基于功能磁性材料的蛋白质组学分离鉴定新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对目前蛋白质组学研究中面临的分离富集及鉴定方面的热点难点问题,将功能磁性材料与蛋白质分析结合起来,开展了一系列研究工作,发展了相关的新技术新方法并进行了实际的应用研究,取得了一些创新性研究结果。主要研究内容和取得的主要研究成果摘要如下:
     第一章概述了蛋白质组学目前分离鉴定研究的主要技术手段及分离富集新技术研究的发展趋势;概述了磁性聚合物微球的特点及其应用;就功能材料应用于分离富集低丰度蛋白和翻译后修饰蛋白质的研究进展进行了综述;提出了本论文选题的目的和意义。
     第二章针对低丰度蛋白及肽段的分离鉴定,采用水热法制备了具有超顺磁性的四氧化三铁磁性微球;采用溶胶-凝胶法在其表面包覆二氧化硅层,合成制备了具有核壳结构的Fe_3O_4@SiO_2磁性硅球;并在其表面进行硅烷化修饰。利用振动样品磁场计、傅立叶变换红外光谱仪、透射及扫描电子显微镜、热失重分析仪等对我们制备的C8键合相疏水性硅球磁性材料C8-f-Fe_3O_4@SiO_2进行了表征。该材料的硅层表面与报道过的同类材料的聚合物表面相比,具有更好的生物相容性。将其应用于富集低丰度肽段,富集倍数达到100倍以上;即使对高浓度的盐溶液中的肽段仍能实现有效富集。进一步用于血清中游离低丰度肽段的分离富集。实验结果表明,其对于血清中游离肽段的富集效果达到并超过了已经报道的同类材料的效果。
     第三章针对翻译后修饰蛋白质组中的磷酸化蛋白及肽段的分离富集问题,采用固定金属亲和色谱(IMAC)原理,在Fe_3O_4@SiO_2磁性硅球表面键合上螯合金属离子的官能团,将Fe(Ⅲ)固定在磁球表面。采用傅立叶变换红外光谱仪等对其进行了表征与确认。
     以β-casein标准蛋白为测试对象,实验证明该材料对于磷酸化肽段具有很好的选择性富集效果,信躁比可提高10倍以上。实验得到了该材料选择性富集磷酸化肽段的最佳条件并考察了该材料对于混合蛋白酶解肽段体系中磷酸化肽段的选择性富集性能,富集到的磷酸化肽可洗脱分析也可无需洗脱直接进行质谱分析,显示了该方法的灵活性。在此基础上,进一步用于人血清中游离的磷酸化肽段的富集,并采用质谱进行了磷酸化肽段结构以及磷酸化位点的鉴定,获得了一批磷酸化肽段数据。以鼠肝蛋白提取物为研究对象,将提取蛋白酶解得到的鼠肝肽段混合物,分别采取两条技术路线进行分离鉴定:(a)将肽段混合物中所有的磷酸化肽段富集到材料上,将其洗脱,进行nanoLC-LTQ MS/MS分析,鉴定了66条磷酸化肽段。(b)将肽段混合物进行色谱分离,按时间收集29个馏分,降低了富集体系的复杂性后再用材料富集各个馏分中的磷酸化肽,对每个馏分中富集到的磷酸化肽段采用MALDI TOF MS进行磷酸化肽段及其位点的鉴定,显示了该材料对磷酸化肽段具有较好的选择性和适用性。
     论文还发展了更为简便的方法,合成了氨基四氧化三铁磁性纳米材料,在其表面键合上螯合金属离子的官能团,将Fe(Ⅲ)、Al(Ⅲ)、Ga(Ⅲ)、In(Ⅲ)、Zr(Ⅳ)、Ce(Ⅲ)等离子固定到磁球表面。通过傅立叶变换红外光谱仪、能量弥散X射线分析仪等对其进行表征。考察了表面固定Fe(Ⅲ)、Al(Ⅲ)、Ga(Ⅲ)、In(Ⅲ)、Zr(Ⅳ)、Ce(Ⅲ)等离子的氨基四氧化三铁磁性纳米材料对于磷酸化肽段的选择性富集能力,结果表明,所有材料对于磷酸化肽段都有较好的分离富集选择性,其中Fe(Ⅲ)、Al(Ⅲ)、Ga(Ⅲ)和Zr(Ⅳ)较In(Ⅲ)、Ce(Ⅲ)的选择性更加突出。
     第四章研究探索了二氧化钛的包覆新方法,采用磁球外部包覆碳层为模板包覆二氧化钛、随后灼烧去除碳层的方法,制备了结构紧密的具有核壳结构的Fe_3O_4@TiO_2超顺磁性微球。该新材料具有与IMAC材料完全不同的富集机理,且具有更高的化学惰性和稳定性。采用振动样品磁场计、傅立叶变换红外光谱仪、透射及扫描电子显微镜等对产物进行了表征与确认。该合成新方法为在磁球表面包覆其他金属氧化物提供了很好的借鉴作用。实验进而优化了该材料富集磷酸化肽段的实验条件,包括富集体系、富集时间、样品洗脱时间等,验证了该材料对于复杂体系中磷酸化肽段有很好的选择性富集性能。并将其应用于人血清磷酸化肽富集和鼠肝蛋白中磷酸化肽鉴定,获得了79条磷酸化肽段的数据。
     第五章针对翻译后修饰蛋白中糖基化蛋白及肽段的分离富集问题,论文研究制备了表面键合硼酸基团/Con A凝集素的氨基磁性纳米粒子新材料,采用傅立叶变换红外光谱仪进行表征;对该材料应用于糖基化蛋白的选择性富集进行了初步实验探索,实现了对糖蛋白的选择性富集,获得了有价值的研究结果。论文还研究了糖蛋白的酶解方法,优化了酶解的条件,采用色谱分离的方法获得了目标糖肽段。
     总之,本论文围绕蛋白质组学研究的新技术新方法,发展了多种功能化磁性材料并建立了多种有效的分离富集方法,为解决蛋白质组学分析中的低丰度蛋白质、翻译后修饰的磷酸化和糖基化蛋白的分离富集及鉴定问题提供了新颖有效的研究手段和方法。
Based on the proteome research background and the development trend of polymer magnetic microspheres, the research interest of this work focused on preparing several kinds of novel functionalized magnetic polymer microspheres and developing a series of techniques and methods to resolve current problems in the separation and concentration of low-abundance and post-translational proteins. This dissertation is divided into five parts.
     In chapter 1, advances in current protein separation and concentration techniques, applications of functionalized magnetic polymer microspheres techniques and application of functional materials in proteome research were summarized in details. The intention and meaning of this dissertation were explained.
     In chapter 2, magnetite particles were synthesized via solvothermal reaction; and then magnetite microspheres were coated with silica through sol-gel methd; subsequent modified with chloro(dimethyl) octylsilane;thus a novel C8-functionalized magnetic polymer microsphere was prepared. With the characterization of vibrating-sample magnetometer, FT-IR, TEM, SEM and Thermogravimetric analysis, the resulting C8 functionalized magnetic silica microspheres exhibited well-defined magnetite-core-silica-shell structure and possess high content of magnetite, which endow them with high dispersiblity and excellent magnetic responsibility. As a result of their excellent magnetic property, the synthesized C8 -functionalized magnetic silica microspheres were successfully applied for convenient, fast and efficient enrichment of low-abundance peptides from tryptic protein digest and human serum via a direct MALDI-TOF mass spectrometry analysis. The signal intensity could be improved by at least two orders of magnitude.Even in high salt concentration solution, the peptides could also be isolated effectively. The experiment results were almost the same with the results gained using the C8 -functionalized magnetic silica from Bruker Company in the reference. The facile synthesis and the convenient and efficient enrichment process of the novel C8-functionalize microspheres make it promising candidate for isolation of peptides even in complex biological samples.
