卤虫休眠胚胎发育过程中p90RSK途径调控细胞周期的分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卤虫是一种生活在盐田、盐湖等高盐环境下的小型甲壳动物。为了抵抗外界极端环境的胁迫,它们进化出一种非常特殊的生殖模式,即在适宜的环境条件下,通过卵胎生方式直接产生无节幼体,而在不适宜的环境下,通过卵生方式产生休眠胚胎。这些休眠胚胎的发育停滞于原肠胚期,内部仅维持极低的代谢水平,直至休眠状态被打破。在休眠胚胎的孵化发育过程中,细胞内部发生了剧烈的变化,包括能量代谢、RNA和蛋白质的合成、细胞分化与形态发生等,以完成个体由原肠胚向前无节幼体的转变过程。然而在这一极其复杂的生理过程中,细胞分裂乃至DNA复制都是完全停止的,此时整个胚胎的细胞数始终维持在4000左右。尽管科学家们普遍认为,卤虫休眠胚胎发育过程中出现的这种细胞分化及形态发生完全独立于细胞分裂的现象对于维持胚胎的稳定性和存活能力具有重要的意义,但这一过程的相关分子机制仍然未知。
     本研究主要围绕卤虫休眠胚胎发育过程中p90核糖体S6蛋白激酶(RSK)途径调控细胞周期的分子机制而展开。RSK作为一种调控丝裂原活化蛋白激酶(MAPK)信号途径下游分子活性的丝氨酸、苏氨酸激酶,广泛参与了诸如转录调控、细胞周期调节、细胞存活等细胞内大量生理活动的调节过程。
     本研究首先分析了RSK分子在卤虫胚胎和幼虫发育过程中的表达和活性,又通过一系列体内蛋白活性抑制实验确认了RSK激酶活性对于细胞周期调控和有丝分裂发生的作用。在此基础上,我们又针对卤虫RSK的分子结构与功能活性,以及卤虫RSK途径的上下游作用分子等进行了鉴定研究。此外,我们利用高等动物细胞系和爪蟾系统等表达卤虫RSK分子,由此比较分析了卤虫RSK与其它物种RSK的结构功能区别。
     研究结果显示,RSK分子在卤虫各个生长发育时期均有表达,但仅在休眠胚胎发育后期的前无节幼体出壳阶段才被磷酸化激活。此时,RSK的活化过程恰与胚胎细胞恢复有丝分裂的过程同时发生。一旦在卤虫胚胎发育过程中抑制RSK活性,幼体就会出现严重的生理缺陷,表现为胸腹部区域出现大量组织空腔。利用BrdU对分裂细胞进行标记和检测的结果证实了这些缺陷部位的细胞有丝分裂活性明显受到抑制。在此作用途径中,RSK激酶的活化伴随着上游ERK激酶的活化而发生,并且卤虫RSK分子中含有ERK结合序列的C末端区域对于激酶活化至关重要。在此途径的下游,RSK可能与卤虫休眠胚胎特异性表达的小分子热休克蛋白p26存在一定的相互关系。此外,在爪蟾卵母细胞的成熟过程中,卤虫RSK分子能够诱导卵母细胞提前发生生发泡破裂现象,但无法促使其完成整个成熟过程,致使卵母细胞长时间停滞在初始阶段,出现黏化、干瘪等现象。
     本研究由此表明,RSK途径在卤虫休眠胚胎发育过程中参与了G2/M细胞周期停滞的终止以及有丝分裂发生等调控过程,这对于幼虫的生长至关重要。此结果不但为进一步揭示卤虫休眠胚胎特殊发育模式的分子机制奠定了理论基础,而且还扩展了RSK这一重要蛋白激酶的功能新领域。
Artemia is a genius of Crustacean widely distributing in salterns and salt lakes. It possesses powerful adaptations to extreme environments. As a strategy to cope with environmental stresses, Artemia has evolved a special reproductive mode in that in addition to giving birth to nauplii by the ovoviviparous pathway, this genus also releases encysted embryos by the oviparous pathway. Released encysted embryos are developmentally arrested at the gastrula stage with a low metabolic rate and complete turnoff of replication, transcription, and translation; however, without loss of embryonic viability. During the development of Artemia-encysted embryos, no cell division or DNA synthesis occurs before emergence, and the number of nuclei remains at about 4000 per embryo despite the great number of internal events including deposited energy mobilization, RNA and protein synthesis restoration, cellular differentiation, and associated morphological changes required for the development from gastrula to prenauplius.
     The mechanism of this unusual developmental pattern is still unclear. It is considered that the absence of cell division during the early embryonic development of Artemia is an adaptation to environmental threats, which confer on embryos their amazing stability and viability.
     Our research focuses on the molecular mechanism of p90RSK pathway in cell cycle regulation during development of Artemia-encysted embryos. RSK is a family of serine/threonine kinases that mediate signal transduction downstream of mitogen-activated protein kinase cascades. RSK family members have been reported to be multifunctional in the regulation of diverse cellular processes including transcriptional regulation, cell cycle control, cell survival, and many others.
     In the present study, we analyzed the expression and activation patterns of Artemia RSK, and identified its function to the regulation of cell cycle arrest and mitogenesis through in vivo knockdowns, during the embryonic and larval development of Artemia. Basing on this, the structure-functional studies of Artemia RSK, and the exploring of its upstream and downstream molecules were carried out. Besides, the functional analysis and comparison between Artemia RSK and other family members was performed in transgenic cell lines and Xenopus.
     Our results represent that, Artemia RSK was established to be specifically activated at the very beginning of emergence and was coupled with mitogenesis during the post-embryonic and early larval developmental stages. In vivo knockdown of RSK activity consistently induced abnormal individuals with distinct gaps between the exoskeleton and the internal tissues in the developing thoracic and abdominal regions. By BrdU labeling and mitotic index analysis, mitoses were detected to be largely inhibited in those affected segments. In this pathway, RSK was activated concomitantly with ERK activation, and the C terminal of Artemia RSK containing an ERK docking sequence was crucial to the kinase activation. In the downstream regulation, there might be an intracellular connection between RSK and the molecular chaperone p26. Otherwise, expression of Artemia RSK in Xenopus oocytes with endogenous RSK inhibition could induce an advance of showing GVBD (germinal vesicle breakdown) evidence; however, they did not proceed to a distinct GVBD subsequently.
     Our research, thus, indicates that the RSK pathway is essential in the post-embryonic and early-larval development of Artemia by playing a major role in the termination of cell cycle (G2/M phase) arrest and the promotion of mitogenesis, essential for development. These findings not only provide insights into the molecular mechanism regulating the special developmental pattern of Artemia-encysted embryos, but also reveal further aspects of RSK functions.
引文
Benesch R. Zur ontogenie und morphologie von Artemia salina. L. Zool. Jb. (Anat. Ontog. Tiere), 1969, 86, 307-458
    
