PDE4D基因多态性与河南汉族人群缺血性脑血管病的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的:
     缺血性脑血管病(ischemic cerebrovascular disease ICVD)是遗传因素和环境因素共同作用而导致的一种多基因遗传病,发病机制异常复杂,其发病率、致残率及死亡率高,给个人、家庭及社会带来沉重的负担。我国属于缺血性脑血管病的高发国家,并且发病率呈逐年上升的趋势。对现有的已知危险因素如高血压、糖尿病、高血脂、动脉粥样硬化、心律不齐、吸烟等进行良好控制后,许多患者仍不可避免地发生脑血管病,这促使学者们不断寻找新的脑血管病的危险因素,特别是从基因水平确定不同个体对脑血管病的易感性。
     2003年,卒中基因解码科学小组人员在冰岛人群中发现了与家族性缺血性脑血管病相关的基因:磷酸二酯酶4D (phosphodiesterase4D PDE4D)基因与脑动脉粥样硬化的发生发展有关。PDE4D为第二信使环磷酸腺苷(eyclicAdenosineMonophosphate cAMP)特异性PDE, PDE4D可通过其水平和活性的变化影响细胞内cAMP水平,cAMP水平影响血管细胞的增殖和移行,参与动脉粥样硬化的进程,从而增加心脑血管疾病的发病风险。该基因和以往认识的与糖尿病、血脂代谢异常、高血压等脑血管病危险因素的相关基因是不同的,其对缺血性脑血管病具有独立的致病作用,被认为是新发现的卒中候选基因。
     为了进一步探讨PDE4D基因多态性与ICVD的相关性,本研究利用聚合酶链反应—限制性片段长度多态性(Polymerase chain reaction restriction-fragment length polymorphism PCR-RFLP)技术,在河南汉族人群中对PDE4Drs918592和rs2910829位点多态性进行检测,研究其分布情况,并进一步探讨该位点多态性与ICVD相关性。从而为脑血管病的预防研究提供理论依据。
     研究对象:
     1.病例组
     随机选取2007年4月至2010年5月在河南省二甲以上医院神经内科住院的缺血性脑血管病患者400例,其中男238例,女162例,年龄51.15.±10.16。所有病例均经临床检查(生化检验、病史、CT或MRI)确诊,所有病例均符合WHO缺血性脑卒中的定义(急性发生的血管或血液异常导致脑部血液循环障碍而发生的神经功能缺损综合征),头颅CT或MRI排除出血,症状持续24小时(以上)
     2.对照组
     随机选取同期体检健康的随机个体400例,无冠心病、脑血管病和其他周围血管病史,其中男235例,女165例,年龄46.00±12.04岁。
     以上两组研究对象均是在研究对象知情同意的原则下进行。均为河南地区汉族人,饮食结构相似,各研究对象之间排除癫痫、接受器官移植、癌症及肝肾功能不全等疾病患者。
     研究方法:
     取研究对象外周静脉血5 mL加EDTA抗凝,用常规的酚/氯仿法提取DNA。设计合成引物,PCR仪扩增获得目的片段,用ApaLI、SspI限制性内切酶酶切,2.5%琼脂糖凝胶电泳检测基因型,在紫外分析凝胶成像仪上观察基因型并照相分析。
     统计学处理:
     所有数据处理均采用SPSS15.0统计软件包进行统计学处理,ICVD组与正常人群之间基因型频率和等位基因频率的差异用x2检验,并计算比数比(Odds Ratio, OR)及95%可信区间(CI),以估计基因突变对疾病发生的相对危险度,检验水准a=0.05。用Hardy-Weinberg (HWE)平衡检验估计群体调查资料的可靠性。HWE平衡检验应用SHEsis软件(P>0.05);单倍体型分析采用Shesis软件。
     结果:
     1.在河南汉族人群中,PDE4D基因rs918592和rs2910829位点基因型频率的分布均符合Hardy-weinberg平衡(P>0.05),具有良好的人群代表性。
     2.在河南汉族人群中,PDE4Drs918592位点在ICVD组和对照组相比,基因型频率和等位基因频率差异有统计学意义(P<0.05);进行性别分层分析结果显示,在男性ICVD组与对照组之间差异也有统计学意义(P<0.05)。
     3.对PDE4Drs918592和rs2910829位点按照年龄进行分层分析,rs918592和rs2910829位点在小于等于45岁的ICVD组与对照组间差异均有统计学意义(P<0.05);rs918592位点在大于45岁的ICVD组与对照组之间差异有统计学意义(P<0.05)。
     4.rs918592位点在显性、隐性模式下和ICVD相关(P<0.05),在叠加模式下其AA基因型和ICVD相关(P<0.05)。
     5.在河南汉族人群中,对PDE4Drs918592A/G和rs2910829 C/T两个位点在ICVD组与对照组间进行单倍型分析,G-T和A-T单倍型差异有统计学意义(P<0.05)。
     6.在河南汉族正常人群中PDE4D rs918592和rs2910829位点多态性存在种族差异。
     结论:
     1.相对风险分析发现,PDE4D rs918592 A等位基因可能是河南汉族人群缺血性脑血管病的遗传危险因子,并且这种危险性在男性中表现明显。
     2.相对风险分析发现,PDE4D rs2910829 T等位基因可能是河南汉族年龄小于等于45岁人群缺血性脑血管病的遗传危险因子。
     3.PDE4D G-T单倍型和PDE4DA-T单倍型可能是河南汉族人群ICVD发病的遗传危险因子。
Background and Aims:
     Ischemic cerebrovascular disease(ICVD)is a polygenic inheritable disease caused mainly by the interaction of genetic and environmental factors. ICVD has been putting great burden on individuals, families and society because of its extremely complicated pathogenesis and extraordinarily high morbidity, deformity and mortality. China is one of the countries with high morbidity of ICVD and its incident rate is becoming increasingly high. Although the known danger factors like hypertension, diabetes, hyperlipemia, atherosclerosis, arrhythmia as well as smoking have been well controlled, many patients still inevitably suffer from ICVD, which arouses researchers'focus on finding out new danger factors of ICVD, especially determining the susceptibility of ICVD to different individuals from gene level.
