葡萄糖酸亚铁参与的磁性碳微球及复合体的合成与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用价廉的、可再生的生物质作为碳源,与其分子结构具有一定相似性的葡萄糖酸亚铁为铁源,通过共同水热制备了磁性粒子均匀分散的石墨碳微球。通过XRD、TEM、TG、IR等手段对样品进行表征,结果表明,所合成的磁性石墨碳微球直径为1μm,具有较好的单分散性,磁性粒子均匀分散在石墨碳微球的内部,磁性粒子尺寸约为20-30nm,并对形成机理进行深入探讨,由于葡萄糖酸亚铁与糖类的分子结构具有一定相似性,在水热过程中会同时脱水碳化,从而将Fe(Ⅱ)引入到碳基质当中,在氮气氛下碳化,Fe(Ⅱ)作为催化剂使碳石墨化,而自身被氧化成磁性的Fe3O4粒子。石墨化碳不仅防止磁性粒子团聚同时也起到保护作用,与以往文献报道的磁性碳微球的结构相比较,它自身的稳定性和机械强度均有所增强,这无疑拓展了其应用领域。实验中考察了反应时间、温度、反应物浓度及碳源种类对碳微球形貌及尺寸的影响。此外,磁性石墨碳微球对染料和重金属也展示了良好的吸附性能,并能利用其磁性进行分离,在污水处理、贵金属回收等领域具有潜在的应用价值。
     利用碳胶球表面存在的大量官能团与金属离子之间的基团配位作用,将金属离子引入到微球表面,在氮气保护下进行碳化后,使金属离子转变成单质或者金属氧化物,同时使碳胶球转变为具有结构稳定和磁性良好的石墨碳微球,制备了MGCS@Ag, MGCS@TiO2(CeO2、ZrO2)复合微球。其中,合成的MGCS@Ag复合体中,Ag粒子均匀的分散在微球表面,尺寸约为30-50 nm,抑菌试验表明MGCS@Ag复合体对大肠杆菌和金色葡萄球菌的生长都具有较好的抑制作用;合成的MGCS@TiO2(CeO2、ZrO2)复合微球可以对α-casein/β-casein酶解产物中的磷酸化肽蛋白的进行富集分离,基本排除非磷酸化肽的干扰,使信噪比显著提高,说明样品对磷酸化肽蛋白具有选择性富集作用,具有潜在的应用价值。
In this paper, we reports a useful approach to achieve uniform magnetic graphite carbon spheres(MGCS) through synchronous hydrothermal treatment of ferrous gluconate and glucose followed by graphitizing the amorphous carbon at a high temperature. The results of SEM, TEM and XRD revealed that MGCSs with an average diameter of 1 um were synthesized; and magnetic Fe3O4 nanoparticles with diameters from 20 to 25 nm uniformly distributed in MGCSs. Meanwhile, a possible formation mechanisms of MGCS were proposed via the following steps. Firstly, the colloidal carbon spheres (CCSs) with uniformly dispersed Fe(II) and large numbers of hydroxyl groups were synthesized via synchronous hydrothermal reaction of glucose and ferrous gluconate. During the whole reaction, the spontaneous intermolecular dehydration, polymerization and cross-linking among glucouse and ferrous gluconate occurred due to the analogous molecular structure. As a result, Fe(II) disperse throughout the carbonaceous matrix of CCSs. Secondly, after separation and drying, the as-prepared CCSs were calcined under high-purity nitrogen stream. With the decomposition of organic gluconate and glucose during high temperature carbonization, only the adjacent Fe(II) aggregated to form small Fe3O4 nanoparticles due to the separation of carbonaceous matrix. When the temperature further increased, the amorphous carbon around Fe3O4 nanoparticles converted to graphitic carbon. Fe3O4 nanoparticles were enwrapped more compact. The strong confinement effect of the graphitic carbon not only can prevent the aggregation of magnetic Fe3O4 nanoparticles, but also can keep the stability of MGCSs in the solution. In addition, the diameter of the carbon spheres can be adjusted by the hydrothermal reaction condition, such as temperature, time of reaction, and concentration. Synchronously, the MGCSs not only have well adsorbing property as carbon materials, but also possess unusual adsorbing behaviour for heavy metal ions and noble metal ions, which have a significant potential application in the treatment of polluted water and the recovery of noble metal.