    Bjorbaek C, Zhao Y, and Moller D E. Divergent functional roles for p90rsk kinase domains. J. Biol. Chem, 1995,270,18848-18852
    
    Bonni A, Brunet A, West A E, Datta S R, Takasu M A, andGreenberg M E. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science, 1999, 286,1358-1362
    
    Bruning J C, Gillette J A, Zhao Y, Bjorbaeck C, Kotzka J, Knebel B, Avci H, Hanstein B, Lingohr P, Moller D E, Krone W, Kahn C R, and Muller-Wieland D. Ribosomal subunit kinase-2 is required for growth factor-stimulated transcription of the c-Fos gene. Proc. Natl. Acad. Sci. USA, 2000, 97, 2462-2467
    
    Buck M, Poli V, Hunter T, and Chojkier M. C/EBPbeta phosphorylation by RSK creates a functional XEXD caspase inhibitory box critical for cell survival. Mol. Cell, 2001,8,807-816
    
    Chen R H, Abate C, and Blenis J. Phosphorylation of the c-Fos transrepression domain by mitogen-activated protein kinase and 90-kDa ribosomal S6 kinase. Proc. Natl. Acad. Sci. USA, 1993,90,10952-10956
    
    Chen R H, Juo P C, Curran T, and Blenis J. Phosphorylation of c-Fos at the C-terminus enhances its transforming activity. Oncogene, 1996,12,1493-1502
    