     In 2003, Gretarsdott et al. found phosphodiesterase 4D (PDE4D) associated with familial inherited ICVD was related to the progression of atherosclerosis. PDE4D is specific to hydrolyze cyclic adenosine monophosphat(cAMP) whose existing level affects the proliferation and migration of angiocellulars. Thus PDE4D is able to control the existing level of cAMP through its existing level and activity and further to affect the process of atherosclerosis. Therefore, PDE4D has certain effect on the invasion risk of ICVD. PDE4D gene is different from the genes associated with the invasion risk of ICVD such as diabetes, abnormal metabolism of blood lipid and hypertension due to its independent effect on the pathogenesis of ICVD. Thus PDE4D gene is so far considered as the only canditate gene associated with stroke newly discovered. Therefore PDE4D gene has been arousing the interest of researchers around the world, but the research results are not so identical.
     PDE4D is firstly considered as the candidate gene of ICVD universally. To further investigate the relationship between PDE4D gene polymorphism and ICVD, polymerase chain reaction restriction-fragment length polymorphism (PCR-RFLP) was adopted to detect the polymorphism of PDE4D rs918592 and PDE4D rs2910829 in han population of Henan. The distribution of rs918592 and rsRS2910829 and the relationship between ICVD and rs918592 as well as rs2910829 were investigated to provide theory evidence for the prevention of ICVD.
     Study population:
     1 Patients 400 cases as patient group with ischemic cerebrovascular disease in departments of neurology in Henan province hospitals were enrolled from December 2007 to 2010.There were 238male and 162 female with an average of 51.15.±10.16 years. All of them are Han population.
     2 Controls 400unrelated heathy controls were selected from subjects in outpatient department who underwent regular check-up examination.235 of them were male and 165 were female with an averageof 46.00±12.04years.The cases of control group had no history of CHD, EH and DM.All of them are Han population.
     Methods:
     5ml EDTA-anticoagulated Peripheral blood were obtained from ICVD patients and control. Genomic DNA was extracted by phenol-chloroform extraction method and its content was determined by ultraviolet spectrophotometer.Using the primers, we performed polymerase chain reaction(PCR) amplification and refined frequence length polymorphism(RFLP).These products were electrophoresed on 2.5% agarose gels, and DNA was visualized by ethidium bromide straining.
