大黄及其主要成份的毒性毒理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大黄为我国四大最常用的中药之一,全国8000多种中药制剂中约有800多种含有大黄,是治疗多种疾病的重要中药,被称为中药“四大金刚”之一,在临床上有着广泛的应用。大黄药理有效成分主要为蒽醌类化合物,包括大黄酸、大黄素、大黄酚、芦荟大黄素、大黄素甲醚等。以往研究发现大黄可能具有肝肾毒性和致癌的潜力,但是对大黄中主要成份的毒性比较研究及毒性机制研究报道甚少,目前尚没有明确的定论。本课题采用体内、体外多种实验方法研究和探讨了大黄毒性反应的作用靶器官,大黄中主要成份的毒性比较研究,在此基础上利用代谢组学技术,探讨了大黄素等蒽醌的毒理学作用机制,初步证明了大黄毒性的客观真实性,为大黄的临床安全应用提供了参考依据。
     研究发现大黄重复给药6个月产生毒性反应的剂量为10g/kg/d,无明显毒性反应的剂量为2.5g/kg/d(相当于临床常用剂量10g的15倍,换算成人的等效剂量约为0.4g/kg/d),对SD大鼠的主要毒性表现为动物排稀便、软便、体重增长抑制,被毛脏乱、红染,精神不振等,血液生化检查发现BUN略有升高,病理检查发现大黄引起大鼠肾小管上皮细胞内色素沉积和水样变性、肝细胞轻度萎缩、肠粘膜轻度增厚。毒性反应主要靶器官为肾脏,毒性部位为肾小管上皮细胞,肝脏也可能是其毒性靶器官之一,上述毒性损害均可逆。
     大黄中几种主要成份体外毒性比较试验发现,大黄素等对HK-2细胞增殖抑制的IC_(50)值分别为:大黄酸82.97μM,大黄素甲醚76.02μM,大黄素130.65μM,其毒性大小顺序为:大黄素甲醚>大黄酸>大黄素>芦荟大黄素>大黄酚;对于HepG2细胞的其IC_(50)值分别为:大黄酸67.71μM,大黄素125.30μM,毒性大小顺序为:大黄酸>大黄素>芦荟大黄素>大黄酚和大黄素甲醚。大黄素等均能引起两种细胞增殖抑制,细胞萎缩和空泡化,LDH漏出率增加,线粒体膜电位降低,细胞出现明显的凋亡,大黄素使HK-2细胞周期阻滞在S期,而对HepG2细胞的周期没有明显的影响。Western印渍分析凋亡相关蛋白显示,大黄素和大黄酸处理HK-2细胞后,抑制细胞外信号调节激酶1/2(extracelluar signal regulated kinase 1/2,ERK1/2)的磷酸化,并且呈现明显的剂量和时间效应关系,细胞内Bcl-2表达降低,Bax没有明显的变化,致使促凋亡基因蛋白占优势,细胞向促调亡的方向发展,细胞色素c释放增加,从而使Caspase-8活化,激活下游caspase3,引起细胞的凋亡;对HK-2细胞的损伤效应可能是通过MAPK/ERK信号转导通路抑制ERK磷酸化,而导致了细胞周期阻滞和凋亡。Ames波动试验结果表明大黄素在加有S_9时具有弱的致突变性,是间接遗传毒性物质,大黄酸和大黄酚没有致突变性;体内试验发现大黄素对CYP450尤其是CYP1A1具有一定的诱导作用,表明大黄素还可能具有潜在的促癌作用。大黄素是大黄中含量最高的蒽醌成份,因此大黄素可能是大黄主要的毒性作用物质之一。
     利用NMR技术研究大黄素处理后大鼠尿液、血浆和肾脏组织萃取物中内源性代谢产物谱的变化,研究发现血浆中肌氨酸、异丁酸盐和3-羟基丁氨酸(3-HB)升高,而乳酸、胆碱/磷酸卵磷酯、葡萄糖和多种氨基酸及VLDL/LDL等明显下降;尿液中肌酐、TMAO、醋酸盐、乳酸、葡萄糖和各种氨基酸明显升高,而柠檬酸盐、马尿酸和2-酮戊二酸含量下降,尿液中葡萄糖和氨基酸升高是肾小管损伤的典型标志;肾组织萃取物中醋酸盐、3-HB和肌酐明显增加,而乳酸和胆碱/磷酸卵磷脂下降;脂溶性成分中甘油三脂和细胞膜组成成份等脂类的比例发生改变;由此可以推测大黄素可能是通过改变脂类代谢,导致脂类成分的改变,破坏细胞膜性结构,致使肾小管上皮细胞受损而造成重吸收障碍。尿液中的氨基酸、葡萄糖、TMAO以及肌酐可以作为大黄素的主要生物标志物研究。
     综上,大黄毒作用靶器官主要是肾脏,尤其是肾近曲小管上皮细胞,肝脏也可能是其毒性靶器官之一,大黄素是主要的毒性成分,损伤机制可能为大黄素通过MAPK/ERK信号转导通路抑制ERK磷酸化,肾脏脂类成分的改变,致使肾小管上皮细胞线粒体外膜受到损伤,细胞色素C从线粒体释放,进而引发细胞凋亡,导致肾小管重吸收障碍,从而形成氨基酸尿和葡萄糖尿,这种毒性作用是可逆的。
     大黄的临床应用十分广泛,正常情况下使用大黄是安全的,但长期、大剂量使用会出现毒性反应,因此在临床上长期用药不要超过0.4g/kg/日,肝肾损伤患者应用时需要调整剂量,长期应用时要注意监测其肝肾功能。其他含蒽醌类药物如芦荟、决明子和虎杖等可能也有类似的毒性毒理机制,因此,应该建立质量标准,控制毒性成份的含量,加强对此类药物的不良反应监测。随着代谢组学技术的发展,此项新技术将会越来越多的用于其他中草药毒性毒理的研究,对于实现中药现代化具有重要的意义。
Rhubarb (Radix et Rhizoma Rhei) is widely used in traditional Chinese medicines, which is one of the four most frequently used herbs, and is formulated in more than 800 kinds of Chinese materia medica preparations. Emodin, rhein, chrysophanol, aloe-emodin and physcion are its essential active components.