     As mentioned above, there are abundant functional groups on the surface of CCSs resulting from the hydrothermal carbonization, which also provide excellent support to synthesize composite microspheres. The hydroxyl groups of the as-prepared CCSs were also utilized to adsorb Ag+, Ce4+, Zr4+ ions or condensate with Ti-OH. Following a thermal treatment, composite MGCS@Ag or MGCS@TiO2(CeO2, ZrO2) were fabricated. Thereinto, composite MGCS@Ag exhibited excellent properties in antibacterial activity, composite MGCS@TiO2(CeO2, ZrO2) microspheres promising candidates for the enrichment of phosphopeptides and then magnetic-assist separation.
引文
[1]Kroto H., Heath J., O'Brien S., Curl R. and Smalley R. C60:Buckminsterfullerene[J]. Nature,1985,318:162-163.
    [2]Iijima S. Helical Microtubules of Graphitic Carbon[J]. Nature,1991,354:56-58.
    [3]沈曾民.新型碳材料[M].北京:化学工业出版社,2003.
    [4]Ray H Baughman, Anvar A Zakhidov, Walt A de Heer. Carbon Nanotubes-the Route Twoward Applications[J]. Science,2002,297:787-792.
    [5]J H Chen, W Z Li, D Z Wang, et al. Electrochemical characterization of carbon nanotube electrode in electrochemical double-layer capacitor[J]. Carbon,2002, 40(8):1193-1197.
    [6]Philip G. Collins, Michael S. Arnold, Phaedon Avouris. Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown[J]. Science,2001, 292:706-709.
    [7]Adrian Bachtold, Peter Hadley, Takeshi Nakanishi, et al. Logic Circuits with Carbon Nanotube Transistors[J]. Science,2001,294:1317-1320.
    [8]Henk W. Ch. Postma, Tijs Teepen, Zhen Yao, et al. Carbon Nanotube Single-Electron Transistors at Room Temperature[J]. Science,2001,293:76-79.
    [9]Jing Kong, Nathan R. Franklin, Chongwu Zhou, et al. Nanotube Molecular Wires as Chemical Sensors[J]. Science,2000,287:622-625.
    [10]Shankar Ghosh, A. K. Sood, and N. Kumar. Carbon Nanotube Flow Sensors[J]. Science,2003,299:1042-1044.
    [11]C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, A. Govindaraj. Graphene:The New Two-Dimensional Nanomaterial[J]. Angew. Chem. Int. Ed.,2009,48: 7752-7777.
    [12]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, V.
    Grigorieva, A. A. Firsov. Electric Field Effect in Atomically[J]. Science,2004,306: 666-669.
    [13]Gamby J, Taberna P L, Simon D, Fauvarque J F, Chesneall M. Studies and characterizations of supercapacitors[J]. J. Power Sources,2001,101(1):109-116.
    [14]C Schmitt, H Probstle, J Fricke. Carbon-cloth reinforced and activated aerogel films for supercapacitors[J]. Journal of Non-Crystalline Solids,2001,285:277-282.
    [15]Saliger R, Fischer U, Herta C, Frickle J. High surface area carbon aerogels for supercapacitors[J]. Journal of Non-Crystalline Solids,1998,225(1):81-85.
    [16]Frackowiak E, Jurewicz K, Delpeux S, Beguin F. Nanotubular materials for supercapacitors[J]. J Power Sources,2001,6 (97-98):822-825
    [17]Zhang L. L. and Zhao X. S. Carbon-Based Materials as Supercapacitor Electrodes[J]. Chem. Soc. Rev.,2009,38:2520-2531.
    [18]Antolini E. Formation of carbon-supported PtM alloys for low temperature fuel cells:a review[J]. Mater. Chem. Phys.,2003,78(3):563-573.
    [19]Chan K.,Ding., Ren J., Cheng S., Tsang K. Y. Supported mixed nanooarticles as electrocatalysts in low temperature fuel cell[J]. J. Mater. Chem.,2004,14(4): 505-516.
    [20]Ruihong Wang, Chungui Tian, Lei Wang, Baoli Wang, Hengbin Zhang and Honggang Fu. In situ simultaneous synthesis of WC/graphitic carbon nanocomposite as a highly efficient catalyst support for DMFC[J]. Chem. Commun., 2009,3104-3106.