     Statistical analysis:
     The frequence of the alleles and genotypes were counted and compared by the Chi-square test. Hardy-weinberg equilibrium was confirmed with the X2 test. Odds Rations(OR) and 95% confidence intervals(95%C1) were used to estimate the risk association to the genotype. All statistical procedures were performed with SPSS13.0 software package. P value<0.05 was taken as statistical significant.
     Results:
     1. The genotype distribution of the PDE4D rs918592 and rs2910829 polymorphism was compatible with the Hardy-Weinberg equilibrium in the ICVD group and control group.
     2. The frequency of the PDE4D rs918592 between ICVD group and control group exist strong difference, further,in accordance with the sex classification analysis, there was also significant difference in the genotype or allele frequency in male.
     3. In accordance with the age classification analysis, there was significant difference in the genotype or allele frequency of PDE4D rs2910829 in less than 45 years of age.
     4. The AA genotype of rs918592 is assoeiated with ICVD in an additive mode (P<0.05),rs918592 in dominant or recessive mode(P<0.05).
     5. The linkage analysis showed that:G-T and A-T haplotypes between cases and controls exist significant differences.
     6. The frequencies of PDE4D rs918592 and rs2910829 might exist difference in ethnic groups.
     Conclusion:
     1. Relative risk analysis showed that it carrying PDE4D rs918592 A allele may increase the risk of ischemic cerebrovascular disease, especially in male patients.
     2. Relative risk analysis showed that it may increase the risk of less than 45 years of age ischemic cerebrovascular disease carrying PDE4D rs2910829T allele.
     3. It suggestde that PDE4D G-T and A-T haplotypes are risk factors for Henan Han population.
引文
1. Li X, Zhao LC, Li Y, et al.Validation and generalizability of the predictive model of ischemic cardiovascular diseases in Chinese[J]. Zhonghua Xin Xue Guan Bing Za Zhi,2007, 35(8):761-4.
    2. Weischer M, Juul K, Zacho J, et al. Prothrombin and risk of venous thromboembolism, ischemic heart disease and ischemic cerebrovascular disease in the general population[J]. Atherosclerosis,2010,208(2):480-3.
    3. Li YF, Cheng YF, Huang Y, et al. Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling[J]. J Neurosci,2011,31(1):172-83.
    4. Anjana Munshi, Subhash Kaul. Stroke genetics-focus on PDE4D gene [J].Stroke,2008, 3:188-192.
    5. Lopez E, Jarreau PH, Zana E, et al.Differential expression of cyclic nucleotide phosphodiesterases 4 in developing rat lung. Dev Dyn[J],2010 Sep;239(9):2470-8.
    6. Kim HW, Ha SH, Lee MN, et al.Cyclic AMP controls mTOR through regulation of the dynamic interaction between Rheb and phosphodiesterase 4D[J]. Mol Cell Biol,2010,30(22):5406-20.
    7. 中华神经科学会中华神经外科学会.各类脑血管病诊断要点[J].中华神经科杂志,1996,29:379-380
    8.唐建生.磷酸二酯酶4D基因多态性与脑梗死的相关性研究[D].中国优秀硕士学位论文全文数据库,2007.
    9.徐淑兰.磷酸二酯酶4D基因和缺血性脑血管病在中国汉族人群中的研究[D].中国优秀硕士学位论文全文数据库,2008.
    10. Shi YY, He L. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci[J]. Cell Res, 2005,15(2):97-98.
    11. Song Q, Cole JW, O'Connell JR, et al. Phosphodiesterase 4D polymorphisms and the risk of cerebral infarction in a biracial population:the Stroke Prevention in Young Women Study[J]. Hum Mol Genet,2006,15(16):2468-78.
    12. Xue H, Wang H, Song X, et al.Phosphodiesterase 4D gene polymorphism is associated with ischaemic and haemorrhagic stroke[J]. Clin Sci (Lond),2009,116(4):335-40.
    13. Sun Y, Huang Y, Chen X, et al.Association between the PDE4D gene and ischaemic stroke in the Chinese Han population[J]. Clin Sci (Lond),2009,117(7):265-72.
