淫羊藿苷对骨髓间充质干细胞增殖及向心肌细胞分化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究温阳补肾中药淫羊藿的活性成分淫羊藿苷(ICA)对体外培养的骨髓间充质干细胞(MSCs)增殖及向心肌细胞分化的影响,为中药联合干细胞移植治疗心力衰竭奠定基础。
     方法:体外培养人MSCs,取第三代MSCs,用MTT法检测淫羊藿苷(分20ug/l、40ug/l、80ug/l、160ug/l四个浓度组)对MSCs增殖的影响。以淫羊藿苷(ICA)、5-氮杂胞苷(5-aza)及两者联合作用,作为分化诱导剂,连续观察四周,相差显微镜下观察其形态变化,免疫荧光方法检测心肌特异性肌钙蛋白I(TroponinI,cTnI)、连接蛋白43(C0nnexin43,CX43),流式细胞技术检测心肌样细胞分化率(即cTnI、CX43表达阳性的细胞百分比),应用半定量RT-PCR技术分析GATA-4、Nkx2-5相关调空基因在分化过程中的表达,应用Western-blotting方法从蛋白水平分析GATA-4、Nkx2-5在分化过程中的表达。
     结果:淫羊藿苷组吸光度(OD值)较对照组高(P<0.01),且淫羊藿苷浓度为80ug/l最合适。免疫荧光结果:5-aza诱导剂组和淫羊藿苷+5-aza诱导剂组均有cTnI和CX43表达,淫羊藿苷组有微弱的cTnI和CX43表达,而对照组无表达。流式细胞技术检测结果:淫羊藿苷+5-aza组表达cTnI、CX43分别为47.22%、44.43%,5-aza组表达cTnI、CX43分别为29.10%、27.15%,两组比较有统计学差异(P<0.01),单纯淫羊藿苷组弱表达cTnI、CX43分别为7.02%、7.69%,对照组基本不表达cTnI、CX43。半定量RT-PCR结果显示:5-aza组和淫羊藿苷+5-aza组在诱导28天后,有较强表达GATA-4、Nkx2-5,且淫羊藿苷+5-aza组表达GATA-4、Nkx2-55-aza组增强,淫羊藿组弱表达GATA-4、Nkx2-5,对照组均无GATA-4、Nkx2-5表达。Western-blotting结果显示5-aza组和淫羊藿苷+5-aza组在诱导28天后,有较强表达GATA-4、Nkx2-5,且淫羊藿苷+5-aza组表达GATA-4、Nkx2-55-aZa组增强,淫羊藿组弱表达GATA-4,无表达Nkx2-5,对照组无GATA-4、Nkx2-5表达。
     结论:淫羊藿苷能促进MSCs增殖。淫羊藿苷能协同5-aza诱导MSCs向心肌细胞分化,可以作为更好的促进MSCs向心肌细胞分化的条件。淫羊藿苷可能有诱导MSCs向心肌细胞分化的趋势,有待进一步研究。
Objective:To study the influnce on proliferation and differentiation of cardiomyocytes from marrow mesenchymal stem cells (MSCs) in vitro by icarilin (ICA) which is the active component of epimedium. Epimedium has the function of warming yang and nourishing kidney.
     Methods: MSCs were isolated and cultured from human bone marrow. MSCs derived from the third or the forth were cultured in vitro for experiment. The effect of icarilin (four concentration groups :20ug/l, 40ug/l,80ug/l,160ug/l)on proliferation of MSCs was tested by MTT method. During the inducing process,ICA, 5-azacytidine and ICA+5-aza were used as inducing factors. The MSCs differentiation was observed for four weeks under phase-contrast microscope. The Immunofluorescence technique was used for the expression of TroponinI (cTnI), Connexin43 (CX43), and using flow cytometry to test the cardiomyocytes different-tiation rate(percentage of the cells with expression of cTnI, CX43). The expression of GATA-4 and Nkx2-5 was tested by semi-quanti- tative PCR and Western-blotting.