    [21]Chai G. S., Yoon S. B., Yu J. S., Choi J. H., Sung Y. E. Ordered porou carbons with tunable pore sizes as catalyst supports in oirect methanol fuel cell[J]. J. Phys. Chem. B,2004,108:7074-7079.
    [22]Joo S. H.,Choi S.J., Oh I., Kwak J., Liu Z., Terasaki O., Ryoo R. Ordered nanaoporou arrays carbon supporting high dispersions of platinum nanoparticles[J]. Nature,2001,412:169-172.
    [23]Liu Z. L., Lee J. M., Chen W. X., Han M., Gan L.M. Physical and electrochemical characterizations of microwave-assisted polyol preparation of carbon-supported PtRu nanoparticles[J]. Langmuir,2004,20:181-187.
    [24]Bessel C. A., Laubernds K., Rodriguez N. M., Baker R. T. K. Graphite nanofibers as an eletrode for fuel cell application[J]. J. Phys Chem. B,2001,105:1115-1118.
    [25]Steigerwalt E. S., Deluga G A., Lukehart C.M. Pt-Ru/Carbon fiber nanocomposites: synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance[J] J. Phys.Chem. B,2002,106: 760-766.
    [26]Prabhuram J., Zhao T. S., Tang Z. K., Chen R., Liang Z. X. Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells[J]. J.Phys. Chem. B,2006,110:5245-5252.
    [27]Liu Y. C., Qiu X. P., Huang Y. Q., Zhu W. T., Wu G. S. Influence of preparation process of MEA with mesocarbon microbeads supported PtRu catalysts on methanol electrooxidation[J]. J. Appl. Electrochem.,2002,32:1279-1285.
    [28]Pil Kim, Ji Bong Joo, Wooyoung Kim, Jongsik Kim, In Kyu Song, and Jongheop Yi. Graphitic spherical carbon as a support for a PtRu-alloy catalyst in the methanol electro-oxidation[J]. Catalysis Letters,2006,112:213-218.
    [29]Dressrlbaus M S, Williams K A, Eklund P C. Hydrogen adsorption in carbon materials[J]. MRS Bulletin,1999,11:45-50.
    [30]Dillon A C, Jones K M, Bekkedahl T A, et al. Storage of hydrogen in single-wailed carbon nanotubes[J]. Nature,1997,386(27):377-379.
    [31]Chen P, Wu, Lin J, et al. High H2 up take by alkalidoped carbon nanotubes under ambient pressure and moderate temperatures[J]. Science,1999,285:91-93.
    [32]Yang R T. Hydrogen storage by alkalidoped carbon nanotubes-revisited[J]. Carbon, 2000,38(4):623-626.
    [33]张雄伟,储伟,庄惠祥,等.多壁碳纳米管的改性及其储氢性能研究[J].高等
    学校化学学报,2005,26(3):493-496.
    [34]M. Bystrzejewski, K. Pyrzynska, A. Huczko, H. Lange. Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions[J]. Carbon,2009, (47):1189-1206.
    [35]Limin Guo, Lingxia Zhang, Jiamin Zhang, Jian Zhou, Qianjun He, Shaozhong Zeng, Xiangzhi Cui and Jianlin Shi. Hollow mesoporous carbon spheres-an excellent bilirubin adsorbent[J]. Chem. Commun.,2009, (40):6071-6073.
    [36]Jose M. Calderon-Moreno, Amilcar Labarta, Xavier Batlle, Trinitat Pradell, Daniel Crespo, Vu Thien Binh. Magnetic properties of dense carbon nano-spheres prepared by chemical vapor deposition[J]. Chemical Physics Letters,2007,2614:01262-6.
    [37]C.N. He, X.W. Du, J. Ding, C.S. Shi, J.J. Li, N.Q. Zhao. Low-temperature CVD synthesis of carbon-encapsulated magnetic Ni nanoparticles with a narrow distribution of diameters[J]. Carbon,1996,44(11):2330-2333.
    [38]Yang R. Z., Qiu X. P., Zhang H. R., et al. Solid state synthesis of tungsten carbide from tungsten oxide and carbon, and its catalysis by nickel[J]. Carbon,2005,43: 11-16.