     Chapter 3 presents a facile way to modify the surface of magnetic silica microspheres and then immobilize Fe~(3+) ions on their surface based on the principle of IMAC, thus Fe~(3+)-immobilized magnetic silica micorspheres (Fe~(3+)-MS) were prepared. We confirmed them with FT-IR, TEM and SEM. Because of high magnetic responsivity to magnetic field and the introduction of Fe~(3+) on the smooth silica coatings, the prepared Fe~(3+)-MS could be applied to efficiently and conveniently enrich trace peptides with a help of applied magnetic field. The Fe~(3+)-MS showed good selectivity to phosphopeptides and the S/N signal could be improved by at least one order of magnitude. The experimental conditions for the enrichement of phosphopeptides were optimized. In more complex sample, phosphopeptides could also be selectively enriched. The captured phosphopeptides could also be direct analysis by MALDI-TOF MS avoiding the sample loss during elution from the material.
     The Fe~(3+)-MS were applied to capture the phosphopeptides in complex biological samples. Some phosphopeptides in normal human serum were enriched and their composition and phosphotylated site were determined by MALDI-TOF MS/MS. It was also applied to isolate the phosphopeptieds in trypsin digest of rat liver protein lysate.we took two technical routes: (1) isolated the phosphopeptieds in trypsin digest of rat liver protein lysate, then analyzed the eluted sample by nanoLC- LTQ MS/MS and 66 phosphopeptides were successfully identified. (2) separated the trypsin digest of rat liver protein lysate by RPLC and 29 fractions are collected. Thus the complexity of the fraction was lowered. Then isolated the phosphopeptieds from each fraction and then analyzed the elution by MALDI TOF MS.
     In addition to above work, we developed a more convenient method to synthesize a novel functional magnetic material for phosphopeptides isolation. Amine-magnetite nanoparticles were synthesized by solvothermal reaction and were further converted into carboxy-magnetite nanoparticles through two-step amidation reaction. Then, Fe(III)、Al(III)、Ga(III)、In(III)、Zr(IV)、Ce(III) ions were immobilized on the surface of the nanoparticles via chelation respectively which were confirmed by characterization with FT-IR, TEM, SEM and EDXA analysis. All of The six materials showed good selectivities to phosphopeptides, especially Fe(III)、Al(III)、Ga(III) and Zr(IV).
     In chapter 4, we present an innovative approach for the synthesis of TiO_2-coated magnetite microspheres (Fe_3O_4@TiO_2 microspheres) with well-defined core-shell structure, which were confirmed by characterization with FT-IR, TEM, SEM and EDXA analysis. This material enriched phosphopeptides by the affinity between TiO_2 and phosphopeptides and was more stable than the IMAC materials. By using the Fe_3O_4@TiO_2 microspheres with the assistance of applied magnetic field, we demonstrate the high efficiency of the smart application of these microspheres as specific capture of phosphopeptides for MALDI-TOF MS analysis. The experimental conditions for the enrichement of phosphopeptides were optimized. In more complex sample, phosphopeptides could also be selectively enriched effectively.The process of enrichment is very facile, efficient and highly selective. The peptides adsorbed on the Fe_3O_4@TiO_2 core-shell microspheres can be directly analyzed by MALDI-TOF-MS analysis without elution from the Fe_3O_4@TiO_2 core/shell microspheres.
     The Fe_3O_4@TiO_2 core-shell microspheres were applied to capture the phosphopeptides in normal human serum. Two phosphopeptides were enriched and their composition and phosphotylated site were determined by MALDI-TOF MS/MS. It was also applied to isolate the phosphopeptieds in trypsin digest of rat liver protein lysate and then the eluted sample was analyze by nanoLC- LTQ MS/MS and 79 phosphopeptides were successfully identified. These results are expected to open up a new possibility for the enrichment of phosphopeptides. Moreover, the versatile, low-cost and reproducible synthesis method could extend to other core-shell structured microspheres of metal oxides.
     In chapter 5, the boronic acid or Con A modified magnetic nanopartiles were synthesize and applied to selectively enrich glycoprotein from protein mixture.the experimnt result indicated that the boronic acid modified magnetic nanopartiles effectively captured the glycoprotein. In addition, the digest conditions of glycoprotein were modified and glycopeptides were separated from the digest mixture by RPLC and then confirmed by MALDI-TOF-MS.
     In summary, the main contributes of this dissertation is to develop several functional magnetic materials and found several new separation methods for low-abundance and post-translational proteins. We aim at exploring and finding out new techniques in the separtion and concentration of proteome research fields, so that more breakthroughs can be obtained in the proteome research study.
引文
[1] Pandey, A., Mann M. Proteomics to study' genes and genomes, Nature, 2000, 405 (6788), 837-846.
    [2] Rosamond L., Alsop, A. Harnessing the power of the genome in the search for new antibiotics, Science, 2000, 287 (5460), 1973-1976.
    [3] Regnier, F., Amini, A., Chakraborty, A., Geng, M., Ji, J., Riggs, L., Sioma, C., Wang, S., Zhang, X. Multidimensional chromatography and the signature peptide approach to proteomics. LC-GC, 2001, 19, 200-213.
    [4] Cordwell. S et al, Characterisation of basic proteins from Spiroplasma melliferum using novel immobilised pH gradients, Electrophoresis, 1997, 18: 1393-1398.
    [5] Blackstock, W. P., Weir, M. P. Proteomics: quantitative and physical mapping of cellular proteins. Trends in Biotechnol. 1999, 17, 121-127.
    [6] Righetti, P., G., Wenisch, E., Jungbauer, A., Katinger, H., Faupel, M., J. Chromatogr. 1990, 500, 681.
    [7] Corthals, G., L., Molloy, M., P., Herbert, B., R., Milliams, K., L., Gooley, A., A., Electrophoresis, 1997, 18, 317.
    [8] Badock, V., Steinhusen, U., Bommert, K., Otto, A.,Prefractionation of protein samples for proteome analysis using reversed-phase high-performance liquid chromatography, Electrophoresis 2001, 22, 2856-2864.
    [9] Dreger, M., Subcellular proteomics, Mass Spec Rev 2003, 22, 27-56.
    [10] N. Karoline Scheficer, Scott W. Millerc, Amy K. Carrollc, Christen Andersonc, et al, Two-dimensional electrophoresis and mass spectrometric identification of mitochondrial proteins from an SH-SY5Y neuroblastoma cell line, Mitochondrion, 2001, 1: 161-179.
    [11] Bier, M., Recycling isoelectric focusing and isotachophoresis, Electrophoresis 1998, 19, 1057-1063.
    [12] Hannig, K., New aspects in preparative and analytical continuous free-flow cell electrophoresis, Electrophoresis 1982, 3,235-243.
    [13] Margolis J., Corthals G., Horvath Z.S., Preparative reflux electrophoresis. Electrophoresis 1995, 16, 98-100.
    [14] Horvath, Z. S., Gooley, A. A., Wrigley, C. W., Margolis, J., Williams, K.L. Preparative affinity membrane electrophoresis, Electrophoresis 1996, 17, 224-226.
    [15] Van den Bergh G., Clerens, S., Vandesande, F., Arckens, L., Reversed-phase high-performance liquid chromatography prefractionation prior to two-dimensional difference gel electrophoresis and mass spectrometry identifies new differentially expressed proteins between striate cortex of kitten and adult cat, Electrophoresis, 2003, 24, 1471-1481.
    [16] Butt, A., Davison, M. D., Smith, G. J., Young, J. A., Gaskell, S. J.,Oliver, S. G., Beynon, R. J., Chromatographic separations as a prelude to two-dimensional electrophoresis in proteomics analysis, Proteomics, 2001, 1, 42-53.
    [17] Jacobs, J.M., Mottaz, H. M., Yu, L.R., Anderson, D. J., Moore, R. J., Chen, W.N.U., Auberry, K. J., Strittmatter, E. F., Monroe, M. E., hrall, B. D., Camp, D. G. Ⅱ, Smith, R. D. Multidimensional Proteome Analysis of Human Mammary Epithelial Cells, J. Proteome Res. 2004, 3, 68-75.
    [18] Gao, M.X., Jin, H., Yang, P.Y., Zhang, X.M. Chromatographic prefractionation prior to two-dimensional electrophoresis and mass spectrometry identifies: Application to the complex proteome analysis in rat liver, Analytica Chimica Acta, 2005, 553, 83-92.