     Results: The OD of ICA group was higher than the control group(P< 0.01), and the ICA concentration of 80ug/l was best. Fluorescence result showed that, both 5-aza group and ICA+5-aza group had expression of cTnI and CX43. The expression of cTnI and CX43 was weak for ICA group, and it was no expression for control group. Flow cytometry showed that the percentage of cTnI, CX43 expression was 47.22% and 44.43% for ICA+5-aza group, 29. 10% and 27. 15% for 5-aza group. The rate of positive cells with ICA+5-aza induction was higher than the induction of 5-aza(P< 0. 01). The ICA group had lower expression(7. 02%、7. 69%) and the control group had almost no expression. Semi-quantitative PCR and Western-blotting showed that the expression levels of GATA-4 and Nkx2-5 with ICA+5-aza and 5-aza induction were significantly higher than the induction of simplex ICA and no induction. The expression levels of GATA-4 and Nkx2-5 with induction of ICA+5-aza were higher than that of 5-aza.
     Conclusion: ICA can accelerate the proliferation of MSCs. ICA can accelerate the differentiation of cardiomyocytes from MSCs combining with 5-aza.The effect of 5-aza plus ICA is the better factor in inducing MSCs to differentiate into cardiomyocytes. ICA might has the trend of inducing MSCs to differentiate into cardiomyocytes, which needs further study.
引文
[1]裴雪涛 主编.干细胞生物学(第一版)[M].北京:科学出版社,2003.
    [2]Tsai RY,Kittappa R,McKay RD.Plasticity,niches,and the use of stem cells.Dev Cell,2002,2(10):707-712.
    [3]Pittenger MF,Martin BJ.Martin.Mesenchymal stem cells and their potential as cardiactherapeutics.Circ.Res,2004,95:9-20.
    [4]Donald G.Phinney.Biochemical heterogeneity of mesenchymal stem cell populations.Cell Cycle,2007,6(23):2884-2889.
    [5]Phinney DG,Hill K,Michelson C,et al.Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental potential and broad therapeutic efficacy.Stem Cells,2006,24:186-198.
    [6]Preston SL,Alison MR,Forbes SJ,et al.The new stem cell biology:something for everyone.J Clin Pathol:Mol Pathol,2003,56:86-96.
    [7]Nardi NB,Meirelles LS.Mesenchymal stem cells:isola- tion,in vitro expansion and characterization.Handb Exp Pharmacol.2006,(174):249-282.
    [8]Zhou DH,Huang SL,Wu YF,Wei J,et al.The expansion and biological characteristics of human mesenchymal stem cells.Zhonghua Er Ke Za Zhi,2003,41(8):607-610.
    [9]Lee HS,Huang GT,Chiang H,Chiou LL,et al.Multipotential mesenchymal stem cell from femoral bone marrow near the site of osteonecrosis. Stem Cells,2003,21:190-199.
    [10] Xu W, Zhang X, Qian H, et al. Mesenchymal stem cells from adult human bone marrow differentiate into a cardiomyocyte phenotype in vitro. Exp Biol Med, 2004, 229: 623-631.
    [11] Antonitsisa P, Ioannidou-Papagiannaki E, Kaidoglou A, et al. In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine. Interactive Cardiovascular and Thoracic Surgery, 2007, 10 (6): 593-597.
    [12] 王海萍, 张雷, 李秀华等.大鼠骨髓间充质干细胞体外诱导分化为心肌细胞[J].解剖学报, 2007, 38(1): 70-74.
    [13] Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. Clin Invest, 1999,103(5): 697-705.
    [14] Zhang FB, Li L, Fang B, et al. Passage2restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells. Biochem Biophys Res Commun, 2005,336: 784-792.
    
    [15] Li X, Yu X, et al. Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment. J Mol Cell Cardiol. 2007, 42(2):295-303.
    [16] Haider HK, Ashraf MM. Bone marrow stem cell transplantation for cardiac repair. Am J Physiol Heart Circ Physiol 2005, 288: 2557-2567.