     Recently studies have demonstrated that rhubarb may have the potential of hepatotoxicity, nephrotoxicity and carcinogenicity. However, so far there is little studies concerning the toxic mechanisms and the comparative toxicologic assessment of its essential components. So, there are no identified conclusions about its toxicity. In this study, in vivo and in vitro experiments have been applied to explore the toxicity and the target organs of rhubarb, and compared the toxicity of its essential components. After then, the toxic mechanisms are elucidated based on metabonomic technologies in order to offer some toxicological information for its safely clinical usage.
     The NOAEL for rhubarb in SD rats is 2.5g/kg/d, which is approximately equal to 15 times of clinical dosage. Clinical signs of toxicity of rhurbarb in SD rats at the dose level of (?) 10g/kg/d included: diarrhoea, retarded growth of body weight, dirty and red colored fur hair, depressed, et al. Serum biochemistry profiles displayed a trend of increase in BUN. Hydropic degeneration and pigment sediment in renal tubular epithelial cell, slight shrink in hepatocyte, and slightly thickening in mucous membrane of intestine were histopathologically found. From these results, the toxic target organ was estimated to be kidney (esp. the proximal tubules), and liver may be one of its target organs, too. All of those toxicity manifestations are reversible upon stopping dosing.
     Comparative toxicity studies of its essential components indicated that emodin, rhein, and physcion markedly inhibited the proliferation of HK-2 cells after 48 hours culture, and their IC_(50) are 130.65μM ,82.97μM, 76.02μM respectively. And their relative toxicity was: physcion>rhein>emodin>aloe-ernodin>chrysophanol; For HepG2 cell, their IC50 are 67.71μM and 125.30μM for rhein and emodin respectively. And their relative toxicity was: rhein>emodin> aloe-emodin>physcion and chrysophanol. The toxic manifestations included: inhibition of the cells proliferation, cell shrinkage and vacuolation, LDH leakage increasement, and cell apoptosis followed by the decreasment of mitochondria membrane potential (MMP). Furhermore, emodin can block the cell cycle, and the percentage of cells in S phase was gradually increased and that in G_0/G_1 phase were decreased. Western blotting analysis of apoptotic related proteins revealed that after treatment with emodin and rhein, the phosphorylation of extracelluar signal regulated kinase 1/2 were inhibited, the expression level of Bcl-2 decreased significantly, the release of cytochrme C increased, caspase8 and caspase3 were activated in HK-2 cells, but the level of Bax hasn't changed. These results implied that emodin may lead to cell cycle blockage and apoptosis though suppressing MAPK/ERK signal pathway. Ames-fluctuation test showed that emodin has a weak mutagenic potential upon S9 metabolic activation, suggested that it is indirect genotoxicant. The rhein and chrysophanol have no mutagenic potential in this test system. Total CYP450 content and activities of CYP1A, CYP3A and CYP2B in rat liver were elevated after multiple induction with emodin. As emodin is the most abundant component of rhubarb, it may be its primary toxic substance.
     An integrated metabonomic study with high-resolution ~1H NMR spectroscopy has been applied to investigate the biochemical composition of urine, serum, kidney tissue aqueous extracts (acetonitrile/water) and lipidic extracts (chloroform/methanol) obtained from emodin treated rats. It was found that the level of sarcosine isobutyrate and 3-HB was elevated, and the levels of VLDL/LDL, lactate, glucose and many kinds of amino acids, choline/phosphatidylcholine were decreased in serum. The level of creatinine, TMAO, acetate, lactate, glucose and many kinds of amino acids increased in urine, while citrate, hippurate and 2-oxoglutarate decreased significantly. The increased level of glucose and amino acids is the typical biomarker of impaired renal tubule. The predominant changes identified in kidney tissue aqueous extracts included an increase in the signal intensities of acetate, 3-HB, creatinine, and the reduced level of lactate, choline/phosphatidylcholine. In kidney tissue chloroform/methanol extracts, there was a remarkably increase in many of the lipid signals including CH_2CO, CH_2OPO_2, CH_2OCOR. And the level of the triglyceride terminal methyl and methylene groups reduced. From these results, we can infer that emodin may change the proportion of lipid moieties, destroyed the structure of cellular membrane, and damaged the renal tubular epithelial cell, which induced a decline in the reabsorption of low molecular weight compounds. Glucose, amino acids, TMAO and creatinine in urine should be identified as biomarkers of emodin.
     In conclusion, the main toxic target organ of rhubarb is kidney, especially the proximal tubule epithelial cell, and liver may be one of its toxic target organs, too. Emodin is its primary toxic substance. The suppression of phosphorylation ERK through MAPK/ERK signal pathway, and alteration of the proportion of lipid moieties, may lead to the impairment of mitochondrial outer membrane in renal tubular epithelial cell, which caused the release of cytochrome c and apoptosis, and induced a decline in the reabsorption of low molecular weight compounds in renal tubule, amino-aciduria and glucosuria was finally observed. The toxic effects were reversible.