    Chen R H, Sarnecki C, and Blenis J. Nuclear localization and regulation of the erk- and rsk-encoded protein kinases. Mol. Cell. Biol., 1992, 12, 915-927
    
    Chrestensen C A, and Sturgill T W. Characterization of the p90 ribosomal S6 kinase 2 carboxyl-terminal domain as a protein kinase. J. Biol. Chem., 2002, 277, 27733-27741
    
    Clegg J S, and Trotman C N A. Physiological and biochemical aspects of Artemia ecology. In: Abatzopoulos, TH.J., Beardmore, J.A., Clegg, J.S., Sorgeloos, P. (Eds.), Artemia: basic and applied biology, Vol. 1. Kluwer Academic Publishers, Dordrecht, 2002, 129-170
    
    Clegg, J S. Hydration dependent metabolic transitions and the state of cellular water in Artemia cysts. In: Crowe, J.H., Clegg, J.S. (Eds), Dry biological systems, Academic Press, New York, 1978, 117-153
    
    Criel G R J, and Macrae T H. Reproductive biology of Artemia. In: Abatzopoulos, TH.J., Beardmore, J.A., Clegg, J.S., Sorgeloos, P. (Eds.), Artemia: basic and applied biology, Vol. 1. Kluwer Academic Publishers, Dordrecht, 2002, 39-128
    
    Dai J Q, Zhu X J, Liu F Q, Xiang J H, Nagasawa H, and Yang W J. Involvement of p90 Ribosomal S6 Kinase in Termination of Cell Cycle Arrest during Development of Artemia-encysted Embryos. J. Biol. Chem., 2008,283, 1705-1712
    
    Dalby K N, Morrice N, Caudwell F B, Avruch J, and Cohen P. Identification of regulatory phosphorylation sites in mitogen-activated protein kinase (MAPK)-activated protein kinase-1a/p90rsk that are inducible by MAPK. J. Biol. Chem., 1998,273,1496-1505
    
    De Cesare D, Jacquot S, Hanauer A, and Sassone-Corsi P. Rsk-2 activity is necessary for epidermal growth factor-induced phosphorylation of CREB protein and transcription of c-fos gene. Proc. Natl. Acad. Sci. USA, 1998, 95, 12202-12207
    
    Drinkwater L E, and Clegg J S. Experimental biology of cyst diapause. In: Browne, R.A., Sorgeloos, P., Trotman, C.N.A. (Eds.), Artemia Biology. CRC Press, Boca Raton, 1991,93-117
    
    Dufresne S D, Bjorbaek C, El-Haschimi K, Zhao Y, Aschenbach W G, Moller D E, and Goodyear L J. Altered extracellular signal-regulated kinase signaling and glycogen metabolism in skeletal muscle from p90 ribosomal S6 kinase 2 knockout mice. Mol. Cell. Biol., 2001,21, 81-87
    
    Dümmler B A, Hauge C, Silber J, Yntema H G, Kruse L S, Kofoed B, Hemmings B A, Alessi D R and Frodin M Functional characterization of human RSK4, a new 90-kDa ribosomal S6 kinase, reveals constitutive activation in most cell types. J. Biol. Chem., 2005, 280,13304-13314
    
    Erikson E and Mailer J L. A protein kinase from Xenopus eggs specific for ribosomal protein S6. Proc. Natl. Acad. Sci. USA, 1985, 82:742-746
    
    Finamore F J, and Clegg J S. Biochemical aspects of morphogenesis in the brine shrimp, Artemia salina. In: Padilla, G.M., Whitson, G.L., Cameron, I.L. (Eds.), The cell cycle: gene-enzyme interactions, Academic Press, New York, 1969,249-278
    
    Fisher T L, and Blenis J. Evidence for two catalytically active kinase domains in pp90rsk. Mol. Cell. Biol., 1996,16,1212-1219
    
    Freeman J A, Cheshire L B, and Macrae T H. Epithelial morphogenesis in developing Artemia: the role of cell replication, cell shape change, and the cytoskeleton. Dev. Biol., 1992,152, 279-292
    
    Frodin M, and Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol. Cell. Endocrinol., 1999,151,65-77
    
    Fujita N, Sato S, and Tsuruo T. Phosphorylation of p27Kip1 at threonine 198 by p90 ribosomal protein S6 kinases promotes its binding to 14-3-3 and cytoplasmic localization. J. Biol. Chem., 2003,278,49254-49260
    