    [19] Adamczyk, M., Gebler, J. C.Wu, Selective analysis ofphosphopeptides within a protein mixture by chemical modification, reversible biotinylation and mass spectrometry, J. Rapid Commun. Mass Spectrom 2001, 15, 1481-1488.
    [20] Greenough, C., Jenkins, R.E., Kitteringham, N. R., Pirmohamed, M., Park, B. K., Pennington, S. R A method for the rapid depletion of albumin and immnnoglobulin from human plasma, Proteomics 2004, 4, 3107-3111.
    [21] Pieper R., Gatlin C.L., Makusky A.J., et al, Multi-component immunoaffinity subtraction chromatography: An innovative step towards a comprehensive survey of the human plasma proteome, Proteomics,2003, 3,422-432.
    [22] Ficarro S.B., McCleland M.L., Stukenberg P.T., Burke D.J., Ross M.M., Shabanowitz J., Hunt D.F, White F.M., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae, Nat. Biotechnol., 2002, 20, 301-305.
    [23] Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H., Aebersold, R., Quantitative analysis of complex protein mixtures using isotope-coded affinity tags, Nat. Biotechnol. 1999, 17, 994-999.
    [24] Qu, Y., Moons, L., Vandesande, F. Determination of serotonin, catecholamins and their metabolites by direct injection of supernatants from chicken brain tissue homogenate using liquid chromatography with electrochemical detection. J. Chromatogr. B. 1997, 704, 351-358.
    [25] Bunkenborg J, Pilch B J, Podtelejnikov AV, et al. Screening for N-glycosylated proteins by liquid chromatography massspectrometry. Proteomics, 2004, 4(2):454.
    [26] Cohen P. The origins of protein phosphorylation, Nat. Cell. Biol., 2002, 4 (5): E127-130.
    [27] Wu C C, Maccoss M J. Current Opinion in Molecular Therapeutics, 2002, 4(3):242-250.
    [28] Vener A V, Harms A, Sussman M R, et al. Mass Spectrometric Resolution of Reversible Protein Phosphorylation in Photosynthetic Membranes of Arabidopsis thaliana, J Biol Chem.2001, 276, 6959-6966.
    [29] Ficarro S B, McCleland M L, Stukenberg P T, et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae, Nat Biotechnol,2002, 20, 301-305.
    [30] Z. Kucerova, P. Majercakova, Immobilized-metal-ion affinity chromatography as a tool for the qualitative study of pepsinogen phosphorylation. J. Biophys. Methods, 2001, 49, 523-531.
    [31] Alia Stensballe, Soren Andersen, Ole Norregaard Jensen, Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(Ⅲ) affinity chromatography with off-line mass spectrometry analysis. Proteomics, 2001,1, 207-222.
    [32] Shihua Li and Chhabil Dass. Iron(Ⅲ)-Immobilized Metal Ion Affinity Chromatography and Mass Spectrometry for the Purification and Characterization of Synthetic Phosphopeptides. Analytical Biochemistry, 1999, 270: 9-14.
    [33] Matthew C. Posewitz and Paul Tempst, Immobilized Gallium(Ⅲ) Affinity Chromatography of Phosphopeptides. Anal. Chem. 1999, 71: 2883-2892.
    [34] Posewitz M C, Tempst P. Anal. Chem., 1999, 71(14): 2883-2892.
    [35] Ficarro S B, Mccleland M L, Stukenberg P T, Burke D J, Ross M M, Shabanowitz J, Hunt D F, White F M. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat.Biotechnol., 2002, 20(3): 301-305.
    [36] Katrin Moser and Forest M. White. Phosphoproteomic Analysis of Rat Liver by High Capacity IMAC and LC-MS/MS. Journal of Proteome Research 2006, 5, 98-104.
    [37] Nuhse T S, Stensballe A, Jensen O N, Peck S C. Large-scale Analysis of in Vivo Phosphorylated Membrane Proteins by Immobilized Metal Ion Affinity Chromatography and Mass Spectrometry. Mol. Cell. Proteomics, 2003, 2(11): 1234-1243.
    [38] Oda Y, Nagasu T, Chait B T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome, Nat. Biotechnol., 2001, 19(4): 379-382.
    [39] Zhou H, Watts J D, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol., 2001, 19(4): 375-378.
    [40] Lansdell T A, Tepe J J. Isolation of phosphopeptides using solid phase enrichment. Tetrahedron Lett., 2004, 45(1): 91-93.
    [41] Mclachlin D T, Chait B T. Analysis ofphosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol., 2001, 5(5): 591- 602.
    [42] Thompson A J, Hart S R, Franz C, Barnouin K, Ridley A, Cramer R. Characterization of Protein Phosphorylation by. Mass Spectrometry Using Immobilized Metal Ion Affinity Chromatography with On-Resin β-Elimination and Michael Addition. Anal. Chem., 2003, 75(13): 3232-3243.
    [43] Knight Z A, Schilling B, Row R H, Kenski D M, Gibson B W, Shokat K M. Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nat. Biotechnol., 2003, 21 (9): 1047-1054.
    [44] 王京兰 钱小红.磷酸化蛋白质分析技术在蛋白质组研究中的应用.分析化学,2005,33(7),1029-1035.
    [45] 代景泉,蔡耘,钱小红.蛋白质糖基化分析方法及其在蛋白质组学中的应用.生物技术通讯,2005,16(3),287-292
    [46] 夏其昌,曾嵘等编著,《蛋白质化学与蛋白质组学》.科学出版社,2004年.
    [47] Hirabayashi J, Arata Y, Kasai K. Glycome project: concept, strategy and preliminary application to caenorhabditis elegans. Proteomics, 2001, 1(2):295.
    [48] Jia Zhao, Diane M. Simeone, David Heidt, Michelle A. Anderson, and David M. Lubman. Comparative Serum Glycoproteomics Using Lectin Selected Sialic Acid Glycoproteins with Mass Spectrometric Analysis: Application to Pancreatic Cancer Serum. Journal of Proteome Research 2006, 5, 1792-1802.
    [49] Hiroyuki Kaji, Toshiaki Isobe etc. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nature Biotechnology, 2003, 21(6):667-672.
    [50] Ruiqing Qiu and Fred E. Regnier. Comparative Glycoproteomics of N-Linked Complex-Type Glycoforms Containing Sialic Acid in Human Serum. Anal. Chem. 2005, 77, 7225-7231.
    [51] Kanoelani T. Pilobello, Lara K. Mahal ect. Development of a Lectin Microarray for the Rapid Analysis of Protein Glycopatterns, ChemBioChem 2005, 6, 1-4.
    [52] Milan Madera, Yehia Mechref, and Milos V. Novotny. Combining Lectin Microcolumns with High-Resolution Separation Techniques for Enrichment of Glycoproteins and Glycopeptides. Anal. Chem. 2005, 77, 4081-4090.
    [53] Hiroyuki Kaji, Toshiaki Isobe etc. Lectin affinity capture, isotope-coded tagging and mass spectrometry to identify N-linked glycoproteins. Nature Biotechnology, 2003, 21(6):667-672.
    [54] Hui Zhang, Xiao-jun Li, Daniel B Martin & Ruedi Aebersold. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nature Biotechnology, 2003, 21(6): 660-666.
    [55] Tao Liu, Wei-Jun Qian, and Richard D. Smith. Human Plasma N-Glycoproteome Analysis by Immunoaffinity Subtraction, Hydrazide Chemistry, and Mass Spectrometry. Journal of Proteome Research, 2006.
    [56] Hagglund P, Bunkenborg J, Elortza F, et al. A new strategy for identification of N-glycosylated proteins and unambiguous assignment of their glycosylation sites using HILIC enrichment and partial deglycosylation. Journal of Proteome Research, 2004, 3(3): 556.
    [57] Wells L, Vosseller K, Cole RN, et al. Mapping sites of O-GlcNac modification using affinity tags for serine and threonine post-translational modifications. Mol Cell Proteomics, 2002, 1 (10): 791.