     Rhubarb is widely and safely used in Chinese medicines usually, while the toxic effects will appear when it was used in large dose and for a long time. Therefor, when it's used for a long time, the dose won't exceed 0.4g/kg. When the patients have kidney or liver injury, the dose must be modified, and functions of kidney and liver should be monitored. Other herbs containing anthraquinone, such as aloes, Cassia seed, giant knotweed rhizome, may have similar toxic effects. Quality criteria should be established to control the content of toxic substance accordingly. With the development of metabonomics, this novel technology might provide additional discrimination in the toxicological effects of other herb in the future, which will contributes to the modernlization of traditional Chinese medicines.
引文
[1] 黄萍.中药不良反应的研究与监测[J].中药新药与临床药理.1998;9(1):54.
    [2] 刘庆增.大黄的化学成分及药理作用[J].中草药,1987,18(1):41.
    [3] 陈可冀.抗衰老中药学.北京:中医古籍出版社,1989:143~146.
    [4] 李秀才.大黄的研究进展[J].中国药学杂志,1998;33(10):581-584.
    [5] 俞长兴,肖蓬,苏志红等.大黄临床应用研究进展[J].中国医院用药评价与分析.20022(6):359-361.
    [6] 李淑娟,董晓华,武海霞等.大黄及其有效成分药理作用研究进展[J].医学综述,2005;11(1):76-78.
    [7] 童卫东,张胜本,张连阳,等.长期应用大黄对大鼠结肠肌电及cajal间质细胞的影响[J].第三军医大学学报,2000,22(4):351-353
    [8] 朱元民.蒽醌类泻药与大肠黑变病[J].中华消化杂志,2004,24(5):314-315.
    [9] 夏翠.蒽醌类泻药致结肠黑变病随笔[J].浙江中医杂志,2002,(09):406
    [10] 张燕,李红岩.便秘大鼠结肠超微结构的改变[J].北京中医药大学学报.2005;28(2):63-65.
    [11] 祁小鸣.结肠黑变病的临床分析[J].中国综合临床,2004,20(10):896-897
    [12] 邱塞红,李飞艳,尹健康等.9 味苦寒药对小鼠胃肠运动与肝肾功能影响的实验研究[J].湖南中医学院学报,2004,24(5):1-6.
    [13] 怡悦.大黄成分的研究:酚性化合物的细胞毒性[J].国外医学中医中药分册,2003,25(6):374.
    [14] 焦东海,杜上鉴.大黄研究[M].第1版.上海:上海科学技术出版社,2000:252255.
    [15] 许英.中药的药物性肝损害30例临床分析[J].现代中西医结合,2005,14(5):600-601.
    [16] 田由.过量大黄致肝细胞损伤的研究.中国医科大学硕士学位论文,2005,4.
    [17] 张陆勇.江振洲,濮存海等.大黄总蒽醌对SD大鼠灌胃给药的长期毒性研究[J].中国生化药物杂志,2004,25(4):206-209.
    [18] National Toxicology Program.(NTP). Toxicology and carcinogenesis studies of emodin(CAS NO: 518-82-1)feed studies in F344/N rats and B6C3F1 mice[J]. Natl Toxicol Program Tech Rep Ser, 2001, 493: 1~273.
    [19] Yan M, Zhang LY, Sun LX, et al. Nephrotoxicity study of total rhubarb anthraquinones on Sprague Dawley rats using DNA microarrys[J]. J Ethnopharmacolgy, 2006; 107(2): 308-311.
    [20] Wang H1, Chen TL, Yang PC, Ueng TH. Induction of cytochromes P450 1A1 and 1B1 by emodin in human lung adenocarcinoma cell line CL5[J]. Drug Metab Dispos. 2001; 29(9): 1229-35.
    [21] Carder F, Chang CY, Duh JL, et al. Interaction of the regulatory domains of murine Cyplal gene with two DNA-binding proteins in addition to the Ah receptor and the Ah receptor nuclear translocator(ARNT)[J]. Biochem Pharmacol, 1994, 48(9): 1767-1778.
    [22] Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors[J]. Drug Metab Rev. 1997; 29(1-2): 413-580.
    [23] 纪松岗,徐霞,王春燕,等.3例肾移植患者口服大黄制剂后引起环孢素全血总浓度增高[J].中国药师,2005,8(1):48-49.
    [24] Mueller SO, Stopper H, Dekant W. Biotransformation of the anthraquinones emodin and chrysophanol by cytochrome P450 enzymes. Bioactivation to genotoxic metabolites[J]. Drug Metab Dispos. 1998; 26(6): 540-546.
    [25] Muller SO, Stopper H, Dekant W. Biotransformation of the anthraquinones emodin and chrysophanol by cytochrome P450 enzymes-bioactivation to genotoxic metabolites[J]. Drug Metab Dispos. 1998; 26(6): 540-546.
    [26] Mueller SO, Eckert I, Lutz WK, et al. Genoxicity of the laxative drug components emodin, aloe-emodin and danthron in mammalian cells: topoisomerase Ⅱ mediated?[J]. Murat Res, 1996, 371(3-4): 165-173
    [27] Mengs U, Krumbiegel G, Volkner W. Lack of emodin genotoxicity in the mouse micronucleus assay[J]. Murat Res, 1997; 393(3): 289-293.