    Fujita N, Sato S, Katayama K, and Tsuruo T. Akt-dependent phosphorylation of p27Kip1 promotes binding to 14-3-3 and cytoplasmic localization. J. Biol. Chem., 2002,277,28706-28713
    
    Gajardo G, Abatzopoulos T J, Kappas I, and Beardmore J A. Evolution and speciation. In: Abatzopoulos, TH.J., Beardmore, J.A., Clegg, J.S., Sorgeloos, P. (Eds.), Artemia: basic and applied biology, Vol. 1. Kluwer Academic Publishers, Dordrecht, 2002, 225-250
    
    Gavin A C, and Nebreda A R. A MAP kinase docking site is required for phosphorylation and activation of p90 (rsk)/MAPKAP kinase-1. Curr. Biol., 1999, 9, 281-284
    
    Ghoda L, Lin X, and Greene W C. The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal regulatory domain of IkappaBalpha and stimulates its degradation in vitro. J. Biol. Chem., 1997, 272: 21281-21288
    
    Ginty D D, Bonni A, and Greenberg M E. Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell, 1994, 77, 713-725
    
    Godeny M D, and Sayeski P P. ERK1/2 regulates ANG II-dependent cell proliferation via cytoplasmic activation of RSK2 and nuclear activation of elk1. Am. J. Physiol., 2006, 291, C1308-C1317
    
    Gross S D, Lewellyn A L, and Mailer J L. A constitutively active form of the protein kinase p90Rsk1 is sufficient to trigger the G2/M transition in Xenopus oocytes. J. Biol. Chem., 2001, 276, 46099-46103.
    
    Gross S D, Schwab M S, Lewellyn A L, and Mailer J L. Induction of Metaphase Arrest in Cleaving Xenopus Embryos by the Protein Kinase p90Rsk. Science, 1999, 286, 1365-1367
    
    Hanauer A, and Young I D. Coffin-Lowry syndrome: clinical and molecular features. J. Med. Genet., 2002, 39, 705-713
    
    Hans A, Syan S., Crosio C, Sassone-Corsi P, Brahic M, and Gonzalez-Dunia D. Borna disease virus persistent infection activates mitogen-activated protein kinase and blocks neuronal differentiation of pcl2 cells. J. Biol. Chem., 2001, 276, 7258-7265
    Hauge C and Frodin M. RSK and MSK in MAP kinase signalling. J. Cell Sci., 2006, 119,3021-3023
    
    Hentschel C.C. and Tata J.R., the molecular embryology of the brine shrimp, Trends biochem. Sci., I, 97, 1976.
    
    Jacquot S, Merienne K, Trivier E, Zeniou M, Pannetier S, and Hanauer A. Coffin-Lowry syndrome: current status. Am. J. Med. Genet., 1999, 85, 214-215
    
    Joel P B, Smith J, Sturgill T W, Fisher T L, Blenis J, andLannigan D A. pp90rskl regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol. Cell. Biol., 1998,18,1978-1984
    
    Jones S W, Erikson E, Blenis J, Mailer J L, and Erikson R L. A Xenopus ribosomal protein S6 kinase has two apparent kinase domains that are each similar to distinct protein kinases. Proc. Natl. Acad. Sci. USA, 1988, 85, 3377-3381
    
    Kim M, LeeK H, Koh H, Lee S Y, Jang C, Chung C J, Sung J H, Blenis J, and Chung J. Inhibition of ERK-MAP kinase signaling by RSK during Drosophila development. EMBO J., 2006,1-12
    
    Leighton I A, Dalby K N, Caudwell F B, Cohen P T, and Cohen P. Comparison of the specificities of p70 S6 kinase and MAPKAP kinase-1 identifies a relatively specific substrate for p70 S6 kinase: the N-terminal kinase domain of MAPKAP kinase-1 is essential for peptide phosphorylation. FEBS Lett., 1995, 375,289-293
    
    Liang P, and MacRae T H. The Synthesis of a Small Heat Shock/a-Crystallin Protein in Artemia and Its Relationship to Stress Tolerance during Development. Dev. Biol., 1999,207,445-456
    
