews,2003,240:77-99.
    [20] Gale P A, García-Garrido S E and Garric J. Anion receptors based on organicframeworks: highlights from2005and2006. Chemical Society Reviews,2008,37:151-190.
    [21] Yoo J Y, Kim M S, Hong S J, et al. Selective sensing of anions withcalix[4]pyrroles strapped with chromogenic dipyrrolylquinoxalines. The Journalof Organic Chemistry,2009,74:1065-1069.
    [22] Kim H J, Kim S K, Lee J Y, et al. Fluoride-sensing calix-luminophores based onregioselective binding. The Journal of Organic Chemistry,2006,71:6611-6614.
    [23] Bao X P, Yu J H and Zhou Y H. Selective colorimetric sensing for F by acleft-shaped anion receptor containing amide and hydroxyl as recognition units.Sensors and Actuators B: Chemical,2009,140:467-472.
    [24] Liu B and Tian H. A ratiometric fluorescent chemosensor for fluoride ions basedon a proton transfer signaling mechanism. Journal of Materials Chemistry,2005,15:2681-2686.
    [25] Moon K S, Singh N, Lee G W, et al. Colorimetric anion chemosensor based on2-aminobenzimidazole: naked-eye detection of biologically important anions.Tetrahedron,2007,63:9106-9111.
    [26] Park J J, Kim Y H, Kim C, et al. Fine tuning of receptor polarity for thedevelopment of selective naked eye anion receptor. Tetrahedron Letters,2011,52:3361-3366.
    [27] Saravanakumar D, Sengottuvelan N, Kandaswamy M, et al. Amide-nitrophenylbased colorimetric receptors for selective sensing of fluoride ions. TetrahedronLetters,2005,46:7255-7258.
    [28] Gronert S. Theoretical studies of proton transfers.1. the potential energy surfacesof the identity reactions of the first-and second-row non-metal hydrides withtheir conjugate bases. Journal of the American Chemical Society,1993,115:10258-10266.
    [29] Shenderovich I G, Limbach H H, Smirnov S N, et al. H/D isotope effects on thelow-temperature NMR parameters and hydrogen bond geometries of (FH)2F and(FH)3F dissolved in CDF3/CDF2Cl. Physical Chemistry Chemical Physics,2002,4:5488-5497.
    [30] He X M, Hu S Z, Liu K, et al. Oxidized bis(indolyl)methane: a simple andefficient chromogenic-sensing molecule based on the proton transfer signalingmode. Organic Letters,2006,8:333-336.
    [31] Boiocchi M, Boca L D, Gómez D E, et al. Nature of urea-fluoride interaction:incipient and definitive proton transfer. Journal of the American ChemicalSociety,2004,126:16507-16514.
    [32] Auweter H, Haberkorn H, Heckmann W, et al. Supramolecular structure ofprecipitated nanosize β-carotene particles. Angewandte Chemie InternationalEdition,1999,38:2188-2191.
    [33] Tang B Z, Geng Y H, Lam J W Y, et al. Processible nanostructured materials withelectrical conductivity and magnetic susceptibility: preparation and properties ofmaghemite/polyaniline nanocomposite films. Chemistry of Materials,1999,11,1581-1589.
    [34] Gruszecki W I. Structural characterization of the aggregated forms ofviolaxanthin. Journal of Biological Physics,1991,18:99-109.
    [35] Nam H, Boury B and Park S Y. Anisotropic polysilsesquioxanes with fluorescentorganic bridges: transcription of strong π-π interactions of organic bridges to thelong-range ordering of silsesquioxanes. Chemistry of Materials,2006,18,5716-5721.
    [36] Eldridge J E and Ferry J D. Studies of the cross-linking process in gelatin gels.III. dependence of melting point on concentration and molecular weight. Journalof Physical Chemistry,1954,58:992-995.
    [37] Cui J X, Zheng Y J, Shen Z H, et al. Alkoxy tail length dependence of gelationability and supramolecular chirality of sugar-appended organogelators. Langmuir,2010,26:15508-15515.
    [38] Rajamalli P and Prasad E. Luminescent micro and nanogel formation from AB3type poly(aryl ether) dendron derivatives without conventional multi-interactivegelation motifs. New Journal of Chemistry,2011,35:1541-1548.