    14. Gschwendtner A, Bevan S, Cole JW, et al. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke[J]. Ann Neurol,2009,65(5):531-9.
    15. Liao YC, Lin HF, Guo YC, et al.Sex-differential genetic effect of phosphodiesterase 4D (PDE4D) on carotid atherosclerosis[J]. BMC Med Genet,2010,11:93.
    16. Burgin AB, Magnusson OT, Singh J, et al.Design of phosphodiesterase 4D (PDE4D) allosteric modulators for enhancing cognition with improved safety[J]. Nat Biotechnol, 2010,28(1):63-70.
    17. Matsumoto T, Hayamizu K, Marubayashi S, et al. Relationship between the cAMP levels in leukocytes and the cytokine balance in patients surviving gram negative bacterial pneumonia[J]. J Clin Biochem Nutr.2011 Mar;48(2):134-41.
    18. Bordallo J,Cantabrana B,Suarez L,. et al. Testosterone Inhibits cAMP-Phosphodiesterases in Heart Extracts from Rats and Increases cAMP Levels in Isolated Left Atria[J]. Pharmacology,2011,87(3-4):155-160.
    19. Wang Y, Huang ZH. cAMP mediates the morphological change of cultured olfactory ensheathing cells induced by serum[J]. Sheng Li Xue Bao,2011,63(1):31-38.
    20. Desimone JA, T Phan TH, Heck GL, et al. Involvement of NADPH-Dependent and cAMP-PKA Sensitive H+ Channels in the Chorda Tympani Nerve Responses to Strong Acids[J]. Chem Senses,2011,21.
    21. Valenti D, Manente GA, Moro L, et al. Deficit of complex Ⅰ activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria:involvement of cAMP/PKA signaling pathway[J]. Biochem J,2011,
    22. Shepherd MC, Baillie GS, Stirling Dl, etal. Remodelling of the PDE4 cAMP phosphodiesterase isoform profile upon monocyte-macrophage differentiation of humanU937cells [J].Br J Pharm acol,2004,142(2):339-351.
    23. Sin YY, Edwards HV, Li X, et al.Disruption of the cyclic AMP phosphodiesterase-4 (PDE4)-HSP20 complex attenuates the β-agonist induced hypertrophic response in cardiac myocytes[J]. J Mol Cell Cardiol,2011,18.
    24. Kostulas K, Gretarsdottir S, Kostulas V, et al. PDE4D and ALOX5AP genetic variants and risk for Ischemic Cerebrovascular Disease in Sweden[J]. J Neurol Sci,2007,263(1-2):113-7.
    25. McLachlan CS, Chen ML, Lynex CN, et al.Changes in PDE4D isoforms in the hippocampus of a patient with advanced Alzheimer disease[J]. Arch Neurol,2007,64(3):456-7.
    26. Homma S, Sakamoto T, Hegab AE, et al.Association of phosphodiesterase 4D gene polymorphisms with chronic obstructive pulmonary disease:relationship to interleukin 13 gene polymorphism[J]. Int J Mol Med,2006,18(5):933-9.
    27. Barnes AP, Livera G, Huang P, et al. phosphodiesterase 4D forms a cAMP diffusion barrier at the apical membrane of the airway epithelium[J]. J Biol Chem,2005,280:7997-8003.
    28. Woo D, Kaushal R, Kissela B, et al. Association of Phosphodiesterase 4D with ischemic stroke:a population-based case-control study[J]. Stroke,2006,37(2):371-6.
    29. Bevan S, Dichgans M, Gschwendtner A, et al.Variation in the PDE4D gene and ischemic stroke risk:a systematic review and meta-analysis on 5200 cases and 6600 controls[J]. Stroke,2008,39(7):1966-71.
    30. Kostulas K, Gretarsdottir S, Kostulas V, et al. PDE4D and ALOX5AP genetic variants and risk for Ischemic Cerebrovascular Disease in Sweden[J]. J Neurol Sci,2007,263(1-2):113-7.
    1. Ren J, Zhao D, Liu J, et al. Relationship between serum non-high-density lipoprotein cholesterol and incidence of cardiovascular disease [J]. Zhonghua Xin Xue Guan Bing Za Zhi,2010,38(10):934-8.