    Livak K J, and Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and 2-ΔΔCT method. Methods, 2001, 25,402 - 408
    
    MacRae T H. Molecular chaperones, stress resistance and development in Artemia franciscana. Semin Cell Dev Biol., 2003 ,14(5), 251-8
    Majka M, Janowska-Wieczorek, A, Ratajczak J, Kowalska M A, Vilaire G, Pan Z K, Honczarenko M, Marquez L A, Poncz M, and Ratajczak M Z. Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood, 2000,96,4142-4151
    
    Martin K A, and Blenis J. Coordinate regulation of translation by the PI 3-kinase and mTOR pathways. Adv. Cancer Res., 2002, 86, 1-39
    
    Mori M, Hara M, Tachibana K, and Kishimoto T. p90Rsk is required for G1 phase arrest in unfertilized starfish eggs. Development, 2006, 133, 1823-1830
    
    Morris J E. Hydration, its reversibility, and the beginning development in the brine shrimp, Artemia salina. Comp. Biochem. Physiol., 1978, 39(A), 843
    
    Murphy L O, Smith S, Chen R H, Fingar D C, andBlenis J. Molecular interpretation of ERK signal duration by immediate early gene products. Nat. Cell Biol., 002, 4, 556-564
    
    Nakanishi Y H, Okigaki T, Kato H, and Iwasaki T. Cytological studies of Artemia salina. II. Deoxyribonucleic acid (DNA) content and the chromosomes in encysted dry eggs and nauplii. Proc. Jpn. Acad., 1963, 39, 306-309
    
    Okazaki K, and Sagata N. The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. EMBO J., 1995,14,5048-5059
    
    Olson C S, and Clegg J S. Cell division during the development of Artemia salina. Wilhelm Roux's Arch. Dev. Biol., 1978, 184, 1-13
    
    Olson C S, and Clegg J S. Nuclear numbers in encysted dormant embryos of different Artemia salina populations. Experientia, 1976, 32, 864
    
    Palmer A, Gavin A C, and Nebreda A R. A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Mytl. EMBO J., 1998, 17, 5037-5047
    Park H Y, and. Gilchrest B A. More on MITF. J. Investig. Dermatol, 2002, 119, 1218-1219
    
    Qiu Z, Viner R I, MacRae T H, Willsie J K, and Clegg J S.A small heat shock protein from Artemia franciscana is phosphorylated at serine 50. Biochim Biophys Acta., 2004,1700(1), 75-83
    
    Richards S A, Dreisbach V C, Murphy L O, and Blenis J. Characterization of regulatory events associated with membrane targeting of p90 ribosomal S6 kinase 1. Mol. Cell. Biol., 2001, 21, 7470-7480
    
    Rivera V M, Miranti C K, Misra R P, Ginty D D, Chen R H, Blenis J, and Greenberg M E. A growth factor-induced kinase phosphorylates the serum response factor at a site that regulates its DNA-binding activity. Mol. Cell. Biol., 1993,13, 6260-6273
    
    Roux P P and Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Mol. Biol. Microbiol. Rev. 2004, 68, 320-344
    
    Roux P P, Richards S A, and Blenis J. Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity. Mol. Cell. Biol., 2003, 23,4796-4804
    
    Sapkota G P, Kieloch A, Lizcano J M, Lain S, Arthur J S, Williams M R, Morrice N, Deak M, and Alessi D R. Phosphorylation of the protein kinase mutated in Peutz-Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP-dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell growth. J. Biol. Chem., 2001,276, 19469-19482
    
    Sassone-Corsi P, Mizzen C A, Cheung P, Crosio C, Monaco L, Jacquot S, Hanauer A, and Allis C D. Requirement of Rsk-2 for epidermal growth factor-activated phosphorylation of histone H3. Science, 1999, 285, 886-891
    
    Schmitt A, Gutierrez G J, Lenart P, Ellenberg J, and Nebreda A R. Histone H3 phosphorylation during Xenopus oocyte maturation: regulation by the MAP kinase/p90Rsk pathway and uncoupling from DNA condensation. FEBS Lett., 2002, 518,23-28
    
    Schouten G J, Vertegaal A C O, Whiteside S T, Israel A, Toebes M, Dorsman J C, van der Eb A J, and Zantema A. IκBα is a target for the mitogen-activated 90 kDa ribosomal S6 kinase. EMBO J., 1997,16, 3133-3144
    
    Siegers H., Enzyme activities through development: a synthesis of the activity and control of the various enzymes as the embryo matures. In: Browne, R.A., Sorgeloos, P., Trotman, C.N.A. (Eds.), Artemia Biology. CRC Press, Boca Raton, 1991, 37-73.
    