    [17] Orlic D, Kajstura J, Chimenti S,et al. Mobilized bone marrow cells repair the infracted heart , improving function and survival. Proc Natl Acad Sci USA ,2001 ,98 (18) :10344-10349.
    [18] Shake JG, Gruber PJ, Baumgartner WA,et al. Mesenchymal stem cells implantation in a swine myocardial infarct model:engraftment and functional effects. Annthorac Surg 2002,73:1919-1926.
    [19] Wang JA, Fan YQ, Li CL, et al. Human bone marrow- derived mesenchymal stem cells transplanted into damaged rabbit heart to improve heart function. J Zhejiang Univ Sci B. 2005, 6(4): 242-248.
    [20] Nagaya N, Kangawa K,Itoh T, et al. Transplantation of mesenchymal stem cells improves cardiac function in a rat model of dilated cardiomyopathy. Circulation, 2005, 112:1128-1135.
    [21] Jiang W, Ma A, Wang T, et al. Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo: a time-series study. Pflugers Arch Eur J Physiol, 2006, 453:43-52.
    [22]Tang J,Xie Q,Pan G,Wang J,et al.Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion.Eur J Cardiothorac Surg.2006,30(2):353-361.
    [23]Grauss RW,Winter EM,van Tuyn J,et al.Mesenchymal stem cells from ischemic heart disease patients improve left ventricular function after acute myocardial infarction.Am J Physiol Heart Circ Physiol,2007,293(4):2438-2447.
    [24]Liu JF,Wang BW,Hung HF,et al.Human mesenchymal stem cells improve myocardial performance in a splenectomized rat model of chronic myocardial infarction.J Formos Med Assoc,2008,107(2):165-174.
    [25]唐俊明,王明江等.移植的间充质干细胞与宿主心肌匹配整合实验研究[J].南京医科大学学报,2007,27(1):38-42.
    [26]Miwa M,Kozawa O,Tokuda H,et al.Mitogen-activated protein(MAP)Kinases are involved in interleukin-1(IL-1)-induced IL-6 synsis in osteoblasts:modulation not of p38 MAP kinase,but ofp42/p44MAP kinase by IL-1-activated protein kinase C.Endocrinology,1999,140(11):5120-5125.
    [27]Jasiwal RK,Jaiswal N,et al.Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase.J Bionl Chem 2000,275(13):9645-9652.
    [28]Mulder KM.Role of ras and mapks in TGFbeta signaling.Cytokine Growth Factor Rev,2000,11(1):23-35.
    [29]Attisano L,Wrana JL.Signa.l transduction by the rGF-beta superfamil,Science,2002,296(5573):1646-1647.
    [30]Hayashida T,Decaestecker M,Schnaper HW.Cross-talk between ERK MAP kinase and Smad signaling pathways enhances TGF-beta-dependent responses in human mesangial celIs[J].FASEB J,2003,17(11):1576-1578.
    [31]Watanabe H,de Caestecker MP,Yamada Y.Transcriptional crosstalk between Smad,ERK1/2,and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-(3-induced aggrecan gene expressionin chondrogenic ATDC5 cells[J].J Biol &Chem,2001,276(17):14466-14473.
    [32]Etheridge SL,Spencer GJ,Heath DJ,et al.Expression profiling and functional analysis of Wnt sigalingmechanisms in mesenchymal stem cells[J].Stem Cells,2004,22(5):849-860.
    [33] Zhou S, Eid K, Glowacki J, et al. Cooperation between TGF-β and Wnt pathways during chondrocyte and adipocyte differtiation of human marrow stromal cells[J].Bone Miner. Res. 2004, 19 (3):463-470.
    [34] Jadlowiec J, Koch H, Zhang X, et al. Phosphophoryn regulates the expression and differentiation of NIH3T3, MC3T3-E1, and human mesenchymal stem cells via the integrin/MAPK signaling pathway. 2004, 279(51):53323-53330.