    [58] 王志珍,邹承鲁,后基因组—蛋白质组研究.生物化学与生物物理学报,1998,30(6):533-699.
    [59] 李淋,蛋白质组学的进展,生物化学与生物物理学报,2000,27(3):227-231.
    [60] M. R. Wi Iins, K. L. Wi lliams, R. D. Appel, Proteome Research: NEW Frontiers in Functional Genomics. Springer-Verlag, 1997.
    [61] 李伯良,李林,吴家睿,功能蛋白质组学.生物工程学报,2000,27(3):227-231.
    [62] Cordwell. S et al, Characterisation of basic proteins from Spiroplasma melliferum using novel immobilised pH gradients. Electrophoresis, 1997, 18: 1393-1398.
    [63] Wasinger V Cet al. Progress with gene-product of the Mollicutes: Mycoplasma genitalium. Elcectrophoresis, 1995, 16: 1090-1094.
    [64] Wilin M R et al. From proteins to Proteomics: Large scale protein identification by two-dimensional electrophoresis and amide acid analysis. Bio Thchnology, 1996, 14: 61-65.
    [65] 李伯良.功能蛋白质组学,生命的科学.1998,18(6):1-4.
    [66] 成海平,钱小红,蛋白质组研究的技术体系及其进展.生物化学与生物物理进展.2000,27(6):584-588.
    [67] Wang, H.; Hanash, S. Multi-dimensional liquid phase based separations in proteomics. J. Chromatogr. B 2003, 787, 11-18.
    [68] Bier, M., Recycling isoelectric focusing and isotachophoresis, Electrophoresis 1998, 19, 1057-1063.
    [69] Hannig, K., New aspects in preparative and analytical continuous free-flow cell electrophoresis, Electrophoresis 1982, 3,235-243.
    [70] Margolis J., Corthals G., Horvath Z.S., Preparative reflux electrophoresis, Electrophoresis 1995, 16, 98-100.
    [71] Horvath, Z. S., Gooley, A. A., Wrigley, C. W., Margolis, J., Williams, K.L. Preparative affinity membrane electrophoresis, Electrophoresis 1996, 17, 224-226.
    [72] P.G. Righetti, A. Castagna, B. Herbert, F. Reymond, J.S. Rossier, Prefractionation techniques in proteome analysis, Proteomics, 2003, 3, 1397-1407.
    [73] H.R. Mahler, E.H.Cordes, Biological Chemistry, Harper &Row, New York 1971, pp. 441-461.
    [74] Ficarro S.B., McCleland M.L., Stukenberg ET., Burke D.J., Ross M.M., Shabanowitz J., Hunt D.F, White F.M., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae, Nat. Biotechnol., 2002, 20, 301-305.
    [75] Steven W, Taylor, Eoin Fahy, Soumitra S. Ghosh. Global organellar proteomics. Trends in Biotechnology, 2003, 21 (2).
    [76] Horton, R.H.et al. Principles of Biochemistry, Prentice Hall, 1996.
    [77] Wasinger V C, Cordwell S J, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis, 1995, 16: 1090.
    [78] Swinbanks D. Nature, 1995, 378: 653.
    [79] Safarik I, Safarikova M. S. Magnetic nanoparticles and biosciences. Mon. Chem., 2002, 133,737-759.
    [80] Fricker J. Drugs with a magnetic attraction to tumours.Drug Discov. Today, 2001, 6(8), 387-389.
    [81] Schutt W, Gruttner C, Teller J, ea al. Biocompatible magnetic polymer carriers for in vivo radionuclide delivery. Artif Organs, 1999, 23, 98-103.
    [82] Molday R S, Yen SPS, Rembaum A.Nature, 1977, 268,437.
    [83] Rembaum A, Dreyer WJ. Science, 1980, 208, 364.
    [84] Senyei AE, Widder KJ.USP, 4 230 685, 1980.
    [85] Ugelstad J, Stenstad P, Kilaas L, et al. USP, 5,763,203,1998.
    [86] Josephon L.USP, 4, 672, 040, 1987.
    [87] Wilson RJ, USP, 5, 932, 097, 1999.
    [88] Katharine MP, Eric JJ, Graham A. A novel method of cell separation based on dual parameter immunomagnetic cell selection. J Immuno Meth, 1999,223,195.
    [89] Safarik I, Safarikova M. Cells isolation, magnetic techniques. In Encyclopedia of Separation Science (Edited by, Wilson ID, Adlard TR, Poole CF, Cool M).London, Academic Press,2000,2260.
    [90] Xu H, Zhang GL, Zhang FB, et al. Study on removal of bilirubin with magnetic affinity separation technique. Chin J Chem Engin, 2003, 11 (4), 456-459.
    [91] Frenzel A, Bergemann C, Kohl G, et al. Novel purification system for 6xHis-tagged proteins by magnetic affinity separation. J Chromatogr B, 2003, 793(2): 325-329.
    [92] Weizmann Y, Patolsky F, Lioubashevski O, et al. Magneto-mechanical detection of nucleic acids and telomerase activity in cancer cells, J. Am. Chem. Soc., 2004.126(4), 1073-1080.
    [93] Zuzana Bilkova, Marcela Slovakova, Nicolas Mine, Claus Futterer, Roxana Cecal, Daniel Horak, Milan Bene, Isabelle le Potier, Jana K enkova, Michael Przybylski, Jean-Louis Viovy. Functionalized magnetic micro- and nanoparticles: Optimization and application to μ-chip tryptic digestion. ELECTROPHORESIS, 27(9), 2006, 1811-1824.
    [94] Jean-Michel Kauffrnann. Preparation, Characterization, and Application of an Enzyme-Immobilized Magnetic Microreactor for Flow Injection Analysis. Anal. Chem. 2004, 76, 5498-5502.
    [95] Safarik I, Safarikova M. J. Chromatogr B. Use of magnetic techniques for the isolation of cells. 1999, 722: 33-53.
    [96] Shmuel Yitzhaki, Eran Zahavy, Chaya Oron, Morly Fisher, Avi Keysary. Concentration of Bacillus Spores by Using Silica Magnetic Particles. Anal. Chem. 2006; 78(18); 6670-6673
    [97] Desheng Wang, Jibao He, Nista Rosenzweig, Zeev Rosenzweig. Superparamagnetic Fe_2O_3 Beads-CdSe/ZnS Quantum Dots Core-Shell Nanocomposite Particles for Cell Separation. Nano Lett., Vol. 4, No. 3, 2004.
    [98] Thomas N. Krogh, Torben Berg, and Peter H(?)jrup. Protein Analysis Using Enzymes Immobilized to Paramagnetic Beads. Analytical Biochemistry, 1999, 274: 153-162.
    [99] Zuzana Bilkoval, Mareela Slovakova, Nicolas Mine, Claus Futterer, Roxana Cecal, Daniel Horak, Milan Benes, Isabelle le Potier, Jana Krenkoval, Michael Przybylski. Functionalized magnetic micro- and nanoparticles: Optimization and application to μ-chip tryptic digestion. Electrophoresis 2006, 27, 1811-1824.
    [100] Jean-Louis ViovylNicolas Mine, Claus Ful tterer, Kevin D. Dorfman, Aure lien Bancaud, Charlie Gosse, Cecile Goubaul, Jean-Louis Viovy. Quantitative Mierofluidic Separation of DNA in Self-Assembled Magnetic Matrixes. Anal. Chem. 2004, 76, 3770-3776.
    [101] Y. Zhang, X.Y. Wang, W. Shan, B.Y. Wu, H.Z. Fan, X.J. Yu, Y. Tang, P.Y. Yang, Enrichment of Low-Abundance Peptides and Proteins on Zeolite Nanocrystals for Direct MALDI-TOF MS Analysis, Angew. Chem. Int. Ed. 2005, 44, 615-617.
    [102] Ruijun Tian, He Zhang, Mingliang Ye, Xiaogang Jiang, Lianghai Hu, Xin Li, Xinhe Bao, and, Hanfa Zou. Selective Extraction of Peptides from Human Plasma by Highly Ordered Mesoporous Silica Particles for Peptidome Analysis. Angew. Chem. Int. Ed. 2006, 45, 1-5.