    [39]Scholz S, Leech P J, Englert B C, et al. Cobalt-carbon spheres:Pyrolysis of dicobalthexacarbonyl-functionalized poly(p-phenyleneethynylene)s[J]. Advanced Materials,2005,17(8):1052-1055.
    [40]陈学刚,宋怀河,陈晓红等.纳米Fe/C复合材料的原位合成[J].材料研究学报.2002,16(2):146-150.
    [41]陈学刚,宋怀河,陈晓红等.萘和二茂铁共炭化制备纳米Fe/C材料的研究[J].新型炭材料.2000,15(4):5-8.
    [42]F. Goutfer-Wurmser, H. Konno, Y. Kaburagi, K. Oshida and M. Inagaki. Formation of nickel dispersed carbon spheres from chelate resin and their magnetic properties[J]. Synthetic Metals,2001,118(1-3):33-38.
    [43]Yu S H, Cui X J, Li L L, et al. From starch to metal/carbon hybrid nanostructures: Hydrothermal metal-catalyzed carbonization[J]. Advanced Materials,2004,16(18): 1636-1640.
    [44]Sun, X., Li, Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angew. Chem. Int. Ed.,2004,43:597-601.
    [45]Xianjin Cui, Markus Antonietti, and Shu-Hong Yu. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates[J]. Small,2006,2(6):756-759.
    [46]He N Y, Guo Y F, Deng Y, et al. Carbon encapsulated magnetic nanoparticles produced by hydrothermal reaction[J]. Chinese Chemical Letters,2007,18(4): 487-490.
    [47]Wang Z F, Mao P F, He N Y, et al. Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction[J]. Carbon,2006,44(15):3277-3284.
    [48]Cailiu Yin, Qizhong Huang, Baorong Liu, Xiufei Wang, Yonggui Xie, Lianlong He, Mingyu Zhang, Xin Yang. Synthesis and TEM observation of fluffy hollow carbon spheres by FeCl3 catalyzed solvent-thermal reaction[J]. Materials Letters,2007,61: 4015-4018.
    [49]Luo L B, Yu S H, Qian H S, et al. Large-scale synthesis of flexible gold/cross-linked-PVA sub-microcables and cross-linked-PVA tubes/fibers by using templating approaches based on silver/cross-linked-PVA sub-mierocables[J]. Chemistry-A European Journal,2006,12(12):3320-3324.
    [50]Qian H S, Yu S H, Luo L B, et al. Synthesis of uniform Te@carbon-rich composite nanocables with photoluminescence properties and carbonaceous nanofibers by the hydrothermal carbonization of glucose[J]. Chemistry of Materials,2006,18(8): 2102-2108.
    [51]Basavalingu B, Byrappa K, Yoshimura M, et al. Hydrothermal synthesis and charaeterization of micro to nanosized carbon Partieles[J]. Journal of Materials
    Seienee,2006,41(5):1465-1469.
    [52]Xiong S L, Fei L F, Wang Z H, et al. Preparation of semieonductor/polymer coaxial nanocables by a facile solution process[J]. EuroPean Journal of Inorganic Chemistry,2006,1:207-212.
    [53]Wang Q, Cao F Y, Chen Q w, et al. Preparation of carbon micro-spheres by hydrothermal treatment of methylcellulose sol[J]. Materials Letters,2005,59(28): 3738-3741.
    [54]Gong J Y, Yu S H, Qian H S, et al. PVA-assisted hydrothermal synthesis of copper@carbonaceous submicrocables:thermal stability, and their conversion into amorphous carbonaceous submicrotubes[J]. Journal of Physical Chemistry C,2007, 111(6):2490-2496.
    [55]Deng B, Xu A W, Chen G Y, e tal. Synthesis of copper-core/carbon-sheath nanocables by a surfactant-assisted hydrothermal reduetion/carbonization Proeess[J]. Journal of Physical Chemistry B,2006,110(24):11711-11716.
    [56]Siheng Li, Enbo Wang, Chungui Tian, Baodong Mao, Zhenhui Kang, Qiuyu Li, Guoying Sun. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: simple synthesis and their magnetic and antibacterial properties[J]. Journal of Solid State Chemistry,2008,181:1650-1658.