    [28] 陶玉珍,刘毅,郭启明等.大黄抗突变作用的研究[J].癌变·畸变·突变,1998,10(4):241.
    [29] 李瑛,刘伏友.大黄的毒副作用研究[J].中国药房,2006,17(9):710-712
    [30] Butte A. The use and analysis of microarray data[J]. Nat Rev Drug Discov. 2002; 1(12): 951-960.
    [31] Hayes KR., Bradfiled CA. Advances in toxicogenomics[J]. Chem Res Toxicol. 2005; 18(3): 403-414.
    [32] 王川.系统生物学—后基因组时代的生物学[J].生物学通报.2006;41(1):19-21.
    [33] Nicholson JK, Connelly J, Lindon JC, et al. Metabonomics: a platform for studying drug toxicity and gene function[J]. Nat Rev Drug Discov, 2002, 1(2): 153-161.
    [34] Raamsdonk LM, Teusink B, Broadhurst D, et al. A functional ge-nomics strategy that uses metabolome data to reveal the phenotype of silent mutations[J]. Nat Biotechnol, 2001; 19(1): 45-50.
    [35] Nicholson J. K., Lindon J. C., Holmes E. "Metabonomics": understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica. 1999; 29(11): 1181-1189.
    [36] Taylor J, King RD, Altmann T, et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning[J]. Bioinformatics, 2002, 18(2): 241-248.
    [37] Lindon JC, Nicholson JK, Holmes E., et al. "Contemporary issues in toxicology—the role of metabonomics in toxicology and its evaluation by the COMET project"[J]. Toxicol Appl Pharmacol. 2003; 187(3): 137-146.
    [38] Robertson DG, Reily MD, Sigler RE, et al. Metabonomics: evaluation of nuclear magnetic resonance(NMR) and pattem recognition technology for rapid in vivo screening of liver and kidney toxicants[J]. Toxicol Sci. 2000; 57(2): 326-337.
    [39] Holmes E, Nicholls AW, Lindon JC, et al.. Chemometric models for toxicity classification based on NMR spectra of biofluids[J]. Chem Res Toxicol, 2000, 13(6): 471-478.
    [40] Garrod S, Humpher E, Connor SC, et al. High-resolution ~1H NMR and magic angle spinning NMR spectroscopic investigation of the biochemical effects of 2-bromoethanamine in intact renal and hepatic tissue[J]. Magn Reson Med, 2001, 45(5): 781-790.
    [41] Garrod S, Humpfer E, Spraul M, et al. High-resolution magic angle spinning 1H NMR spectroscopic studies on intact rat renal cortex and medulla[J]. Magn Reson Med, 1999, 41(6): 1108-1118.
    [42] 王全军,吴纯启,廖明阳等.代谢组学研究进展[J].中国新药杂志.2004,13(5):5-9.
    [43] 贾伟,蒋健,刘平等.代谢组学在中医药复杂理论体系研究中的应用[J].中国中药杂志.2006;31(8):621-624.
    [44] Zhang X, Wu H, Liao P, et al. NMR-based meabonomic study on the subacute toxicity of aristolochic acid in rats[J]. Food and chemical toxicology. 2006; 44(7): 1006-1014.
    [1] 国家药品监督管理局.中药、天然药物长期毒性研究技术指导原则(第二稿),2004.3.1
    [2] 国家药品监督管理局.化学药物长期毒性研究技术指导原则(第二稿),2004.3.1
    [3] 王治乔 袁伯俊 主编.新药临床前安全性评价与实践.军事医学科学出版社.北京.1997
    [4] 国家药典委员会编.中华人民共和国药典2005版[M].北京:化学工业出版社,2005:17-18
    [5] U. S. Department of Health and Human Services, FDA, CDER, CBER Guidance for industry and reviews estimating the safe starting dose in clinical trial for therapeutics in adult healthy volunteers, pharmacology and toxicology. 2002. 02: 6-7.
    [6] Li SY, Ou-Yang S. Emodin blocks voltage dependent potassium channels in rat proximal colon smooth muscle cells[J]. Yao Xue Xue Bao. 2005; 40(9): 804-9
    [7] Yang Y, Shang W, Zhou L, et al. Emodin with PPARgamma ligand-binding activity promotes adipocyte differentiation and increases glucose uptake in 3T3-L1 cells[J]. Biochem Biophys Res Commun. 2007; 353(2): 225-30
    [8] 张喜平,李宗芳.大黄素的药理作用研究概况[J].中国药理学通报.2003;19(8):851~854.
    [9] 张陆勇,江振洲,濮存海等.大黄总葸醌对SD大鼠灌胃给药的长期毒性研究[J].中国生化药物杂志.2004,25(4):206-209
    [10] 由田.过量大黄致肝细胞损伤的研究[D].中国医科大学.硕士研究生论文.2005年.
    [11] NTP technical report: The toxicology and carcinogenesis studies of emodin in F344/N rats and B6C3F1 mice. NIH Publication No. 01-3952, June 2001.pp1-278
    [12] Yan M, Zhang LY, Sun LX, et al. Nephrotoxicity study of total rhubarb anthraquinones on Sprague Dawley rats using DNA microarrys[J]. J Ethnopharmacolgy. 2006; 107(2): 308-311.
    [1] Baliga R, Ueda N, Walker PD. et al. Oxidant mechanisms in toxic acute renal failure[J]. Drug Metabolism Reviews. 1999; 31(4): 971-997.