    [103] Rainer M. Valiant, Zoltan Szabo, Lukas Trojer, Muhammad Najam-ul-Haq, Matthias Rainer, Christian W. Huck, Rania Bakry, and Gul nther K. Bonn. A New Analytical Material-Enhanced Laser Desorption Ionization. (MELDI) Based Approach for the Determination of Low-Mass Serum Constituents Using Fullerene Derivatives for Selective Enrichment. Journal of Proteome Research 2007, 6, 44-53.
    [104] Mirre E. de Noo, Rob A. E. M. Tollenaar, Aliye O2 zalp, Peter J. K. Kuppen, Marco R. Bladergroen,,Paul H. C. Eilers, Andre M. Deelder. Reliability of Human Serum Protein Profiles Generated with C8 Magnetic Beads Assisted Maldi-TOF Mass Spectrometry. Anal. Chem. 2005, 77, 7232-7241.
    [105] Josep Villanueva, John Philip, David Entenberg, Carlos A. Chaparro, Meena K. Tanwar, Eric C. Holland, Paul Tempst. Serum Peptide Profiling by Magnetic Particle-Assisted, Automated Sample Processing and MALDI-TOF Mass Spectrometry. Anal. Chem. 2004, 76, 1560-1570.
    [106] Matthias R A. Ebert, Dagmar Niemeyer, Solren O. Deininger, Thomas Wex, Claudia Knippig, Juliane Hoffmann, Jolrg Sauer, Wolfgang Albrecht, Peter Malfertheiner, Christoph Rolcken. Identification and Confirmation of Increased Fibrinopeptide A Serum Protein Levels in Gastric Cancer Sera by Magnet Bead Assisted MALDI-TOF Mass Spectrometry. Journal of Proteome Research 2006, 5, 2152-2158.
    [107] Sen-Yung Hsieh, Ren-Kung Chen, Yi-Hsin Pan and Hai-Lun Lee. Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics 2006, 6, 3189-3198.
    [108] Muszylnska G, Andersson L, Porath J. Selective adsorption of phospho-proteins on gel-immobilized ferric chelate. Biochemistry, 1986, 25(22): 6850-6853.
    [109] Nurul H. Aprilita, Cbristian W. Huck, Rania Bakry, Isabel Feuerstein, Guenther Stecher, Sandra Morandell, Hong-Lei Huang, Taras Stasyk, Lukas A. Huber, and Guenther K. Bonn. Poly (Glycidyl Methacrylate/Divinylbenzene)-IDA-FeⅢ in Phosphoproteomics. Journal of Proteome Research 2005, 4, 2312-2319.
    [110] R. Bakry, D. Gjerde, G. K. Bonn. Derivatized Nanoparticle Coated Capillaries for Purification and Micro-extraction of Proteins and Peptides. Journal of Proteome Research 2006, 5, 1321-1331.
    [111] Songyun Xu, Houjiang Zhou, Chensong Pan, Yu Fu, Yu Zhang, Xin Li, Mingliang Ye and Hanfa Zou. Iminodiacetic acid derivatized porous silicon as a matrix support for sample pretreatment and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Rapid Commun. Mass Spectrom. 2006; 20:1769-1775.
    [112] Chensong Pan, Mingliang Ye, Yuge Liu, Shun Feng, Xiaogang Jiang, Guanghui Han, Junjie Zhu, Hanfa Zou. Enrichment of Phosphopeptides by Fe3+-Immobilized Mesoporous Nanoparticles of MCM-41 for MALDI and Nano-LC-MS/MS Analysis. J. Proteome Res., 2006, 5(11): 3114-3124
    [113] Houjiang Zhou, Songyun Xu, Mingliang Ye, Shun Feng, Chensong Pan, Xiaogang Jiang, Xin Li, Guanghui Han, Yu Fu, and Hanfa Zou. Zirconium Phosphonate-Modified Porous Silicon for Highly Specific Capture of Phosphopeptides and MALDI-TOF MS Analysis. Journal of Proteome Research 2006, 5,2431-2437.
    [114] Y. Zhang, X. Yu, X. Wang, W. Shan, P. Yang, Y. Tang. Zeolite nanoparticles with immobilized metal ions: isolation and MALDI-TOF-MS/MS identification of phosphopeptides. Chem. Commun. 2004, 2882-2883.
    [115] Martijn W. H. Pinkse, Pauliina M. Uitto, et al. Selective Isolation at the Femtomole Level of Phosphopeptides from Proteolytic Digests Using 2D-NanoLC-ESI-MS/MS and Titanium Oxide Precolumns, Anal. Chem. 2004, 76: 3935-3943.
    [116] Shih-Shin Liang, Honest Makamba, Shang-Yu Huang, Shu-Hui Chen. Nano-titanium dioxide composites for the enrichment of phosphopeptides. Journal of Chromatography A, 2006, 1116: 38-45.
    [117] FlorianWolschin, Stefanie Wienkoop and Wolfram Weckwerth. Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 2005, 5, 4389-4397.
    [118] Hye Kyong Kweon, Kfistina Hakansson. Selective Zirconium Dioxide-Based Enrichment of Phosphorylated Peptides for Mass Spectrometric Analysis. Anal. Chem.; 2006; 78(6); 1743-1749
    [119] Cheng-Tai Chen, Wei-Yu Chen, Pei-Jane Tsai, Kun-Yi Chien, Jau-Song Yu, Yu-Chie Chen. Rapid Enrichment of Phosphopeptides and Phosphoproteins from Complex Samples Using Magnetic Particles Coated with Alumina as the Concentrating Probes for MALDI MS Analysis. J. Proteome Res.; 2007; 6(1); 316-325
    [120] Chun-Yuen Lo, Wei-Yu Chen, Cheng-Tai Chen, Yu-Chie Chen. Rapid Enrichment of Phosphopeptides from Tryptic Digests of Proteins Using Iron Oxide Nanocomposites of Magnetic Particles Coated with Zirconia as the Concentrating Probes. J. Proteome Res.; 2007; 6(2); 887-893
    [121] Cheng-Tai, Chen Yu-Chie Chen. Fe_3O_4/TiO_2 core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2005, 77, 5912-5919.
    [122] Milan Madera, Yehia Mechref, and Milos V. Novotny. Combining Lectin Microcolumns with High-Resolution Separation Techniques for Enrichment of Glycoproteins and Glycopeptides. Anal. Chem. 2005, 77, 4081-4090.
    [123] Jeong Heon Lee, Yangsun Kim. Immobilization of Aminophenylboronic Acid on Magnetic Beads for the Direct Determination of Glycoproteins by Matrix Assisted Laser Desorption Ionization Mass Spectrometry. J Am Soc Mass Spectrom 2005, 16, 1456-1460.
    [124] Katrin Sparbier, Thomas Wenzel, Markus Kostrzewa. Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. Journal of Chromatography B. 2006, 840 (1), 29-36.
    [1] Righetti, P., G., Wenisch, E., Jungbauer, A., Katinger, H., Faupel, M., Preparative purification of human monoclonal antibody isoforms in a multi-compartment electrolyser with immobiline membranes. J. Chromatogr. 1990, 500, 681.
    [2] Corthals, G., L., Molloy, M., P., Herbert, B., R., Milliams, K., L., Gooley, A., A., Prefractionation of protein samples prior to two-dimensional electrophoresis. Electrophoresis, 1997, 18, 317.
    [3] Zhang, G, Fan, H., Xu, C., On-line preconcentration of in-gel digest by ion-exchange chromatography for protein identification using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry, Anal. Biochem.2003, 313, 327-330.
    [4] Doucette, A., Craft D., Li, L., Protein Concentration and Enzyme Digestion on Microbeads for MALDI-TOF Peptide Mass Mapping of Proteins from Dilute Solutions, Anal. Chem. 2000, 72, 3355-3362.
    [5] Y. Zhang, X. Yu, X. Wang, W. Shan, P. Yang, Y. Tang, Zeolite nanoparticles with immobilized metal ions: isolation and MALDI-TOF-MS/MS identification of phosphopeptides, Chem. Commun. 2004, 2882.