    2. Chen JH, Wu HY, He KL, et al.Establishment of the prediction model for ischemic cardiovascular disease of elderly male population under current health care program [J]. Zhonghua Liu Xing Bing Xue Za Zhi,2010,31(10):1166-1169.
    3. Hoque MM, Rahman MZ, Rahman MR. Role of homocysteine in cerebrovascular disease [J]. Mymensingh Med J,2008,17(2):S39-42.
    4. Ma GZ, Stankovich J.The Australia and New Zealand Multiple Sclerosis Genetics Consortium (ANZgene), Kilpatrick TJ, Binder MD, Field J. Polymorphisms in the Receptor Tyrosine Kinase MERTK Gene Are Associated with Multiple Sclerosis Susceptibility [J]. PLoS One,2011,6(2):e16964.
    5. Yang Y, Ferec C, Mura C. SNP and haplotype analysis reveals new HFE variants associated with iron overload trait [J]. Hum Mutat,2011,32(4):E2104-17.
    6. Pang H, Hauser M, Minvielle S. Pathway-based identification of SNPs predictive of survival [J]. Eur J Hum Genet,2011,2:568-8.
    7. Barbazuk WB, Schnable PS. SNP discovery by transcriptome pyrosequencing[J]. Methods Mol Biol,2011,729:225-46.
    8. Tuefferd M, de Bondt A, Van den Wyngaert I, et al. Microarray Profiling of DNA Extracted from FFPE Tissues Using SNP 6.0 Affymetrix Platform [J]. Methods Mol Biol,2011, 724:147-60.
    9. Mandoiu Ⅱ, Prajescu C. High-throughput SNP genotyping by SBE/SBH[J]. IEEE Trans Nanobioscience,2007,6(1):28-35.
    10. Owens WB. Blood pressure control in acute cerebrovascular disease [J]. J Clin Hypertens (Greenwich),2011,13(3):205-11.
    11. Liu X, Wang W, Tang Z, et al. Clinical study of PTAS therapy for patients with ischemia cerebrovascular disease caused by artery stenosis [J]. J Huazhong Univ Sci Technolog Med Sci,2011,31(1):67-72.
    12. Yang L, Zhang B, Yin L, et al. Tanshinone IIA Prevented Brain Iron Dyshomeostasis in Cerebral Ischemic Rats [J]. Cell Physiol Biochem,2011,27(l):23-30.
    13. Mazzone P, Tierney W, Hossain M, et al.Pathophysiological Impact of Cigarette Smoke Exposure on the Cerebrovascular System with a Focus on the Blood-brain Barrier:Expanding the Awareness of Smoking Toxicity in an Underappreciated Area[J]. Int J Environ Res Public Health,2010,7(12):4111-26.。
    14. Parker B, Augeri A, Capizzi J, et al. Effect of air travel on exercise-induced coagulatory and fibrinolytic activation in marathon runners [J]. Clin J Sport Med,2011,21(2):126-30.
    15. Settin A, Alkasem R, Ali E, et al. Factor V Leiden and prothrombin gene mutations in Egyptian cases with unexplained recurrent pregnancy loss[J]. Hematology,2011 16(1):59-63.。
    16. Voko Z, Bereczky Z, Katona E, et al. Factor XIII Val34Leu variant protects against coronary artery disease. A meta-analysis[J]. Thromb Haemost,2007,97(3):458-63.
    17. Salazar-Sanchez L, Leon MP, Cartin M, et al.The FXIIIVal34Leu, common and risk factors of venous thrombosis in early middle-age Costa Rican patients [J]. Cell Biochem Funct,2007, 25(6):739-45.
    18. Benoit ME, Tenner AJ. Complement Protein Clq-Mediated Neuroprotection Is Correlated with Regulation of Neuronal Gene and MicroRNA Expression [J]. J Neurosci,2011, 31(9):3459-69.
    19.姜剑军;张柏根.静脉血栓形成的遗传易感因子.国外医学[J].外科学分册,2001,2:68-60.
    20. Staszewski J, Gasecki D, Wojczal J. Report from International Stroke Conference 2010, San Antonio, USA[C]. Pol Merkur Lekarski,2010,29(173):336-8.