    [35] Strauer BE , Brehm M,Zeus T , et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation,2002, 106(15):1913-1918.
    [36] Emerson C ,Perin MD ,Hans FR , et al. Transsendocardial ,autologous bone marrow cell transplantation for severe ,chronic ischemic heart failure. Circulation,2003, 107(18):2294-2302.
    [37] Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet, 2004, 364(9429):141-148.
    [38] Schaefer A, Meyer GP, Fuchs M, et al. Impact of intracoronary bone marrow cell transfer on diastolic function in patients after acute myocardial infarction: results from the BOOST trial. European Heart Journal, 2006, 27(8):929 - 935.
    [39] Assmus B, Honold J, Sch(a|¨)chinger V, et al. Transcoronary transplant-tation of progenitor cells after myocardial infarction. N Engl J Med 2006, 355(12):1222-1232.
    [40] Schachinger V, Erbs S, Elsasser A, et al. Improved clinical outcome after ntracoronary administration of bone-marrow-derived rogeni-tor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial.Eur Heart J,2006, 27 (23) :2775 - 2783.
    [1]潘志伟,王秋娟,杨涓等.淫羊藿苷对异丙肾上腺素致大鼠急性心肌缺血的影响[J].中国药理学通报,2007,23(5):622-625.
    [2]潘志伟,王秋娟,徐静等.淫羊藿苷对大鼠离体心脏的作用及对血液流变学的影响[J].中国药科大学学报,2007,38(5):429-432.
    [3]王英军,孙英莲,唐炜等.淫羊藿总苷抗实验性心肌缺血的作用[J],特产研究,2006,28(3):34-35.
    [4]王秋娟,潘志伟,杨涓等,淫羊藿总黄酮不同给药途径对实验性心肌缺血的影响[J].2007,12(7):794-799.
    [5]许兰芝,陈维宇.淫羊藿总黄酮对肾上腺素能受体阻断作用的研究[J].中国药理学通报,1994,10(4):311-313.
    [6]许兰芝.淫羊藿对兔血压的影响[J].中国药理学通报,1994,10(4):311-312.
    [7]关利新,衣欣,杨履艳等.淫羊藿苷扩血管作用机制的研究[J].中国药理学通报,1996,12(4):320-322.
    [8]刘崇铭,王敏,梁利春.淫羊藿对脑血流与脑缺血的作用[J].沈阳药学院学报,1995,12(3):192-194.
    [9]沈磊,张鸽,吴玉林.淫羊藿总黄酮对大鼠局灶性脑缺血的保护作用[J].2007,18(4):266-269.
    [10]李梨,周岐新,石京山.脑缺血再灌对小鼠脑细胞色素C氧化酶亚基ⅡmRNA表达的影响及淫羊藿苷的作用[J].第三军医大学报,2006,28(7):685-687.
    [11]王学美,富宏.刘庚信.淫羊藿、枸杞子对老年大鼠线粒体DNA缺失、线粒体呼吸链酶复合体和AT合成的影响[J].北京大学学报(医学版),2002,(1):68-71.
    [12]王敏,刘崇铭,张宝凤.淫羊藿苷对血管平滑肌的作用[J].沈阳药学院学报,1993,10(3):185-187.
    [13]王伟,张涛.5种中药黄酮对血管平滑肌细胞凋亡的交互作用[J].北京中医药大学学报,2000,23(4):18-21.
    [14]周乐,崔燎等.淫羊藿对肾阻虚雄性大鼠肾脏BMP-7表达的影响[J].广东医学院学报,2007,25(4):371-374.
    [15]程庆,陈香美,师锁柱等.中药淫羊藿对慢性肾衰大鼠免疫病理及细胞外基质的影响[J].中华内科杂志,1994,33(2):83-86.
    [16]吴东方,马俊玲,周健等.淫羊藿提取液对庆大霉素急性肾损伤的影响[J].中国医院药学杂志,2002,22(5):270-271.