    [6] Y. Zhang, X. Y. Wang, W. Shan, B. Y. Wu, H. Z. Fan, X. J. Yu, Y. Tang, P. Y. Yang, Enrichment of Low-Abundance Peptides and Proteins on Zeolite Nanocrystals for Direct MALDI-TOF MS Analysis, Angew. Chem. Int. Ed. 2005, 44, 615-617.
    [7] F. Xu, Y. J. Wang, X. D. Wang, Y. H. Zhang, Y. Tang, P. Y. Yang, A Novel Hierarchical Nanozeolite Composite as Sorbent for Protein Separation in Immobilized Metal-Ion Affinity Chromatography, Adv. Mater. 2003, 15, 1751-1757.
    [8] Nandigala, T.-H. Chen, C. Yang, W. H. Hsu, C. Heath, Immunomagnetic Isolation of Islets from the Rat Pancreas, Biotechnol. Prog. 1997, 13, 844.
    [9] Yonghui Deng, Chunhui Deng, Dong Yang, Changchun Wang, Shoukuan Fu, Xiangmin Zhang, Preparation, characterization and application of magnetic silica nanoparticle functionalized multi-walled carbon nanotubesChem. Commun. 2005, 44, 5548.
    [10] P. K. Gupta, C. T. Hung, Minireview Magnetically controlled targeted micro-carrier systems. Life Sci. 1989, 44, 175.
    [11] Y. Deng, C. Wang, X. Shen, W. Yang, L. Jin, H. Gao, S. Fu, Preparation, Characterization, and Application of Multistimuli-Responsive Microspheres with Fluorescence-Labeled Magnetic Cores and Thermoresponsive Shells, Chem. Eur. J. 2005, 11, 6006.
    [12] D. Horak, B. Rittich, J. Safar, A. Spanova, J. Lenfeld, M. J. Benes, Properties of RNase A Immobilized on Magnetic Poly(2-hydroxyethyl methacrylate) Microspheres, Biotechnol. Prog. 2001, 17, 447.
    [13] A. Guiseppi-Elie, N. F. Sheppar, S. Brahim, D. Narinesigh, Enzyme microgels in packed-bed bioreactors with downstream amperometfic detection using microfabricated interdigitated microsensor electrode arrays, Biotechnol. Bioeng. 2001, 75, 475.
    [14] H. Deng, XL Li, Q. Peng, X. Wang, JP Chen, YD Li. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782-2785.
    [15] Qu, Y., Moons, L., Vandesande, F. Determination of serotonin, catecholamins and their metabolites by direct injection of supematants from chicken brain tissue homogenate using liquid chromatography with electrochemical detection. J. Chromatogr. B. 1997, 704, 351-358.
    [16] J. Ugelstad, T. Ellingsen, A. Berge, O. B. Helgee, USP 4, 774, 265.
    [17] 邓勇辉,功能性磁性聚合物微球的制备、表征及其初步应用。复旦大学博士学位论文,2005。
    [18] M. Okubo, H. Minami, T. Komura, Preparation of micrometer-sized, monodisperse, magnetic polymer particles, J. App. Poly. Sci. 2003, 88, 428.
    [19] M. Mary, Scientific and Clinical Applications of Magnetic Carders, (Eds: U. Hafeli, W. Schutt, M. Zborowski), Plenum Press, New York. 1997. p 303.
    [20] E.P. Diamandis, J. Proteome Res. 2006, 5, 2079.
    [21] M.Soloviev, P. Finch, Proteomics 2006, 6, 744.
    [22] M. Schrader, P. Schulz-Knappe, Trends Biotechnol. 2001, 19, S55.
    [23] N.L.Anderson. N.G.Anderson. Mol.Cell. Proteomics. 2002,1,845-867.
    [24] Adkins, J.N., Vamum, S.M., Auberry, K. J., Moore, R.J. et al., Mol.Cell. Proteomics. 2002,1,947-955.
    [25] R. S. Tirumalai, K. C. Chan, D. A. Prieto, H. J. Issaq, T. P. Conrads, T. D. Veenstra, Mol. Cell. Proteomics 2003, 2, 1096.
    [26] K.L. Johnson, C. J. Mason, D. C. Muddiman, J. E. Eckel, Anal. Chem. 2004, 76, 5097.
    [27] J. Villanueva, J. Philip, D. Entenberg, C. A. Chaparro, M. K. Tanwar, E. C. Holland, P. Tempst, Anal. Chem. 2004, 76, 1560.
    [28] S.Y. Hsieh, R. K. Chen, Y. H. Pan, H. L. Lee, Proteomics, 2006, 6, 3189.
    [29] R.Tian, H.Zhang, M. Ye, X. Jiang, L. Hu.X. Li, X.Bao, H. Zou. Selective extraction of peptides from human plasma by highly ordered mesoporous silica particles for peptidome analysis. Angew.Chem.Int.Ed. 2006, 45, 1-5.
    [30] Rainer M. Valiant, Zoltan Szabo, Lukas Trojer, et al. A New Analytical Material-Enhanced Laser Desorption Ionization (MELDI) Based Approach for the Determination of Low-Mass Serum Constituents Using Fullerene Derivatives for Selective Enrichment. Journal of Proteome Research 2007, 6, 44-53.
    [31] Matthias P. A. Ebert, Dagmar Niemeyer, Solren O. Deininger, Thomas Wex,et al. Identification and Confirmation of Increased Fibrinopeptide A Serum Protein Levels in Gastric Cancer Sera by Magnet Bead Assisted MALDI-TOF Mass Spectrometry. Journal of Proteome Research, 2006, 5, 2152-2158.
    [32] Mirre E. de Noo, Rob A. E. M. Tollenaar, Aliye O2 zalp. Reliability of Human Serum Protein Profiles Generated with C8 Magnetic Beads Assisted Maldi-TOF Mass Spectrometry. Anal. Chem. 2005, 77, 7232-7241.
    [1] D. Cantrell, T Cell antigen receptor signal transduction pathways, Annu. Rev. Immunol. 1996, 14, 259.
    [2] J. Porath, J. Carlsson, I. Olsson, G. Belfrage, Nature. 1975, 258, 598.
    [3] Christina S. Raska, Carol E. Parker, Zbigniew Dominski, William F.Marzluff, Gary L. Glish, R. Marshall Pope, Christoph H. Borchers. Direct MALDI-MS/MS of Phosphopeptides Affinity-Bound to Immobilized Metal Ion Affinity Chromatography Beads. Anal. Chem. 2002, 74, 3429-3433.
    [4] Songyun Xu, Houjiang Zhou, Chensong Pan, Yu Fu, Yu Zhang, Xin Li, Mingliang Ye and Hanfa Zou. Iminodiacetic acid derivatized porous silicon as a matrix support for sample pretreatment and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis. Rapid Commun. Mass Spectrom. 2006; 20: 1769-1775.
    [5] R. Bakry, D. Gjerde, G. K. Bonn. Derivatized Nanoparticle Coated Capillaries for Purification and Micro-extraction of Proteins and Peptides. Journal of Proteome Research 2006, 5, 1321-1331.
    [6] Nurul H. Aprilita, Christian W. Huck, Rania Bakry, Isabel Feuerstein, Guenther Stecher, Sandra Morandell, Hong-Lei Huang, Taras Stasyk, Lukas A. Huber, and Guenther K. Bonn. Poly (Glyeidyl Methacrylate Divinylbenzene)-IDA-FeⅢ in Phosphoproteomics. Journal of Proteome Research 2005, 4, 2312-2319.
    [7] S.R. Hart. M. D. Waterfield, A. L. Burlingame, R. Cramer, Factors goveming the solubilization of phosphopeptides retained on ferric NTA IMAC beads and their analysis by MALDI TOFMS, J. Am Soc. Mass. Spectrom. 2002, 13, 1042.
    [8] Y. Zhang, X. Yu, X. Wang, W. Shan, P. Yang, Y. Tang, Zeolite nanoparticles with immobilized metal ions: isolation and MALDI-TOF-MS/MS identification of phosphopeptides. Chem. Commun 2004, 2882-2883.