    21. Hassan A, Markus HS. Genetics and ischaemic stroke[J]. Brain,2000,123:1784-812.
    22. Ireland S, MacKenzie G, Gould L, et al. Nurse case management to improve risk reduction outcomes in a stroke prevention clinic[J]. Can J Neurosci Nurs,2010,32(4):7-13.
    23. Touze E, Rothwell PM. Sex differences in heritability of ischemicstroke:a systematic review and meta-analysis[J]. Stroke,2008,39:16-23.
    24. Xian Y, Holloway RG, Chan PS, et al. Association between stroke center hospitalization for acute ischemic stroke and mortality [J]. JAMA,2011,305(4):373-80.
    25. Fazekas F, Kleinert R, Offenbacher H, et al. Pathologic correlates of incidental MRI whitematter signal hyperintensities[J], Neurology,1993.43:1683-9.
    26. Rost NS, Rahman RM, Biffi A, et al.White matter hyperintensity volume is increased in small vessel [J].stroke subtypesNeurology,2010,75(19):1670-7..
    27. Juo SH, Lin HF, Rundek T, et al. Genetic and environmental contributions to carotid intima-mediathickness and obesity phenotypes in the Northern Manhattan Family Study [J]. Stroke,2004,35:2243-7.
    28. Rost NS, Fitzpatrick K, Biffi A, et al.White matter hyperintensity burden and susceptibility to cerebral ischemia[J]. Stroke,2010,41(12):2807-11.
    29. Lee SJ, Kim JS, Chung SW, et al. White matter hyperintensities (WMH) are associated with intracranial atherosclerosis rather than extracranial atherosclerosis[J]. Arch Gerontol Geriatr, 2010,26.
    30. Turner ST, Fornage M, Jack Jr CR, et al. Genomic susceptibility loci for brain atrophyin hypertensive sibships from the GENOA study[J]. Hypertension,2005,45:793-8.
    31. Lorenz MW, Markus HS, Bots ML, et al.Prediction of clinical cardiovascular events with carotid intimamediathickness:a systematic review and meta-analysis[J]. Circulation,2007, 115:459-67.
    32. Chuang SY, Bai CH, Chen JR, et al.Common Carotid End-Diastolic Velocity and Intima-Media Thickness Jointly Predict Ischemic Stroke in Taiwan[J]. Stroke,2011,17.
    33. Jartti L, Ronnemaa T, Kaprio J, et al. Population-based twin study of the effects of migration fromFinland to Sweden on endothelial function and intima-mediathickness[J]. Arterioscler Thromb Vasc Biol,2002,22:832-7.
    34. Barra S, Scala S, Cuomo V, et al.Subclinical atherosclerosis and genetic risk markers in healthy offspring of patients with premature myocardial infarction[J]. Minerva Cardioangiol, 2011,59(2):127-34.
    35. Wheeler DA, Srinivasan M, Egholm M, et al. The complete genome of an individual by massively parallel DNA sequencing[J]. Nature,2008,452:872-6.
    36. Pearson TA, Manolio TA. How to interpret a genome-wideassociation study[J]. JAMA, 2008,299:1335-44.
    37. Casas JP, Hingorani AD, Bautista LE, et al. Meta-analysis ofgenetic studies in ischemic stroke:thirty-two genes involvingapproximately 18,000 cases and 58,000 controls[J]. Arch Neurol,2004,61:1652-61.
    38. Cooper C. Kanters S, Klein M, et al.Liver transplant outcomes in HIV-infected patients:a systematic review and meta-analysis with synthetic cohort[J]. AIDS,2011,25(6):777-86.
    39. Gretarsdottir S, Thorleifsson G, Reynisdottir ST, et al. The gene encoding phosphodiesterase4D confers risk of ischaemic stroke[J]. Nat Genet,2003,353:131-8.
    40. Bevan S, Dichgans M, Gschwendtner A, et al. Variation in the PDE4D gene andischemic stroke risk. A systematic review and meta-analysis on5200 cases and 6600 controls[J]. Stroke,2008,39:1966-71.
    41. Helgadottir A, Manolescu A, Thorleifsson G, et al. The geneencoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke[J]. Nat Genet,2004, 36(3):233-9.