    [17]李亚林,洪东荣.自拟淫羊藿汤配合激素治疗成人原发性肾病综合征55[J].福建中医药,2001,(3):11-13.
    [18]李光荣.牛蒡子淫羊藿汤治疗糖尿病肾病106例1临床观察[J].湖南中医杂志,1998,(6):17-20.
    [19]陈香美,田劲,于力方等.淫羊藿、虫草菌丝、黄芪防治庆大霉素所致急性肾损害的实验研究.中国病理生理杂志,1993,(6):758-760.
    [20]Kim Seung-hyun,Lee Chang-hoon,Cho Jung-hoon,et al.Elects of Epimedii koreanum on the Motility of Rat Sperm[J].International Exchanges,2005,(6):475-478.
    [21]章振保,杨庆涛,杨镜秋等.淫羊藿苷、菟丝子提取物对雄激素部分缺乏大鼠生殖保护作用的比较研究[J].中国老年学杂志,2006,26(10):1389-1391.
    [22]王玲珑,刘武江,付杰等.淫羊藿苷对大鼠阴茎海绵体压力和周围血压的影响[J].中华医学杂志 2004,84(2):142-145.
    [23]佘运初,王晟,秦达念等.淫羊藿总黄酮对雄性大鼠生殖功能影响的初步研究[J].中国男科学杂志,2003,17(5):294-296.
    [24]罗曼.淫羊藿对荷兰豚鼠发育的影响[J].中国野生植物资源,1998,18(1):38-39.
    [25]付杰,乔梁,金泰乙等.淫羊藿苷对家兔阴茎海绵体cGMP浓度的效果[J],中国药理学通报,2002,18(4):4301-4302.
    [26]乔梁,辛钟成,付杰等.阴蒂海绵体中磷酸二酯酶5表达及淫羊藿甘对cGMP 浓度的影响[J].中华泌尿外科杂志,2002(11):670-672.
    [27]王菲,郑杨,肖洪彬等,择时服用淫羊藿对性激素水平的影响[J].中医杂志,2001,42(10):6191-6193.
    [28]秦达念等.淫羊藿总黄酮对雄性大鼠生殖功能影响的初步研究[J].中国男科学杂志,2003,17(5):2951-2954.
    [29]许青媛.淫羊藿对大鼠性腺功能的影响[J].中国药理与临床,1996,12(2):22-23.
    [30]李芳芳,李思,吕占军等.淫羊藿苷对大鼠卵泡颗粒细胞和肾上腺皮质细胞分泌功能的影响[J]中国中药杂志,1997,22(8):499-501.
    [31]赵勇,崔正言,张玲等.淫羊藿甙协同诱生IL-2、3、6作用的研究.中国免疫学杂志,1996,12(1):43-45.
    [32]李书桐,李铁军,郑钦岳等.淫羊藿苷对小鼠体外脾脏细胞增殖及产生集落刺激因子样活性的影响[J].第二军医大学学报 1995,6(40):340-343.
    [33]葛林阜,董政军,黄宁等.淫羊藿苷对小鼠放射性损伤后造血调控的影响[J].肿瘤防治杂志,2003,10(70):687-688.
    [34]赵勇,崔正言,张玲等.淫羊藿苷对人急性粒白血病细胞分化的影响[J].中华肿瘤杂志,1997,19(1):531-534.
    [35]郭鹏,周芳,孔凡盛等.淫羊藿苷对急性早幼粒白血病细胞体内外效应的研究[J],肿瘤防治杂志,2001,8(60):622-624.
    [36]冯晓燕,严鲁萍,杨源.淫羊藿苷对骨髓增生异常综合征模型大鼠骨髓细胞凋亡的影响[J].时珍国医国药,2007,18(12):3070-3071.
    [37]王英军,唐炜,孙英莲等.淫羊藿总苷对急性血瘀大鼠血液流变学及血栓形成的影响[J],特产研究,2006,28(4):29-33.