    Smith J A, Poteet-Smith C E, Malarkey K, and Sturgill T W. Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo. J. Biol. Chem., 1999, 274, 2893-2898
    
    Smith J A, Poteet-Smith C E, Xu Y, Errington T M, Hecht S M, and Lannigan D A. Cancer Res., 2005, 65, 1027-1034
    
    Thomson S, Mahadevan L C, and Clayton A L. MAP kinasemediated signalling to nucleosomes and immediate-early gene induction. Semin. Cell Dev. Biol., 1999, 10, 205-214
    
    Tomas-Zuber M, Mary J L, and Lesslauer W. Control sites of ribosomal S6 kinase B and persistent activation through tumor necrosis factor. J. Biol. Chem., 2000, 275, 23549-23558
    
    Trivier E, De Cesare D, Jacquot S, Pannetier S, Zackai E, Young I, Mandel J L, Sassone-Corsi P, and Hanauer A. Mutations in the kinase Rsk-2 associated with Coffin-Lowry syndrome. Nature, 1996, 384, 567-570
    
    Tunquist B J, and Mailer J L. Under arrest: cytostatic factor (CSF)-mediated metaphase arrest in vertebrate eggs. Genes and Development, 2003, 17, 683-710
    Tunquist B J, Schwab M S, Chen L G, and Mailer J L. The spindle checkpoint kinase bub1 and cyclin e/cdk2 both contribute to the establishment of meiotic metaphase arrest by cytostatic factor. Curr. Biol., 2002,12,1027-1033
    
    Vik T A, and Ryder J W. Identification of serine 380 as the major site of autophosphorylation of Xenopus pp90rsk. Biochem. Biophys. Res. Commun., 1997, 235,398-402
    
    Wassarman D A, Solomon N M, and Rubin G M. The Drosophila melanogaster ribosomal S6 kinase II-encoding sequence. Gene 1994,144, 309-310
    
    Wright J H, Munar E, Jameson D R, Andreassen P R, Margolis R L, Seger R, and Krebs. E G. Mitogen-activated protein kinase kinase activity is required for the G2/M transition of the cell cycle in mammalian fibroblasts. Proc. Natl. Acad. Sci. USA, 1999,96,11335-11340
    
    Wu J, and Janknecht R. Regulation of the ETS transcription factor ER81 by the 90-kDa ribosomal S6 kinase 1 and protein kinase A. J. Biol. Chem., 2002, 277, 42669-42679
    
    Xing J, Ginty D D, and Greenberg M E. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science, 1996, 273, 959-963
    
    Yntema H G, van den Helm B, Kissing J, van Duijnhoven G, Poppelaars F, Chelly J, Moraine C, Fryns J P, Hamel B C, Heilbronner H, Pander H J, Brunner H G, Ropers H H, Cremers F P, and van Bokhoven H. A novel ribosomal S6-kinase (RSK4; RPS6KA6) is commonly deleted in patients with complex X-linked mental retardation.Genomics, 1999,62, 332-343
    
    Zeniou M, Ding T, Trivier E, and Hanauer A. Expression analysis of RSK gene family members: the RSK2 gene, mutated in Coffin-Lowry syndrome, is prominently expressed in brain structures essential for cognitive function and learning. Hum. Mol. Genet., 2002, 11, 2929-2940
    
    Zhao J, Yuan X, Frodin M, and Grummt I. ERK-dependent phosphorylation of the transcription initiation factor TIF-IA is required for RNA polymerase I transcription and cell growth. Mol. Cell, 2003, 11, 405-413
    
    Zhao Y, Bjorbaek C, Weremowicz S, Morton C C, and Moller D E. RSK3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: growth factor-stimulated kinase function and nuclear translocation. Mol. Cell. Biol., 1995, 15, 4353-4363

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700