    [9] H.Deng, XL Li, Q. Peng, X. Wang, JP Chen, YD Li. Monodisperse magnetic single-crystal ferrite microspheres. Angew.Chem.Int.Ed. 2005, 44, 2782-2785.
    [10] S. Kjellstrom, O.L. Jensen. Phosphoric Acid as a Matrix Additive for MALDI MS Analysis of Phosphopeptides and Phosphoproteins, Anal. Chem. 2004, 76, 5109.
    [11] Z. Guo, S. Xu, Z. Lei, H. Zou, B. Guo, Immobilized metal-ion chelating capillary microreactor for peptide mapping analysis of proteins by matrix assisted laser desorption/ ionization-time of flight-mass spectrometry, Electrophoresis. 2003, 24, 3633.
    [12] W. Zhou, B. A. Merrick, M. G. Khaledi, K. B. Tomer. Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry, J. Am. Soc. Mass Spectrom. 2000, 11, 273.
    [13] A. Stensballe, S. Andersen, O. N. Jensen. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(Ⅲ) affinity chromatography with off-line mass spectrometry analysis, Proteomics. 2001, 1, 207.
    [14] J. M. Asara, J. Allison. Enhanced detection of phosphopeptides in matrix-assisted laser desorption/ionization mass spectrometry using ammonium salts, J. Am. Soc. Mass Spectrom. 1999, 10, 35.
    [15] T. T. Yip, T. W. Hutchens. Mapping and sequence-specific identification of phosphopeptides in unfractionated protein digest mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, FEBS Lett. 1992, 308, 149.
    [16] M. R. Larsen, G. L. Sorensen, S. J. Fey, P. M. Larsen, P. Roepstorff. Phospho-proteomics: Evaluation of the use of enzymatic de-phosphorylation and differential mass spectrometric peptide mass mapping for site specific phosphorylation assignment in proteins separated by gel electrophoresis, Proteomics. 2001, 1, 223.
    [17] D. R. Muller, P. Schindler, M. Coulot, H. Voshol, J. van. Oostrum. Mass spectrometric characterization of stathmin isoforms separated by 2D PAGE, J. Mass Spectrom. 1999, 34, 336.
    [18] 王京兰,张养军,蔡耘,李蕾,刘尚义,杨何义,钱小红,生物质谱结合IMAC亲和提取和磷酸酶水解分析蛋白质磷酸化修饰,生物化学与生物物理学报,2003,05,459-466.
    [19] Christina S. Raska, Carol E. Parker, Zbigniew Dominski, et al. Direct MALDI-MS/MS of Phosphopeptides Affinity-Bound to Immobilized Metal Ion Affinity Chromatography Beads. Anal. Chem. 2002, 74, 3429-3433.
    [20] Zhou, W.; Merrick, B. A.; Khaledi, M. G.; Tomer, K. B., Detection and sequencing of phosphopeptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/ionization mass spectrometry, J. Am. Soc. Mass. Spectra. 2000, 11,273-282.
    [21] Larsen, M. R.; Thingholm, T. E,; Jensen, O. N.; Roepstorff, R; Jorgensen, T. J. D., Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns, Mol. Cell. Proteomics 2005, 4, 873-886.
    [22] Kim, J.; Camp, D. G.; Smith, R. D., Improved detection of multi-phosphorylated peptides in the presence of phosphoric acid in liquid chromatography/mass spectrometry, J. Mass. Spectrom. 2004, 39, 208-215.
    [23] Ruijun Tian, He Zhang, Mingliang Ye, Xiaogang Jiang, Lianghai Hu, Xin Li, Xinhe Bao, and, Hanfa Zou. Selective Extraction of Peptides from Human Plasma by Highly Ordered Mesoporous Silica Particles for Peptidome Analysis. Angew. Chem. Int. Ed. 2006, 45, 1-5.
    [24] Rainer M. Vallant, Zoltan Szabo, Lukas Trojer, Muhammad Najam-ul-Haq, Matthias Rainer, Christian W. Huck, Rania Bakry, and Gul nther K. Bonn. A New Analytical Material-Enhanced Laser Desorption Ionization. (MELDI) Based Approach for the Determination of Low-Mass Serum Constituents Using Fullerene Derivatives for Selective Enrichment. Journal of Proteome Research 2007, 6, 44-53.
    [25] Mirre E. de Noo, Rob A. E. M. Tollenaar, Aliye O2 zalp, Peter J. K. Kuppen, Marco R. Bladergroen,,Paul H. C. Eilers, Andre" M. Deelder. Reliability of Human Serum Protein Profiles Generated with C8 Magnetic Beads Assisted Maldi-TOF Mass Spectrometry. Anal. Chem. 2005, 77, 7232-7241.
    [26] Josep Villanueva, John Philip, David Entenberg, Carlos A. Chaparro, Meena K. Tanwar, Eric C. Holland, Paul Tempst. Serum Peptide Profiling by Magnetic Particle-Assisted, Automated Sample Processing and MALDI-TOF Mass Spectrometry. Anal. Chem. 2004, 76, 1560-1570.
    [27] Matthias R A. Ebert, Dagmar Niemeyer, Solren O. Deininger, Thomas Wex, Claudia Knippig, Juliane Hoffmann, Jolrg Sauer, Wolfgang Albrecht, Peter Malfertheiner, Christoph Rolcken. Identification and Confirmation of Increased Fibrinopeptide A Serum Protein Levels in Gastric Cancer Sera by Magnet Bead Assisted MALDI-TOF Mass Spectrometry. Journal of Proteome Research 2006, 5, 2152-2158.
    [28] Sen-Yung Hsieh, Ren-Kung Chen, Yi-Hsin Pan and Hai-Lun Lee. Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics 2006, 6, 3189-3198.
    [29] Katrin Moser and Forest M. White. Phosphoproteomic Analysis of Rat Liver by High Capacity IMAC and LC-MS/MS. Journal of Proteome Research 2006, 5, 98-104.
    [30] Leyu Wang, Jie Bao, Lun Wang, Fang Zhang, Yadong Li. One-Pot Synthesis and Bioapplication of Amine-Functionalized Magnetite Nanoparticles and Hollow Nanospheres. Chem. Eur. J. 2006, 12, 6341-6347.
    [31] Microchip reactor packed with metal-ion chelated magnetic silica microspheres for high efficient proteolysis, Yan Li, Xiuqing Xu, Bo Yan, Chunhui Deng, Xiangmin Zhang, Journal of Proteome Research. (In press.)
    [32] Matthew C. Posewitz, Paul Tempst. Immobilized Gallium (Ⅲ) Affinity Chromatography of Phosphopeptides. Anal. Chem. 1999, 71, 2883-2892.
    [33] Eiji Kinoshita, Atsushi Yamada, Hironori Takeda, Emiko Kinoshita-Kikuta, Tohru Koike. Novel immobilized zinc(Ⅱ) affinity chromatography for phosphopeptides and phosphorylated proteins. J. Sep. Sci. 2005, 28, 155-162.
    [34] Andersson, L.; Porath, J. Anal. Biochem. Isolation of phosphoproteins "by immobilized metal (Fe~(3+)) affinity chromatography, 1986, 154, 250-254.
    [1] M. C. Posewitz, P.Tempst, Immobilized Gallium (Ⅲ) Affinity Chromatography of Phosphopeptides, Anal. Chem. 1999, 71, 2883.
    [2] Stensballe, A.; Andersen, S. Jensen, O. N. Characterization of phosphoproteins from electrophoretic gels by nanoseale Fe(Ⅲ) affinity chromatography with off-line mass spectrometry analysis, Proteomics 2001, 1, 207.
    [3] C.S. Raska, C. E. Parker, A. Dominski, W. F. Marzluff, G. L. Glish, R. M. Pope, C. H. Borchers, Direct MALDI-MS/MS of Phosphopeptides Affinity-Bound to Immobilized Metal Ion Affinity Chromatography Beads, Anal. Chem. 2002, 74, 3429.