    [38]周金黄主编.中药免疫药理学.人民军医出版社[M].1994年9月.第一版,157-171.
    [39]杨静玉,于庆海.淫羊藿总黄酮对免疫功能低下小鼠的免疫增强作用[J].沈阳药科大学学报,1998,15(2):94-96.
    [40]葛林阜,董政军,姜国胜等.淫羊藿甙对小鼠免疫调节作用的研究[J].中华实用医学,2001,3(3):25-27.
    [41]李书桐,李铁军,郑钦岳.淫羊藿苷对小鼠腹腔巨噬细胞功能的影响[J].第二军医大学学报,1995,16(6):541-542.
    [42]李书桐,李铁军,郑钦岳等.淫羊藿甙对小鼠体外脾脏细胞增生及产生集落刺激因子样活性的影响[J].第二军医大学学报,1995,16(4):340-343.
    [43]沈自尹,陈瑜.淫羊藿总黄酮与补肾复方对皮质酮大鼠T细胞凋亡相关基因群调控的对比研究[J].中国免疫学杂志,2002,(18):187-192.
    [44]田园丰,郭贤坤,向延久等.淫羊藿、鹌鹑复方对免疫力低下小鼠免疫功能的影响[J].中国临床康复,2006,10(15):148-150.
    [45]肖幸丰,王志强,楼宜嘉等.淫羊藿苷伍用三七总皂苷对小鼠免疫功能调节作用[J].中草药,2006,37(6):888-891.
    [46]肖崇厚,孙奕,骆永珍等.川产淫羊藿对羟基脲阳虚小鼠IL-2活性的影响[J].中国免疫学杂志,1995,11(6):373-375.
    [47]廖洪军,陈香美,李文戈等.淫羊藿对血液透析患者生存质量及细胞免疫功能的影响[J].中国中西医结合杂志,1995,15(4):202-204.
    [48]王天然,邢善田,周金黄.淫羊藿苷促进抗体的作用[J].中国免疫学杂志,1986,2(2):74-75.
    [49]高素强,傅得兴,张红梅等.淫羊藿及其复方防治骨质疏松的研究进展[J].中国中药杂志,1999,24(4):249-252.
    [50]吕明波,刘兴炎,葛宝丰等.淫羊藿苷对小鼠骨髓源性破骨细胞诱导生成及骨吸收功能的影响[J].中国骨质疏松杂,2007,13(5):315-319.
    [51]王松,沈霖,杨月琴等.中药淫羊藿联合有氧运动对大鼠骨髓组织FN表达的影响[J].中国中医骨伤科杂志,2007,15(10):11-13.
    [52]马慧萍,贾正平,白孟海等.淫羊藿总黄酮对大鼠实验性骨质疏松生化学指标的影响[J].中国药理学通报,2003,19(2):187-190.
    [53]董远芳.淫羊藿等中药治疗骨质疏松症的临床观察[J].中药材,2004,27(8):620-622.
    [54]佟岩,邝宁子,沓水容等.淫羊藿及其复方中药制剂防治骨质疏松的实验研究及临床应用[J].辽宁药物与临床,2002,12(1):26-29.
    [55]张玲,王芸,毛海婷等.淫羊藿苷抑制肿瘤细胞端粒酶活性及其调节机制的研究[J].中国免疫学杂志,2002,(18):191-195.
    [56]毛海婷,张玲,王芸等.淫羊藿甙对高转移肺癌细胞恶性表型的逆转作用及其调控机制的研究[J].中国肿瘤生物治疗杂志,1999,(1):12-16.
    [57]毛海婷,张玲.淫羊藿苷抗癌作用机制的实验研究[J].中药材,2000,23(9):554-558.
    [58]葛林阜,董政军,姜国胜等.淫羊藿苷对急性早幼粒白血病细胞端粒酶活性的影响[J],中国肿瘤生物治疗杂志,2002,9(1):361-3364.