    [57]Wei, X. W., Zhu, G. X., Xia, C. J., Ye, Y. A solution phase fabrication of magnetic nanoparticles encapsulated in carbon[J]. Nanotechnology,2006,17:4307-4311.
    [58]Wang, Z., Guo, H., Yu, Y., He, N. Synthesis and characterization of a novel magnetic carrier with its composition of Fe3O4/carbon using hydrothermal reaction[J]. J. Magn. Magn. Mater.,2006,302:397-404.
    [59]Xuan, S., Hao, L., Jiang, W., Gong, X., Hu, Y., Chen, Z. A facile method to fabricate carbon-encapsulated Fe3O4 core/shell composites[J]. Nanotechnology, 2007,18:035602-035608.
    [60]Sun, X., Liu, J., Li, Y. One-pot synthesis, rational conversion, and Li storage
    Property[J]. Chem. Mater.,2006,18:3486-3494.
    [61]Zhu Y., Kockrick E., Ikoma T., Hanagata N., Kaskel S. An efficient route to rattle-type Fe3O4@SiO2 hollow mesoporous spheres using colloidal carbon spheres templates[J]. Chem. Mater.,2009,21:2547-2553.
    [62]S.J.格雷格,K.S.W.辛.吸附、比表面与孔隙率[M].北京:化学工业出版社,1989.
    [63]Lee, H. Y., Park, H. K., Lee, Y. M., Kim, K., Park, S. B. A practical procedure for producing silver nanocoated fabric and its antibacterial evaluation for biomedical applications[J]. Chem. Commun.,2007,28:2959-2961.
    [64]Masuda, N.; Kawashita, M.; Kokubo, T. Antibacterial activity of silver-doped silica glass microspheres prepared by a sol-gel method[J]. J. Biomed. Mater. Res.,2007, 83B:114-120.
    [65]Wang, B., Tian, C., Zheng, C., Wang, L., Fu, H. A simple and large-scale strategy for the preparation of Ag nanoparticles supported on resin-derived carbon and their antibacterial properties[J]. Nanotechnology 2009,20:025603-025610.
    [66]Pandey A., Mann M. Proteomics to study' genes and genomes[J]. Nature,2000, 405(6788):837-846.
    [67]Rosamond L., Alsop A. Harnessing the power of the genome in the search for new antibiotics, Science,2000,287(5460):1973-1976.
    [68]Katrin M., Forest M. White. Phosphoproteomic analysis of rat liver by high capacity IMAC and LC-MS/MS[J]. Journal of Proteome Researeh,2006,5: 98-104.
    [69]Pandey A, Podtelejnikov AV, Blagoev B, Bustelo XR, Mann M, Lodish HF. Analysis of receptor signaling pathways by mass spectrometry:identification of vav-2 as a substrate of the epidermal and platelet-derived growth factor receptors [J]. Proc Natl Acad Sci USA,2000,97(1):179-184.
    [70]Oda Y, Nagasu T, Chait BT. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome.Nat Biotechnol,2001,19(4):379-382.
    [71]Barria A, Muller D, Derkach V, Griffith LC, Soderling TR. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation[J]. Science,1997,276(5321):2042-2045.
    [72]Li, Y.; Xu, X.; Qi, D.; Deng, C.; Yang, P.; Zhang, X. Novel Fe3O4@TiO2 core@shell microspheres for selective enrichment of phosphopeptides in phosphoproteome analysis[J]. J. Proteome Res.2008,7:2526-2538.
    [73]Yu, Z., Han, G., Sun, S., Jiang, X., Chen, R., Wang, F., Wu, R., Ye, M., Zou, H. Preparation of monodisperse immobilized Ti4+ affinity chromatography microspheres for specific enrichment of phosphopeptides [J]. Anal. Chim. Acta, 2009,636:34-41.
    [74]Chen, C. T.; Chen, Y. C. Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ ionization mass spectrometry[J]. Anal. Chem.,2005,77:5912-5919.
    [75]Torta, F., Fusi, M., Casari, C. S., Bottani, C. E., Bachi, A. Titanium dioxide coated MALDI plate for on target analysis of phosphopeptides[J]. J. Proteome Res.2009, 8:1932-1942.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700