    [4] A.Stensballe, O. N. Jensen, Phosphoric acid enhances the performance of Fe(Ⅲ) affinity chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for recovery, detection and sequencing of phosphopeptides, Rapid Commun. Mass Spectrom. 2004, 18, 1721.
    [5] H. Liu, J.Stupak, J. Zhang, B. O. Keller, B. J. Brix, L. Fliegel, L. Li, Open Tubular Immobilized Metal Ion Affinity Chromatography Combined with MALDI MS and MS/MS for Identification of Protein Phosphorylation Sites, Anal. Chem. 2004, 76, 4223.
    [6] D.Hirschberg, T.Jagerbrink, J.Samskog, M.Gustafsson, M.Stahlberg, G. Alveliusm, B.Husman, M.Carlquist, H.Jornvall, T. Bergman, Detection of Phosphorylated Peptides in Proteomic Analyses Using Microfluidic Compact Disk Technology, Anal. Chem. 2004, 76, 5864.
    [7] Y. Zhang, X. Yu, X. Wang, W. Shan, P. Yang, Y. Tang, Zeolite nanoparticles with immobilized metal ions: isolation and MALDI-TOF-MS/MS identification of phosphopeptides, Chem. Commun. 2004, 2882.
    [8] C. Pan, M. Ye, Y.Liu, S. Feng, X. Jiang, G. Han, J. Zhu, H. Zou, Enrichment of Phosphopeptides by Fe3+-Immobilized Mesoporous Nanoparticles of MCM-41 for MALDI and Nano-LC-MS/MS Analysis, J. Proteome Res. 2006; 5, 3114.X. Xu, C. H. Deng, P.Y. Yang, X. M. Zhang, Adv. Mater. 2006, 18.
    [9] J.P. Folkers, C. B.Gorman, P. E. Laibinis, S. Buchholz, G.Whitesides, M. Self-Assembled Monolayers of Long-Chain Hydroxamic Acids on the Native Oxide of Metals, Langrnuir 1995, 11,813.
    [10] W. Gao, L.Dickinson, C. Grozinger, F. G.Morin, L. Reven, Self-Assembled Monolayers of Alkylphosphonic Acids on Metal Oxides, Langmuir 1996, 12, 6429.
    [11] D. Brovelli, G. Hahner, L. Ruiz, R. Hofer, G. Kraus, A. Waldner, J. Schlosser, P. Oroszlan, M. Ehrat, N. D. Spencer, Highly Oriented, Self-Assembled Alkanephosphate Monolayers on Tantalum(V) Oxide Surfaces, Langmuir 1999, 15, 4324.
    [12] M. Textor, L. Ruiz, R. Hofer, A. Rossi, K. Feldman, G. Hahner, N. D. Spencer, Structural Chemistry of Self-Assembled Monolayers of Octadecylphosphoric Acid on Tantalum Oxide Surfaces, Langmuir 2000, 16, 3257.
    [13] N.D. Spencer, R. H. Textor, Alkyl Phosphate Monolayers, Self-Assembled from Aqueous Solution onto Metal Oxide Surfaces, Langmuir 2001, 17, 4014.
    [14] M.H. Pinkse, P. M.Uitto, M. J.Hilhorst, B. Ooms, A. J. R. Heck, Selective Isolation at the Femtomole Level of Phosphopeptides from Proteolytic Digests Using 2D-NanoLC-ESI-MS/MS and Titanium Oxide Precolumns, Anal. Chem. 2004, 76, 3935.
    [15] Cheng-Tai Chen and Yu-Chie Chen. Fe_3O_4/TiO_2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry [J]. Anal. Chem. 2005(77), 5912-5919.
    [16] X.L.Lin, Q.Peng, J.X. Yi, X.Wang, Y.D. Li. Near monodisperse TiO2 nanoparticles and nanorods. Chem. Eur.J. 2006, 12, 2383-2391.
    [17] X. Sun, Y, Li, Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles, Angew. Chem. Int. Ed. 2004, 43,597-601.
    [18] Xiaoming Sun, Junfeng Liu and Yadong Li. Oxides@C Core-Shell Nanostructures: One-Pot Synthesis, Rational Conversion, and Li Storage Property [J]. Chem. Mater. 2006, 18, 3486-3494.
    [19] Xiaoming Sun, Junfeng Liu and Yadong Li. Use of Carbonaceous Polysaccharide Microspheres as Templates for Fabricating Metal Oxide Hollow Spheres [J]. Chem. Eur. J. 2006, 12, 2039-2047.
    [20] Q. Peng, Y. J. Dong, Y. D. Li, ZnSe Semiconductor Hollow Microspheres, Angew. Chem. 2003, 115, 3135-3138.
    [21] Q. Peng, Y. J. Dong, Y. D. Li, ZnSe Semiconductor Hollow Microspheres, Angew. Chem. Int. Ed. 2003, 42, 3027-3030.
    [22] T. Sakaki, M. Shibata, T. Miki, H. Hirosue, N. Hayashi. Bioresour. Technol. 1996, 58, 197-202.
    [23] G.C.A. Luijkx, F. van Rantwijk, H. van Bekkum, M. J. Antal, Jr., The role of deoxyhexonic acids in the hydrothermal decarboxylation of carbohydrates, Carbohydrate Res. 1995, 272, 191-202.
    [24] Qu, Y., Moons, L., Vandesande, F. Determination of serotonin, catecholamins and their metabolites by direct injection of supematants from chicken brain tissue homogenate using liquid chromatography with electrochemical detection. J. Chromatogr. B. 1997, 704, 351-358.
    [25] Katrin Moser and Forest M. White. Phosphoproteomic Analysis of Rat Liver by High Capacity IMAC and LC-MS/MS. Journal of Proteome Research 2006, 5, 98-104.
    [1] Xin Liu, David J. McNally, Jianjun Li et al. Mass Spectrometry-Based Glycomics Strategy for Exploring N-Linked Glycosylation in Eukaryotes and Bacteria. Analytical Chemistry, 2006.
    [2] Jia Zhao, Diane M. Simeone, David Heidt, Michelle A. Anderson, David M. Lubman. Comparative Serum Glycoproteomics Using Lectin Selected Sialic Acid Glycoproteins with Mass Spectrometric Analysis: Application to Pancreatic Cancer Serum. Journal of Proteome Research 2006, 5, 1792-1802.
    [3] Milan Madera, Yehia Mechref, Milos V. Novotny. Combining Lectin Microcolumns with High-Resolution Separation Techniques for Enrichment of Glycoproteins and Glycopeptides. Anal. Chem. 2005, 77, 4081-4090.
    [4] Ruiqing Qiu and Fred E. Regnier. Use of Multidimensional Lectin Affinity Chromatography in Differential Glycoproteomics. Anal. Chem. 2005, 77, 2802-2809.
    [5] Katrin Sparbier, Thomas Wenzel, Markus Kostrzewa. Exploring the binding profiles of ConA, boronic acid and WGA by MALDI-TOF/TOF MS and magnetic particles. Journal of Chromatography B, 2006.
    [6] Jeong Heon Lee and Yangsun Kim et al. Immobilization of Aminophenylboronic Acid on Magnetic Beads for the Direct Determination of Glycoproteins by Matrix Assisted Laser Desorption Ionization Mass Spectrometry. JAm Soc Mass Spectrom 2005, 16, 1456-1460.
    [7] Frank Frantzen, Kjersti Grimsrud, Dag-Erik Heggli , Erling Sundrehagen. Protein-boronic acid conjugates and their binding to lowmolecular-mass cis-diols and glycated hemoglobin. Journal of Chromatography B, 670 (1995) 37-45.
    [8] Leyu Wang, Jie Bao, Lun Wang, Fang Zhang, Yadong Li. One-Pot Synthesis and Bioapplication of Amine-Functionalized Magnetite Nanoparticles and Hollow Nanospheres. Chem. Eur. J. 2006, 12, 6341-6347.
    [9] Thomas N. Krogh, Torben Berg, Peter H(?)jrup. Protein Analysis Using Enzymes Immobilized to Paramagnetic Beads. Analytical Biochemistry, 1999, 274:153-162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700