    [2] Lebeau C, Arlt VM, Aristolochic acid impedes endocytosis and induces DNA adducts in proximal tubule cells[J]. Kidney Int. 2001, 60(4): 1332-1342.
    [3] Zager PA, Burkhart KM. Differential effects of glutathione and cysteine on Fe2~+, Fe3~+, H_2O_2 and myoglobin-induced proximal tubular cell attck[J]. Kidney Int. 1998, 53(6): 1661-1672
    [4] Koyama H, Goodpasture C, et al. Establishment and characterization of a cell line from the American opossum(Didelphys virginiana)[J]. In Vitro. 1978, 14(3): 239-246.
    [5] Coulson R, Johnson RA, et al. Adenosine stimulates phosphate and glucose transport in opossum kidney epithelial cells[J]. Am J Physiol. 1991, 260(6 Pt 2): F921-F928.
    [6] Scheinman SJ. Effects of confluence on phosphate transport capacity in cultured renal cell lines[J]. J Cell Physiol. 1988; 135(1)122-126.
    [7] Poustis-Delpont C, Mengual R, et al. LLC-PK1 cells express Na+-lactate cotransport in apical membranes after confluency[J]. Am J Physiol. 1988; 255(6 Pt 2): F1249-F1255.
    [8] Ryan MJ, Johnson G, Kirk J, et al. HK-2: an immortalized proximal tubule epithelial cell line from normal adult human kidney[J]. Kidney Int. 1994; 45(1): 48-57.
    [9] Sassa S, Sugita O, Galbraith RA, Kappas A. Drug metabolism by the human hepatoma cell, HepG2[J]. Biochemical and Biophysical research communications. 1987, 143(1): 52-57.
    [10] Burczynski ME, McMillian M, Ciervo J, Li L, Parker JB, Dunn RT 2nd. et al. Toxicogenomics-based discrimination of toxic mechanism in HepG2 human hepatoma cells[J]. Toxicol Sci, 2000, 58(2): 399-415.
    [11] Gatehouse D. Detection of mutagenic derivatives of cyclophosphamide and a variety of other mutagens in a "microtitre" fluctuation test, without microsomal activation[J]. Mutat Res, 1978, 53(3): 289-296.
    [12] Levin DE. Modified fluctuation test for the direct detection of mutagens in foods with Salmonella typhimurium TA98[J]. Mutat Res, 1981, 85(5): 309-321.
    [13] Gatehouse D, Delow GF. The development of a microtitre fluctuation test for the detection of indirect mutagens and its use in the evaluation of mixed enzyme induction of the liver[J]. Mutat Res, 1979; 60(3): 239-52.
    [14] Green MHL, Muriel WJ, Bridges A. Use of a simplified fluctuation test to detect of the liver[J]. Mutat Res, 1976, 74: 283-289.
    [15] Ames BN. Carcinogens are mutagens: their detection and classification. Environ Health Perspect. 1973; 6: 115-118.
    [16] 胡长灯,詹卓玲.微量波动试验的影响因素及灵敏度研究[J].卫生毒理学杂志,1990;4(2):115-116,121.
    [17] Lubet RA, Mayer RT, Cameron JW, et al. Dealkylation of pentoxyresorufin: a rapid and sensitive assay for measuring induction of cytochrome(s) P-450 by phenobarbital and other xenobiotics in the rat[J]. Arch Biochem Biophys. 1985; 238(1): 43-48.
    [18] Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent[J]. J Biol Chem. 1951; 193(1): 265-275.
    [19] Omura T, Sato R. The carbon monoxide binding pigment of liver micro-somes. Ⅱ: Solubilization, purification and properties[J]. J Biol Chem. 1964; 239: 2379-2385.
    [20] Hanioka N, Jinno H, Nishimura T, Andom. Changes in cytochrome P450 enzymes by 1, 1-dichloroethylene in rat liver and kidney[J]. Arch Toxicol. 1997; 72(1): 9-16
    [21] Roe AL, Warren G, Hou G, et al. The effect of high dose endotoxin on CYP3A2 expression in the rat[J]. Pharm Res. 1998, 15(10): 1603-1608.
    [22] Wardlaw SA, Nikula KJ, Kracko DA. et al. Effect of cigarette smoke on CYP1A1, 1A2 and CYP2B1/2 of nasal mucosae in F344 rats[J]. Carcinogenesis. 1998; 19(4): 655-662
    [23] Pratibha V Nerurkar, Sang S Park, Paul E Thomas. et al. Methoxyresorufin and benzyloxyresorufin: substrates preferentially metabolized by cytochromes P450 1A2 and 2B, respectively, in the rat and mouse[J]. Biochemical Pharmacology. 1993; 46(5): 933-943
    [24] National Toxicology Program.(NTP). Toxicology and carcinogenesis studies of emodin(CAS NO: 518-82-1)feed studies in F344/N rats and B6C3F1 mice[J]. Natl Toxicol Program Tech Rep Ser, 2001; 493: 1~278.
    [25] 张路勇,江振洲,濮存海等.大黄总葸醌对SD大鼠灌胃给药的长期毒性研究[J].中国生化药物杂志.2004,25(4):206-210.