    [39] Lee D C, McGrath K K and Jang K. Nanofibers of asymmetrically substitutedbisphenazine through organogelation and their acid sensing properties. ChemicalCommunications,2008,3636-3638.
    [40] Zhang P, Wang H T, Liu H M, et al. Fluorescence-enhanced organogels andmesomorphic superstructure based on hydrazine derivatives. Langmuir,2010,26:10183-10190.
    [41] Yoon S J, Kim J H, Chung J W, et al. Exploring the minimal structure of a whollyaromatic organogelator: simply adding two β-cyano groups to distyrylbenzene.Journal of Materials Chemistry,2011,21:18971-18973.
    [42] Wang M, Zhang D Q, Zhang G X, et al. Fluorescence enhancement upon gelationand thermally-driven fluorescence switches based on tetraphenylsilole-basedorganic gelators. Chemical Physics Letters,2009,475:64-67.
    [43] Liu Y, Lam J W Y, Mahtab F, et al. Sterol-containing tetraphenylethenes:synthesis, aggregation-induced emission, and organogel formation. Frontiers ofChemistry in China,2010,5:325-330.
    [44] Kim T H, Kim D G, Lee M, et al. Synthesis of reversible fluorescent organogelcontaining2-(2′-hydroxyphenyl)benzoxazole: fluorescence enhancement upongelation and detecting property for nerve gas simulant. Tetrahedron,2010,66:1667-1672.
    [45] Debnath S, Shome A, Dutta S, et al. Dipeptide-based low-molecular-weightefficient organogelators and their application in water purification. Chemistry-AEuropean Journal,2008,14:6870-6881.
    [1] Kim J H, Seo M, Kim Y J, et al. Rapid and reversible gel-sol transition ofself-assembled gels induced by photoisomerization of dendritic azobenzenes.Langmuir,2009,25:1761-1766.
    [2] Wang R, Geiger C, Chen L H, et al. Direct observation of sol-gel conversion: therole of the solvent in organogel formation. Journal of the American ChemicalSociety,2000,122:2399-2400.
    [3] Wang S, Shen W, Feng Y L, et al. A multiple switching bisthienylethene and itsphotochromic fluorescent organogelator. Chemical Communications,2006,1497-1499.
    [4] Naota T and Koori H. Molecules that assemble by sound: an application to theinstant gelation of stable organic fluids. Journal of the American ChemicalSociety,2005,127:9324-9325.
    [5] Shklyarevskiy I O, Jonkheijm P, Christianen P C M, et al. Magnetic alignment ofself-assembled anthracene organogel fibers. Langmuir,2005,21:2108-2112.
    [6] Yoshio M, Shoji Y, Tochigi Y, et al. Electric field-assisted alignment ofself-assembled fibers composed of hydrogen-bonded molecules having laterallyfluorinated mesogens. Journal of the American Chemical Society,2009,131:6763-6767.
    [7] Li Y G, Liu K Q, Liu Jing, et al. Amino acid derivatives of cholesterol as “latent”organogelators with hydrogen chloride as a protonation reagent. Langmuir,2006,22:7016-7020.
    [8] Lloyd G O and Steed J W. Anion-tuning of supramolecular gel properties.Nature Chemistry,2009,1:437-442.
    [9] Maeda H. Anion-responsive supramolecular gels. Chemistry-A EuropeanJournal,2008,14:11274-11282.
    [10] Coco S, Cordovilla C, Donnio B, et al. Self-organization of dendriticsupermolecules, based on isocyanide–gold(I),–copper(I),–palladium(II), and–platinum(II) complexes, into micellar cubic mesophases. Chemistry-AEuropean Journal.2008,14:3544-3552.
    [11] Zheng Y S and Hu Y J. Chiral recognition based on enantioselectivelyaggregation-induced emission. The Journal of Organic Chemistry,2009,74:5660-5663.
    [12] Yamanaka M, Nakamura T, Nakagawa T, et al. Reversible sol–gel transition of atris–urea gelator that responds to chemical stimuli. Tetrahedron Letters,2007,48:8990-8993.