    42. Jin X, He Y, Zhu M, et al.The relationship between the polymorphism of SG13S114 A/T in ALOX5AP gene and the vulnerability of carotid atherosclerosis in Chinese Han populatio[J]n. Int J Clin Exp Med,2010,3(1):28-32.
    43. Zee RY, Cheng S, Hegener HH, et al. Genetic variants of arachidonate 5-lipoxygenase-activating protein, and risk of incident myocardial infarction and ischemic stroke:anested case-control approach[J]. Stroke,2006,37:2007-11.
    44. Helgadottir A, Manolescu A, Helgason A, et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction[J]. Nat Genet,2006, 38:68-74.
    45. Lohmussaar E, Gschwendtner A, Mueller JC, et al.ALOX5AP gene and the PDE4D gene in a central European population of stroke patients[J]. Stroke,2005,36:731-6.
    46. Huang H, Zeng Z, Li J, et al.Variants of arachidonate 5-lipoxygenase-activating protein (ALOX5AP) gene and risk of coronary heart disease:A meta-analysis [J]. Arch Med Res, 2010,41(8):634-41.
    47. Bevan S, Dichgans M,Wiechmann HE, et al. Genetic variation in members of the leukotriene biosynthesis pathway confer an increased risk of ischemic stroke:areplication study in two independent populations [J]. Stroke,2008,39:1109-14.
    48. Sun H, Wu H, Zhang J,et al. A tagging SNP in ALOX5AP and risk of stroke:a haplotype-based analysis among eastern Chinese Han population[J]. Mol Biol Rep,2010,14.
    49. Lanktree MB, Dichgans M, Hegele RA. Advances in genomic analysis of stroke:what have we learned and where are we headed[J]? Stroke,2010,41:825-32.
    50. Zhang B, Sun XJ, Ju CH. et al. Thrombolysis with Alteplase 4.5-6 Hours after Acute Ischemic Stroke[J]. Eur Neurol,2011,65(3):170-174.
    51. Hindorff LA, Junkins HA, Hall PN, et al.A catalog of published genome-wide association studies[J]. Available Accessed,2010.
    52. Rafnar T, Sulem P, Besenbacher S, et al. Genome-Wide Significant Association Between a Sequence Variant at 15q15.2 and Lung Cancer Risk[J]. Cancer Res,2011,71(4):1356-1361.
    53. Newton-Cheh C, Johnson T, Gateva V, et al. Genome-wide association study identifies eight lociassociated with blood pressure[J]. Nat Genet.2009,10.
    54. Lee Y, Li J, Gamazon E, Chen JL, et al. Biomolecular Systems of Disease Buried Across Multiple GWAS Unveiled by Information Theory and Ontology[J]. AMIA Summits Transl Sci Proc,2010,2010:31-5.
    55. Matarin M, Brown WM, Scholz S, et al. A genome-wide genotyping study in patients with ischaemic stroke:initial analysis and data release[J]. Lancet Neurol,2007,6:414-20.
    56. Ikram MA, Seshadri S, Bis JC, et al. Genomewide association studies of stroke [J]. N Engl J Med,2009,23(360):1718-28.
    57. International Stroke Genetics Consortium, Wellcome Trust Case-Control Consortium 2. Failure to validate association between 12p13 variants and ischemic stroke[J]. N Engl J Med, 2010,362:1547-50
    58. Kubo M, Hata J, Ninomiya T, et al. A nonsynonymous SNP in PRKCH (protein kinase C eta) increases the risk of cerebral infarction[J]. Nat Genet,2007,39:212-7.
    59. Serizawa M, Nabika T, Ochiai Y, et al. Association between PRKCH gene polymorphisms and subcortical silent brain infarction[J]. Atherosclerosis,2008,199:340-5.
    60. Meyers JL, Davis KL, Yu YF. Stroke and transient ischemic attack in the long-term care setting:patient characteristics, medication treatment, and length of stay[J]. Consult Pharm,2011,26(3):170-81.
    61. Gretarsdottir S, Thorleifsson G, Manolescu A, et al. Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke[J].Ann Neurol,2008,64:402-9.
