扣囊复膜酵母海藻糖合成代谢的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海藻糖在生物圈内无处不在,其独特的物理化学特性使其成为细胞应激代谢物,在不同的逆境胁迫中保护生物大分子。海藻糖在工业中有极好的应用前景,如在干燥和冷冻期间维持细胞膜的完整性;增加多种不稳定物质的稳定性;提高冷冻细胞的生存能力;提高生物物质如酶、疫苗等的稳定性;在食品和制药工业中作为冷冻保护剂和高效保存剂等。
     在本实验室前期工作中,从土壤中分离到一株能利用淀粉合成海藻糖的野生型扣囊复膜酵母菌株,该菌株在含淀粉的培养基中经48h发酵可积累占细胞干重18%的海藻糖,但细胞内海藻糖酶活力较高,分解合成的海藻糖,对海藻糖积累不利。本研究以该野生型酵母为出发菌株,经过EMS诱变,得到一株中性和酸性海藻糖酶活力均显著降低的突变株A11,突变株A11在含淀粉培养基中的生长能力并未下降,但经48h发酵,细胞内海藻糖的积累量却比野生型细胞提高了50%。
     为了解扣囊复膜酵母A11海藻糖的合成代谢,通过实验确定了该菌株海藻糖的生物合成途径,结果表明其海藻糖合成途径与啤酒酵母和大肠杆菌的一样,即由UDP-葡萄糖与6-磷酸葡萄糖在6-磷酸海藻糖合成酶催化下合成6-磷酸海藻糖,然后由6-磷酸海藻糖磷酸酯酶催化下合成海藻糖。该合成途径的关键酶6-磷酸海藻糖合成酶经过超滤浓缩、Sepharose CL-4B和DEAE-Sepharose Fast Flow阴离子交换层析等系列纯化过程,经SDS-PAGE和Native-PAGE电泳检测,都呈现一条66kDa的条带,证实6-磷酸海藻糖合成酶被纯化,纯化倍数33倍,收率61%。SDS-PAGE和Native-PAGE电泳上显示的结果,说明扣囊复膜酵母6-磷酸海藻糖合成酶与啤酒酵母和其他真核生物的不同。
     对纯化的6-磷酸海藻糖合成酶的生化特性进行研究表明,该酶反应的最适温度是37℃,最适pH 6.6,酶的温度和pH稳定性均很差;Ca~(2+)、K~+和Mg~(2+)对酶活性有激活作用,最适激活浓度分别是10mmol/L、35mmol/L和35mmol/L,说明该酶是金属酶;而Cu~(2+),Fe~(3+),Hg~(2+),Co~(2+)对酶活性有抑制作用,Hg~(2+)对酶
Trehalose is a non-reducing disaccharide that has been found in many organisms. In addition to being nonreducing, it possesses several unique physical properties, which account for the principal role of trehalose as a stress metabolite. It is now being recognized as a crucial defense mechanism that stabilizes proteins and biological membranes under a variety of stress conditions. Based on its unique properties trehalose has become an important target for biotechnology, where it is produced for food manufacture, vaccine protection, pharmaceuticals and cosmetic products.
    In the previous studies, we found that Saccharomycopsis fibuligera sdu could accumulate trehalose efficiently (up to 0.18g/g dry weight) at the entrance of stationary phase during growth on starch as the sole carbon source. But the strain can synthesize acid trehalase and neutral trehalase, which can mobilize trehalose accumulated by the cells. To enhance yields of trehalose in this strain, it is important to delete or decrease the activity of the acid and neutral trehalases in the cells. By mutagenesis of EMS (Ethylmethanesulfonate), one mutant (All) that assimilated trehalose slowly, but grew on other carbon sources as fast as its parent strain, was isolated. In shaking 300 mL flask, the content of trehalose in the mutant All was increased by 50% than that of the wild type strain when grown in YPS medium. The activities of acid and neutral trehalases of this mutant were lower than those of the wild type. As a result, trehalose accumulation was distinctly advanced in the mutant
    All.
    Trehalose-6-phosphate synthase (SfTps1) activity was detected in the cell extract of S. fibuligera, suggesting that trehalose synthesis pathway in this strain was as same as that in S. cerevisiae and E. coli. The SfTps1 was purified 33-fold to homogeneity by ultrafiltration and several steps of column chromatography. The purified enzyme has apparent molecular masses of 66 kDa, as determined by Native-PAGE and SDS-
引文
Adams A, Gottschling D E, Kaiser C A, Steams T. Methods in Yeast Genetics: a Cold Spring Harbor Laboratory Course Manual. New York: Cold Spring Harbor Laboratory Press, 1998, pp. 84-88.
    