    [13] Cravotto G and Cintas P. Molecular self-assembly and patterning induced bysound waves. the case of gelation. Chemical Society Reviews,2009,38:2684-2697.
    [14] Li Y F, Wang T Y and Liu M H. Ultrasound induced formation of organogel froma glutamic dendron. Tetrahedron,2007,63:7468-7473.
    [15] Schoonbeek F S, Esch J H V, Hulst R, et al. Geminal bis-ureas as gelators fororganic solvents: gelation properties and structural studies in solution and in thegel state. Chemistry-A European Journal,2000,6:2633-2643.
    [16] Jang K, Ranasinghe A D, Heske C, et al. Organogels from functionalizedT-shaped π-conjugated bisphenazines. Langmuir,2010,26:13630-13636.
    [17] Liu J W, Yang Y, Chen C F, et al. Novel anion-tuning supramolecular gels withdual-channel response: reversible sol gel transition and color changes. Langmuir,2010,26:9040-9044.
    [18] Gronert S. Theoretical studies of proton transfers.1. the potential energy surfacesof the identity reactions of the first-and second-row non-metal hydrides withtheir conjugate bases. Journal of the American Chemical Society,1993,115:10258-10266.
    [19] Boiocchi M, Boca L D, Gómez D E, et al. Nature of urea-fluoride interaction:incipient and definitive proton transfer. Journal of the American ChemicalSociety,2004,126:16507-16514.
    [20] Shenderovich I G, Limbach H H, Smirnov S N, et al, H/D isotope effects on thelow-temperature NMR parameters and hydrogen bond geometries of (FH)2Fˉand(FH)3Fˉdissolved in CDF3/CDF2Cl. Physical Chemistry Chemical Physics,2002,4:5488-5497.
    [21] Wang C, Zhang D Q and Zhu D B. A chiral low-molecular-weight gelator basedon binaphthalene with two urea moieties: modulation of the CD spectrum aftergel formation. Langmuir,2007,23:1478-1482.
    [22] Yang H, Yi T, Zhou Z G, et al. Switchable fluorescent organogels andmesomorphic superstructure based on naphthalene derivatives. Langmuir,2007,23:8224-8230.
    [23] Lozano V, Hernández R, Ardá A, et al. An asparagine/tryptophan organogelshowing a selective response towards fluoride anions. Journal of MaterialsChemistry,2011,21:8862-8870.
    [24] Rajamalli P and Prasad E. Luminescent micro and nanogel formation from AB3type poly(aryl ether) dendron derivatives without conventional multi-interactivegelation motifs. New Journal of Chemistry,2011,35:1541-1548.
    [25] Xu D F, Liu X L, Lu R, et al. New dendritic gelator bearing carbazole in eachbranching unit: selected response to fluoride ion in gel phase. Organic&Biomolecular Chemistry,2011,9:1523-1528.
    [26] Yang X C, Lu R, Xu T H, et al. Novel carbazole-based organogels modulated bytert-butyl moieties. Chemical Communications,2008,453-455.
    [27] Qian Y, Li S Y, Wang Q, et al. A nonpolymeric highly emissive ESIPTorganogelator with neither dendritic structures nor long alkyl/alkoxy chains. SoftMatter,2012,8:757-764.
    [28] Wang Y J, Tang L M and Yu J. Investigation of spontaneous transition fromlow-molecular-weight hydrogel into macroscopic crystals. Crystal Growth&Design,2008,8:884-889.
    [29] Cui J X, Shen Z H and Wan X H. Study on the gel to crystal transition of a novelsugar-appended gelator. Langmuir,2010,26:97-103.
    [30] Duncan D C and Whitten D G.1H NMR investigation of the composition,structure, and dynamics of cholesterol-stilbene tethered dyad organogels.Langmuir,2000,16:6445-6452.
    [31] Jung J H, Shinkai S and Shimizu T. Spectral characterization of self-assembliesof aldopyranoside amphiphilic gelators: what is the essential structural differencebetween simple amphiphiles and bolaamphiphiles? Chemistry-A EuropeanJournal,2002,8:2684-2691.