    [26] 闫长会,铂类抗肿瘤药体外肾毒性的比较研究,硕士学位论文,2004年。
    [27] Cuttle L, Zhang XJ, Endre ZH, et al. Bcl-X(L) translocation in renal tubular epithelial cells in vitro protects distal cells from oxidative stress[J]. Kidney Int, 2001; 59(5): 1779-1788
    [28] 唐功耀,田雪飞等.马兜铃酸对人肾细胞作用的实验研究[J].中华肾脏病杂志,2002.18(4):266-269。
    [29] 李彪,李晓玫,张翠英等.马兜铃内酰胺Ⅰ对肾小管上皮细胞的损伤作用[J],中国中药杂志,2004;28(1):79-83.
    [30] 刘剑波,高学岗,连涛等.大黄素在体外诱导人肝癌细胞HepG2发生凋亡的 初步研究[J].癌症.2003;22(12):1280-1283.
    [31] Shieh DE, Chen YY, Yen MH, et al. Emodin-induced apoptosis through P53-dependent pathway in human hepatoma cells[J]. Life Sciences. 2004, 74(18): 2279-2290.
    [32] Bironaite D, Ollinger K. The hepatotoxicity of rhein involves impairment of mitochondrial functions[J]. Chemico-Biological Interaction. 1997; 103(1): 35-50.
    [33] 杨丽娟.线粒体与细胞凋亡[J].通化师范学院学报.2005;26(2):60-61.
    [34] Nagata, S., Goldstein, P. The Fas death factor. Science[J]. 1995, 267, 1449-1456.
    [35] Danial, N. N., Korsmeyer, S. J., Cell death, critical control points[J]. Cell. 2004, 16, 205-219.
    [36] Degterev A, Boyce M, Yuan J. A decade of caspases[J]. Oncogene. 2003, 22, 8543-8567.
    [37] Li H, Yuan J. Deciphering the pathways of life and death[J]. Curr Opin Cell Bil, 1999, 11(2): 261-266.
    [38] Muzio M, Salvesen GS, Dixit VM. FLICE induced apoptosis in a cell-free system, cleavage of caspase zymogens[J]. J Biol Chem, 1997, 272(5): 2952-2956.
    [39] Hasegawa J, Kamada S, Kamiikew, et al. Involvement of CPP32/Yama(-like) proteases in Fas-mediated apoptosis[J]. Cancer Res, 1996, 56(8): 1713-1718
    [40] Kluck RM, Bossy-Wetzel E, Green DR. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis[J]. Science, 1997, 275(5303): 1132-1136.
    [41] Pan G, Rourke K, Dixit VM. caspase 9, Bcl-x1, and Apaf-1form a ternary complex [J]. J Biol Chem, 1998, 273(10): 5841-5845.
    [42] Vaux, D. L., Cory, S., Adams, J. M. Bcl-2 gene promotes the survival of haemopoietic cells and co-operates with c-myc to immortalize pre-B cells[J]. Nature, 1988, 335(6189), 440-442.
    [43] Oltvai, Z. N., Millman, C. L., Korsmeyer, S. J. Bcl-2 heterodimers in vivo with a conserved homolog, Bax, that accelerates programmed cell death[J]. Cell. 1993, 74(4), 609-619.
    [44] Wang C, Wu X, Chen M, et al. Emodin induces apoptosis through caspase 3-dependent pathway in HK-2 cells[J]. Toxicology. 2007 Mar 7;231(2-3): 120-8.
    [45] Chen CY, Shen SC, Lee WR, et al. Emodin induces apoptosis in human promyeloleukemic HL-60 cells accompanied by activation of caspase 3 cascade but independent of reactive oxygen species production[J]. Biochemical Pharmacology. 2002;64(12):1713-1724
    
    [46] Senturker S, Tschirret-Guth R, Morrow J, et al. Induction of apoptosis by chemotherapeutic drugs without generation of reactive oxygen species [J]. Arch Biochem Biophys. 2002;397(2):262-272
    
    [47] Huang SS, Yeh SF, Hong CY. Effect of anthraquinone derivatives on lipid peroxidation in rat heart mitochondria : Structure-activity relationship[J] . J Nat Prod, 1995 ;58 (9): 1365-1371.
    [48] Yen GC, Duh PD, Chuang DY, et al. Antioxidant activity of anthraquinones and anthrone[J] . Food Chemistry. 2000;70 ():437-441.
    [49] Kawanishi S, Oikawa S, Murata M. Evaluation for safety of antioxidant chemopreventive agents[J]. Antioxid Redox Signal. 2005;7(11-12):1728-39
    [50] Yan M, Zhang LY, Sun LX, et al. Nephrotoxicity study of total rhubarb anthraquinones on Sprague Dawley rats using DNA microarrys[J]. J Ethnopharmacolgy, 2006; 107(2):308-311.
    
    [51] Shieh DE, Chen YY, Yen MH, et al. Emodin induced apoptosis through P53-dependent pathway in human hapatoma cells[J]. Life Sciences.2004, 74(18):2279-2290.
    
    [52] Li JN, Lv FZ, Xiao JL. Effects of emodin on proliferation cycle and apoptotic gene of human lung adenocarcinoma cell line Anip 973[J]. Zhongguo Zhong Xi Yi Jie He Za Zhi. 2006; 26(11):1015-7, 1020.
    
    [53] Su YT, Chang HL, Shyue SK, et al. Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway[J]. Biochemical Pharmacology. 2005; 70(2):229-241.
    [54] Jing Y, Yang J, Wang Y, Li H, Chen Y, Hu Q, Shi G, Tang X, Yi J. Alteration of subcellular redox equilibrium and the consequent oxidative modification of nuclear factor kappaB are critical for anticancer cytotoxicity by emodin, a reactive oxygen species-producing agent[J]. Free Radic Biol Med. 2006; 40(12): 2183-97.