    62. Gudbjartsson DF, Holm H, Gretarsdottir S, et al. A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke[J].Nat Genet,2009,41:876-8.
    63. Gross B, Feldman-Idov Y, Molshatzki N, et al. Ethnic Variations in Acute Ischemic Stroke: Findings from the National Acute Stroke Israeli Survey (NASIS) [J]. Cerebrovasc Dis,2011,31(5):506-510.
    64. Gschwendtner A, Bevan S, Cole JW, et al. International Stroke Genetics Consortium. Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke[J]. Ann Neurol,2009,65:531-9.
    65. Anderson CD, Biffi A, Rost NS, et al.Chromosome 9p21 in ischemic stroke:population structure and meta-analysis[J]. Stroke,2010,41:1123-31
    66. Pasmant E, Sabbagh A, Vidaud M, et al. ANRIL, a long, noncoding RNA, is an unexpected major hotspot in GWAS[J]. FASEB J,2011,25(2):444-8.
    67. Visel A, Zhu Y, May D, et al. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice[J], Nature,2010,464:409-12.
    68. Adams Jr HP, Bendixen BH, Kappelle LJ, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment[J]. Stroke,1993,24:35-41.
    69. Sherborne AL, Houlston RS. What are genome-wide association studies telling us about B-cell tumor development[J]? Oncotarget,2010,1(5):367-72.
    70. Humphries SE, Morgan L. Genetic risk factors for stroke and carotid atherosclerosis:insights into pathophysiology from candidate gene approaches [J]. Lancet Neurol,2004,3:227-35.
    71. Cox RD, Church CD. Mouse models and the interpretation of human GWAS in type 2 diabetes and obesity[J]. Dis Model Mech,2011,4(2):155-64.
    72. Sebastiani P, Ramoni MF, Nolan V, et al.Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia[J], Nat Genet,2005,37:435-40.
    73. Oexle K, Meitinger T. Sampling GWAS subjects from risk populations[J]. Genet Epidermiol,2011,35(3):148-53.
    74. Debette S,Markus HS. The clinical significance of Brain MRI white matter hyperintensities: a systematic review and meta-analysis[J], Brit Med J,2010,341:c3666.
    75. Halldorsson BV, Aguiar D, Tarpine R, et al. The Clark Phaseable Sample Size Problem: Long-Range Phasing and Loss of Heterozygosity in GWAS[J]. J Comput Biol,2011,18(3):323-33.
    76. Fransen K, Mitrovic M, van Diemen CC, et al. The quest for genetic risk factors for Crohn's disease in the post-GWAS era[J]. Genome Med,2011,3(2):13.
    77. Debette S, Bis JC, FornageM, etal. Genome-wide association studies of MRI-defined brain infarcts:meta-analysis from the CHARGE Consortium[J]. Stroke,2010,41:210-7.
    78. Xing J, Myers RE, He X, et al. GWAS-identified colorectal cancer susceptibility locus associates with disease prognosis[J]. Eur J Cancer,2011,12.
    79. Cirulli ET, Goldstein DB. Uncovering the roles of rare variants incommon disease through whole-genome sequencing [J]. Nat Rev Genet,2010,11:415-25.
    80. Yang B, Strong R, Sharma S, et al. Therapeutic time window and dose response of autologous bone marrow mononuclear cells for ischemic stroke[J]. J Neurosci Res,2011,15.
    81. Kraft P, Hunter DJ. Genetic risk prediction—are we there yet[J]? N Engl J Med,2009, 360:1701-3.
    82. Senge T, Madea B, Junge A, et al. STRs, mini STRs and SNPs--a comparative study for typing degraded DNA[J]. Leg Med (Tokyo),2011,13(2):68-74.
    83. Rohrer B, Long Q, Coughlin B, etal. A targeted inhibitor of the alternative complement pathway reduces angiogenesis in a mouse model of age-related macular degeneration[J]. Invest Ophthalmol Vis Sci,2009,50:3056-64.
    84. Klionsky DJ. Crohn's disease, autophagy, and the Paneth cell[J]. N Engl J Med,2009, 360:1785-6.
    85. Hirschhorn JN. Genomewide association studies—illuminating biological pathways[J]. New Eng J Med,2009,360:1699-701

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700