    [32] Chowdhury S, Schatte G and Kraatz H B. Synthesis, structure andelectrochemistry of ferrocene–peptide macrocycles. Dalton Transations,2004,1726-1730.
    [33] Wu J S, Fechtenk tter A, Gauss J, et al. Controlled self-assembly ofhexa-peri-hexabenzocoronenes in solution. Journal of the American ChemicalSociety,2004,126:11311-11321.
    [34] Yuan W Z, Mahtab F, Gong Y Y, et al. Synthesis and self-assembly oftetraphenylethene and biphenyl based AIE-active triazoles. Journal of MaterialsChemistry,2012,22:10472-10479.
    [35] Ghodbane A, D′Altério S, Saffon N, et al. Facile access to highly fluorescentnanofibers and microcrystals via reprecipitation of2-phenyl-benzoxazolederivatives. Langmuir,2012,28:855-863.
    [36] Chen X T, Xiang Y, Song P S, et al. p-Carboxyl-N-salicylideneanilines: simplebut efficient chromophores for one-dimensional microrods withaggregation-induced emission enhancement (AIEE) characteristics. Journal ofLuminescence,2011,131:1453-1459.
    [37] Zhao Z J, Chen S M, Shen X Y, et al. Aggregation-induced emission,self-assembly, and electroluminescence of4,4′-bis(1,2,2-triphenylvinyl)biphenyl.Chemical Communications,2010,46:686-688.
    [38] Rabani E, Reichman D R, Geissler P L, et al. Drying-mediated self-assembly ofnanoparticles. Nature,2003,426:271-274.
    [39] Tang J, Ge G L and Brus L E. Gas-liquid-solid phase transition model fortwo-dimensional nanocrystal self-assembly on graphite. The Journal of PhysicalChemistry B,2002,106:5653-5658.
    [1]孔丽,孙涛,张峰,等.基于胆固醇的有机超分子智能凝胶.化学进展,2012,24:790-800.
    [2] ini M, V gtle F and Fages F. Cholesterol-based gelators. Topics in CurrentChemistry,2005,256:39-76.
    [3] Svobodová H N, Virpi N, Kolehmainen E, et al. Recent advances in steroidalsupramolecular gels. RSC Advances,2012,2:4985-5007.
    [4] Kim T H, Kwon N Y and Lee T S. Synthesis of organogelling, fluorideion-responsive, cholesteryl-based benzoxazole containing intra-andintermolecular hydrogen-bonding sites. Tetrahedron Letters,2010,51:5596-5600.
    [5] Yoon S J, Kim J H, Chung J W, et al. Exploring the minimal structure of awholly aromatic organogelator: simply adding two β-cyano groups todistyrylbenzene. Journal of Materials Chemistry,2011,21:18971-18973.
    [6] Estroff L A, Leiserowitz L, Addadi L, et al. Characterization of an organichydrogel: a cryo-transmission electron microscopy and X-ray diffraction study.Advanced Matererials,2003,15:38-42.
    [7] Sáez J A, Escuder B and Miravet J F. Selective catechol-triggeredsupramolecular gel disassembly. Chemical Communications,2010,46:7996-7998.
    [8] Suzuki M, Nakajima Y, Yumoto M, et al. Effects of hydrogen bonding and vander waals interactions on organogelation using designed low-molecular-weightgelators and gel formation at room temperature. Langmuir,2003,19:8622-8624.
    [9] Rajaganesh R, Gopal A, Das T M, et al. Synthesis and properties of amphiphilicphotoresponsive gelators for aromatic solvents. Organic Letters,2012,14:748-751.
    [10] Kar T D, Debnath S,. Das D, et al. Organogelation and hydrogelation oflow-molecular-weight amphiphilic dipeptides: pH responsiveness inphase-selective gelation and dye removal. Langmuir,2009,25:8639-8648.
    [11] Xue M, Gao D, Liu K Q, et al. Cholesteryl derivatives as phase-selective gelatorsat room temperature. Tetrahedron,2009,65:3369-3377.
    [12] Yu H T, Liu B, Wang Y H, et al. Gallic ester-based phase-selective gelators. SoftMatter,2011,7:5113-5115.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700