    [55] Huang Q, Shen HM, Ong CN. Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Racl pathway[J]. Cell Mol Life Sci. 2005; 62(10): 1167-75.
    [56] Kaneshiro T, Morioka T, Inamine M, et al. Anthraquinone derivative emodin inhibits tumor-associated angiogenesis through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation[J]. Eur J Pharmacol. 2006; 553(1-3): 46-53.
    [57] Lee J, Jung E, Lee J, Huh S, Hwang CH, Lee HY, Kim EJ, Cheon JM, Hyun CG, Kim YS, Park D. Emodin inhibits TNF alpha-induced MMP-1 expression through suppression of activator protein-1(AP-1)[J]. Life Sci. 2006; 79(26): 2480-5.
    [58] Olsen BB, Bjorling-Poulsen M, Guerra B. Emodin negatively affects the phosphoinositide 3-kinase/AKT signalling pathway: a study on its mechanism of action[J]. Int J Biochem Cell Biol. 2007; 39(1): 227-37.
    [59] Wang J, Huang H, Liu P, Tang F, Qin J, Huang W, Chen F, Guo F, Liu W, Yang B. Inhibition of phosphorylation of p38 MAPK involved in the protection of nephropathy by emodin in diabetic rats[J]. Eur J Pharmacol. 2006; 553(1-3): 297-303.
    [60] 陶玉珍,刘毅,郭启明等.大黄抗突变作用的研究[J].癌变·畸变·突变,1998,10(4):241.
    [61] Mueller SO, Lutz WK, Stopper H. Factors affecting the genotoxic potency ranking of natural anthraquinones in mammalian cell culture systems[J]. Mutat Res, 1998, 414(1~3): 125-129.
    [62] Mueller SO, Eckert I, Lutz WK, et al. Genotoxicity of the laxative drug components emodin, aloe-emodin and danthron in mammalian cells: topoisomerase Ⅱ mediated?[J]. Mutat Res. 1996, 371(3-4): 165-173.
    [63] 宋芬,李彬,徐品良等.微量波动试验方法的研究[J].中国公共卫生学报, 1990;9(1): 39-40.
    [64] 衡正昌,杨正昌,王新建等.微量波动试验在水样检测中的应用[J].环境与健康杂志,1990,1:22-25.
    [65] 黄幸舒.环境化学物致突变致畸致癌试验方法.福州:浙江人民出版社,1987:pp42-55.
    [66] Wang L, Lin L, Ye B. Electrochemical studies of the interaction of the anticancer herbal drug emodin with DNA[J]. J Pharm Biomed Anal. 2006; 42(5): 625-9.
    [67] Lee HZ, Lin CJ, Yang WH, Leung WC, Chang SR Aloe-emodin induced DNA damage through generation of reactive oxygen species in human lung carcinoma cells[J]. Cancer Lett. 2006; 239(1): 55-63.
    [68] Wang HW, Chen TL, Yang PC, et al. Induction of cytochrome P450 1A1 and 1B1 by emodin in human lung adenocarcinoma cell line CL5[J]. Drug metablisma and disposition. 2001; 29(9).: 1229-1235.
    [69] Sueyoshi T, Negishi M. Phenobarbital response elements of cytoehrome P450 genes and nuclear receptors[J]. Annu Rev Pharmacol Toxicol. 2001; 41: 123-143.
    [70] 李淑娟,董晓华,武海霞等.大黄及其有效成分药理作用研究进展[J].医学综述,2005;11(1):76-78.
    [1] 王桐生,谢鸣.代谢组学与中医药现代研究[J].中医杂志.2006;47(10):723-725.
    [2] Lindon J C, Holmes E, Nicholson J K. So what's the deal with metabonomics?[J]. Anal Chem, 2003, 75(17): 384A-391A.
    [3] Nicholson JK. Metabonomie approaches to understanding the consequences of drug toxicity and function[J]. The Toxicologist. 2002; 66: 533
    [4] 邱玉洁,夏圣安,叶朝辉等.生物医学核磁共振中的模式识别方法[J].波谱学杂志.2005;22(1):99-112
    [5] Beckonert Olaf, Bollard ME, and Ebbels TM et al. NMR-based metabonomic toxicity classification: hierarchical cluster analysis and k-nearest-neighbour approaches[J]. Analytica Chimica Acta. 2003, 490(1-2): 3-15.
    [6] Nicholson JK., Connelly J., Lindon JC., et al. Metabonomics: A platform for study ing drug toxicity and gene function[J]. Nat Rev Drug Discov. 2002; 1(2): 153-161
    [7] Holmes, E., Nicholls, A. W., Lindon, J. C., et al. a. Development of a model for classification of toxin-induced lesions using 1H NMR spectroscopy of urine combined with pattern recognition[J]. NMR Biomed. 1998; 11(4-5): 235-244.
    [8] Holmes, E., Nicholson, J. K., Nicholls, A. W., et al. The identification of novel biomarkers of renal toxicity using automatic data reduction techniques and PCA of proton NMR spectra of urine. Chemomet. Intel. Lab. Systems[J]. 1998. 44: 245-255.
    [9] Holmes, E., Nicholls, A. W., Lindon, J. C., et al. Chemometric models for toxicity classification based on NMR spectra of biofluids. Chem[J]. Res. Toxicol. 2000. 13(6): 471-478.