    [59]林新,李文魁,罗崇念等.淫羊藿苷对三种肿瘤细胞株增殖的抑制作用 [J].中国药理学与毒理学杂志,1997,11(3):183-185.
    [60]郝炳华,陶明,何立立等.淫羊藿总黄酮对荷瘤小鼠细胞免疫红细胞免疫功能的影响[J].西安医科大学学报,1999,20(3):323-324.
    [61]赵勇,崔正言.MTT法检测淫羊藿苷对几种瘤细胞株增殖的抑制作用[J].上海免疫学杂志,1995,15(3):167-168.
    [62]赵勇,崔正言.淫羊藿苷对HL-60细胞诱导分化作用的研究[J].中华血液学杂志,1996,17(2):98-100.
    [63]崔正言,张玲,赵勇等.淫羊藿苷协同诱生细胞因子及增强抗癌效应细胞活性的研究[J].中国肿瘤生物治疗杂志,1995,2(4):353-355.
    [64]陈瑜,沈自尹,陈伟华.淋巴细胞基因表达谱揭示淫羊藿总黄重建衰老免疫稳态的分子机制[J].华夏医药,2005,(5):376-378.
    [65]刘小雨,沈自尹,吴斌等.衰老进程中大鼠淋巴细胞凋亡率的比较研究及淫羊藿总黄酮的干预作用[J].中医中药与免疫,中国免疫学杂志,2007,23(9):803-805.
    [66]孟宪丽,张艺,李建亚等.淫羊藿总黄酮对老年大鼠神经内分泌免疫调节作用的研究[J].中药药理与临床,1998,14(4):10-11.
    [67]孟宪丽,曾南,张艺等.淫羊藿有效成分对老龄雄性大鼠下丘脑单胺类神经递质及其他脑功能作用的研究[J].中国中药杂志,1996,21(11):683.
    [68]刘方,武子斌.中药材抗氧化及自由基清除活性的研究[J].中国中药杂志,2001,36(7):449-443.
    [69]刘福春,丁光霞,李菊仙.淫羊藿多糖对羟基脲所致“阳虚”动物骨髓细胞DNA合成率的影响.中国中药杂志,1991,16(10):620-623.
    [70]高子范,扬宗智,马克昌等.淫羊藿注射液对试管内鸡胚骨生长的促进作用[J].中西医结合杂志,1985,5(3):172-173.
    [71]朱丹雁,楼宜嘉.淫羊藿苷诱导小鼠胚胎干细胞体外定向分化为心肌细胞方法学研究[J].浙江大学学报(医学版),2007,42(9):667-671.
    [72]殷晓雪,陈仲强,党耕町等.淫羊藿苷对人成骨细胞增殖与分化的影响[J].2005,30(4):289-291.
    [73]刘素彩,孔德娟,赵京山等.淫羊藿苷对大鼠成骨细胞增殖与分化的影响[J],中国中医基础医杂志,2001,7(8):28-30.
    [74]王俊勤,胡有谷,郑洪军等.淫羊藿苷对体外培养成骨细胞增殖和分化的[J],中国临床康复,2002,6(9):3071-3074.
    [75]Zhang YW,Morita I,Shao G,et al.Screening of antihypoxia/reoxygenation agents by an in vitro model.Partl:Nat ural inhibittors for proteint yrosine kinase activated by hypoxia/reoxygenation in cultured human umbilical vein endot helial cells [J].Plant a Med,2000,66(2):114-122.
    [76] Lee MK, Choi YJ, Sung SH, et al . Antihepatotoxic activity of icariin , a major constit uent of Epimedium koreanum[J]. Plant a Med, 1995, 61(6) :523-532.
    [77] Kuroda M, Mimaki Y,Sashida Y, et al. Flavonol glycosides from Epimedium sagit tat um and their neurite outgrowth activity on PC12 cells[J]. Plant a Med ,2000,66(6):575-585.
    [1]刘海江,王小平等.淫羊藿苷和黄芪苷Ⅰ对骨髓基质细胞增殖及成骨能力的影响[J].中药材,2006,29(10):1 062-1065.
    [2]王俊勤,胡有谷,郑洪军等.淫羊藿甙对体外培养成骨细胞增殖和分化的影响.中国临床康复[J].2002,6(9):1307-1308.
    [3]李梨,周岐新,石京山.淫羊藿苷药理作用研究进展[J].中国药房,2005,16(12):952-954.
    [4]赵勇,崔正言,张玲等.MTT法检测淫羊藿苷对几种瘤细胞株增殖的抑制作用[J].上海免疫学杂志,1995,15(3):167-168.
    [5]赵勇,张玲,崔正言等.淫羊藿苷对HL-60细胞增殖与分化的影响[J].中国药理学通报,1996,12(1):52-54.
    [1]Taylor DA.Cellular cardiomyop lasty with autologous skeletal myoblasts for ischemic heart disease and heart failure[J].Current Controlled Trials in CardiovascularMedicine,2001,2:208-210.
    [2]Dimarakis I,Habib Ni,Gordon MY.Adult bone marrowderived stem cells and the injured heart:just the beginning[J].Euro J Cardiothoracic Surgery,2005,28(5):665-676.
    [3]Amado LC,Saliaris AP,Schuleri KH et al.Cardiac repairwith intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction[J].PNAS,2005,102(32):11474-11479.
    [4]Kang HJ,Kim HS,Park YB.Stem cell therapy for myocardial infarction.CMAJ,2004,171(5):442-443.
    [5]Antonitsis P,Ioannidou-Papagiannaki E,Kaidoglou A,et at.In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells.The role of 5-azacytidine.Interactive CardioVascular and Thoracic Surgery,2007,10(6):593-597.
    [6]Makino S,Fukuda K,Miyosh I,et al.Cardiomyocytes can be generated from marrow stem cells in vitro[J].JClinInvest,2002,103(5):697-701.
    [7]Konieczny SF,Emerson CP.52Aazacytidine induction of stable mesenchymal stem cell lineage from 10 T1/2 cells:evidence of regulatory genes controlling determination[J].Cell,1984,38:791-800.
    [8]刘海江,王小平等.淫羊藿苷和黄芪苷Ⅰ对骨髓基质细胞增殖及成骨能力的影响.中药材,2006,29(10):1062-1065.
    [9]Ricehiuti V,Apple FS.RNAexpression of cardiac troponin T isoform indiseased human musle[J].Clin chem,1999,45(12):2129-2135.
    [10]Gros D,Dupays L,Alcolea S,et al.Genetically modified mice:Tools to decode the functions of connexins in the heart2new models for cardiovascular research[J].Cardiovasc Res,2004,62(2):299-315.
    [11]Gustein DE,Morley GE,Tamaddon H,et al.Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43[J].Circ Res,2001,88(3):333-348.
    [12] Raffin M, Leong LM, Rones MS, et al. Subdivision of the cardiac Nkx2-5expression domain into myogenic and nonmyogenic compartments. Dev Biol,2000,218(2):326-340.
    [13] Jamali M, Karamboulas C, Rogerson PJ, et al. BMP signaling regulates Nkx2-5 activity during cardiomyogenesis. FEBSLett,2001, 509 (1):126-130.
    [14] Small EM,Krieg PA.Transgenic analysis of the atrialnatriuretic factor(ANF)promoter: Nkx225 and GATA-4 binding sites are required for atrial specific expression of ANF. Dev Biol, 2003,261 (1) : 116-131.
    [15] Garg V, Kathiriya IS, Barnes R, et al. GATA-4 mutations cause human congenital heart defects and reveal an interaction with TBX5. Nature, 2003,424(6 947): 443-447.
    [16] Sepulveda JL, Vlahopoulos S, Iyer D, et al. Combinatorial expression of GATA-4 , Nkx2-5 , and serum response factor directs early cardiac gene activity. J Biol Chem,2002, 277(28):775-782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700