    [10] Nicholson, J. K., lindon, J. C., holmes, E.,. Metabonomics: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J]. Xenobiotica. 1999; 29(11): 1181-1189.
    [11] Gartland KP, Bonner FW, Timbrell JA, Nicholson JK. Biochemical characterisation of para-aminophenol induced nephrotoxic lesions in the F344 rat[J]. Arch Toxicol, 1989, 63(2): 97-106.
    [12] Holmes E, Nicholson JK,. Nicholls AW, Lindon JC. The identification of novel biomarkers of renal toxicity using automatic data reduction techniques and PCA of proton NMR spectra of urine[J]. Chemometrics and intelligent Laboratory Systems, 1998, 44: 245-255.
    [13] 俞长兴,肖蓬,苏志红等.大黄临床应用研究进展.中国医院用药评价与分析.20022(6):359-362
    [14] Zhang XY, Wu HE Liao PQ, et al. NMR-based metabonomic study on the subacute toxicity of aristolochic a cid in rats[J]. Food and Chemical Toxicology. 2006; 44(7): 1006-1014.
    [15] Holmes, E., Bonner, F. W., Nicholson, J. K.,. 1H NMR spectroscopic and histopathological studies on propyleneimine-induced renal papillary necrosis in the rat and the multimammate desert mouse(Mastomys natalensis). Comp. Biochem. Physiol.: Part C. Pharmacol[J]. Toxicol. Endocrinol. 1997; 116(2): 125-134.
    [16] Gartland, K. P., Bonner, F. W., Nicholson, J. K., Investigations into the biochemical effects of region-specific nephrotoxins[J]. Mol. Pharmacol. 1989; 35(2): 242-250.
    [17] Buckalew, Jr., V. M., Neprolithiasis in renal tubular acidosis[J]. J. Urol. 1989. 141(3 Pt 2), 731-737.
    [18] Connor SC, Wu W, Sweatman BC. Effects of feeding and body weight loss on the 1H-NMR-based urine metabolic profiles of male Wistar Han rats: implications for biomarker discovery[J]. Biomarkers. 2004; 9(2): 156-79.
    [19] Browse, J. and Somerville, C. R., Glycerolipid biosynthesis: biochemistry and regulation. Annu. Rev. Plant Physiol[J]. Plant Mol. Biol. 1991; 42: 467-506.
    [20] Extort, J. H., Signaling through phosphatidylcholine hreakdown[J]. J. Biol. Chem. 1990; 265(1): 1-4.
    [21] Kent, C., Carman, G. M., Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus[J]. Trends Biochem. Sci. 1999. 24(4): 146-150.
    [22] Griffin JL, Walker LA, Troke J, et al. The initial pathogenesis of cadium induced renal toxicity[J]. FEBS Letters.; 2000; 478(1-2): 147-150.
    [23] Griffin JL, Walker LA, Troke J, et al. the initial pathogenesis of cadmium induced renal toxicity[J]. FEBS Letters. 2000; 478(1-2): 147-150.
    [24] Nicholls AW., Holmes E., Lindon JC, et al. Metabonomic investigations into hydrazine toxicity in the rat[J]. Chem Res Toxicol. 2001;14(8):975-987.
    [25] Holmes, E., Bonner, F.W., Sweatman, B.C., et al. Nuclear magnetic resonance spectroscopy and pattern recognition analysis of the biochemical processes associated with the progression of and recovery from nephrotoxic lesions in the rat induced by mercury (II) chloride and 2-bromoethanamine[J]. Mol. Pharmacol. 1992.,42(5):922-930.
    [26] Antti, H., Bollard, M.E., Ebbels, T.., et al. Batch statistical processing of 1H NMR-derived urinary spectral data[J]. J. Chemom. 2002.16:461 - 468.
    [27] Azmi, J., Griffin, J.L., Antti, H., et al. Metabolic trajectory characterization of xenobioticinduced hepatotoxic lesions using statistical batch processing of NMR data. Analyst[J]. 2002; 127 (2):271 - 276.
    [28] Peter Jquinn and Valerian E Kagan Edited. Phospholipid metabolism in apoptosis [M]. London. Kluwer Academic/Plenum Publishers.2003.
    
    [29] Alessandra Rufini and Roberto Testi. Lipid Signaling in CD95-mediated Apoptosis. In: Phospholipid metabolism in apoptosis [M]. Peter Jquinn and Valerian E Kagan Edited. london.Kluwer Academic/Plenum Publishers. 2003. p285-307.
    [30] Volker Lehmann, Vladimir Shatrov. Lipid metabolism and release of cytochrome c from mitochondria. In: Phospholipid metabolism in apoptosis [M]. Peter Jquinn and Valerian E Kagan Edited.london.Kluwer Academic/Plenum Publishers. 2003.p1-17.
    [31] Lutter M, Fang M, Luo X, et al.cardiolopin provides specificity for targeting of tBid to mitochondria [J]. Nature Cell Biology, 2000,2(10):754-761.
    [32] Herve Benoist, Robert Salvayre and Anne Negre-Salvayre. Oxidized LDL-Induced Apoptosis. In: Phospholipid metabolism in apoptosis [M], Peter Jquinn and Valerian E Kagan Edited. london. Kluwer Academic/Plenum Publishers. 2003. p123-284.
    [33] Yang Y, Shang W, Zhou L, et al. Emodin with PPARgamma ligand-binding activity promotes adipocyte differentiation and increases glucose uptake in 3T3-L1 cells. Biochem Biophys Res Commun[J]. 2007; 353(2): 225-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700