    Adridge S. Trehalose boots prospects for improved biopharmaceuticals and Vaccines. Genetic Engineering News, 1995, 15: 10-11
    Alexandre H, Plourde L, Charpentier C, Francois J. Lack of correlation between trehalose accumulation, cell viability and intracellular acidification as induced by various stresses in Saccharomyces cerevisiae. Microbiology, 1998, 144: 1103-1111.
    Alvarez-Peral F J, Zaragoza O, Pedreno Y. Protective role of trehalose during severe oxidative stress caused by hydrogen peroxide and the adaptive oxidative stress response in Candida albicans. Microbiology, 2002, 148: 2599-2606.
    Amaral F C, Van Dijck P, Nicoli J R, Thevelein J M. Molecular cloning of the neutral trehalase gene from Kluyveromyces lactis and the distinction between neutral and acid trehalases. Arch Microbiol, 1997,167:202-208
    Andersson U, Levander F, Radstrom P. Trehalose-6-phosphate phosphorylase is part of a novel metabolic pathway for trehalose utilization in Lactococcus lactis. J Biol Chem, 2001, 276(46):42707-41713
    App H, Holzer H. Purification and characterization of neutral trehalase from the yeast ABYS1 mutant. J. Biol. Chem.,1989, 264: 17583-17588.
    Aranda J S, Salgado E, Taillandier P. Trehalose accumulation in Saccharomyces cerevisiae cells: experimental data and structural modeling. Biochemical Engineering Journal, 2004, 17:129-140.
    Arguelles J. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol, 2000,174:217-224.
    Asahina E., Tanno KS. A large amount of trehalose in a frost-resistant insect. Nature, 1964, 204:1222-1231.
    Asano N, Yamaguchi T, Kameda Y, Matsui K. Effect of validamycins on glycohydrolases of Rhizoctonia solani. J Antibiot, 1987, 40: 526-532
    Attfield PV. Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett., 1987, 225: 259-263.
    Beattie G M, Crowe J H, Lopez A D. Trehalose : a cryoprotectant that enhances recovery and preserves function of human pancretic islets after long-term storage. Diabetes, 1997, 46(3):519-523.
    
    Behm C A. The role of trehalose in the physiology of nematodes. International Journal for parasitology, 1997, 27: 215-229
    Bell W, Klaasen P, Ohnacker M, Boiler T; Herweijer M, Schoppink P, van der Zee P, Wiemken A. Characterization of the 56 kDa subunit of trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulatorof carbon catabolite inactivation. Eur J Biochem, 1992,209:951-959
    Benaroudj N, Lee DH, Goldberg AL. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J. Biol. Chem., 2001, 276: 24261-24267.
    Bernard A.Prior. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae. Microbiology, 1998, 144: 67-80.
    Blazquez MA, Santos E, Flores CL, Marti'nez-Zapater JM, Salinas J, Gancedo C. Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant Journal, 1998,13: 685-689.
    Boos W, Ehmann U, Bremer E. Trehalase of Escherichia coli. Mapping and cloning of its structural gene and identification of the enzyme as a periplasmic protein induced under high osmolarity growth conditions. J Biol Chem , 1987 , 262 (27): 13212-13218
    Boos W, Ehmann U, Forkl H, Klein W, Rimmele M, Postma P. Trehalose transport and metabolism in Escherichia coli. J Bacteriol, 1990,172:3450-3461
    Boy-Marcotte E, Lagniel, G, Perrot M.The heat shock response in yeast: differential regulations and contributions of the Msn2p/Msn4p and Hsf1p regulons. Mol. Microbiol, 1999, 33 (2): 274-283.
    
    Bradford MM. A rapid and sensitive method for the quantitation. of microgram quantities of protein utilizing the principle of pro-. tein-dye binding. Anal Biochem 1976, 72: 248-254.
    Burklen L, Schock F, Dahl M K. Molecular analysis between the Bacillus subtilis trehalose repressor TreR and the tre operator. Mol Gen Genet, 1998, 260:48-55
    Chi Z M, Liu J, Zhang W. Trehalose accumulation from soluble starch by Saccharomycopsis fibuligera sdu. Enzyme and Microbial Technology, 2001, 28: 240-245.
    Colaco C, Sen S, Thangevalu M, Pinder S, Roser B. Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Biotechnology, 1992, 10: 1007-1011.
    Crowe J H, Carpenter J F, Crowe L M, Anchordoguy TJ. Are freezing and dehydration similar stress vectors? A comparison of modes of interaction of stabilizing solutes with biomolecules.Cryobiology, 1990, 27: 219-231.
    Crowe JH, Carpenter JF, Crowe LM. The role of vitrification in anhydrobiosis. Annual Reviews of Physiology, 1998, 60: 73-103.
    Crowe JH, Crow, LM, Carpenter JF, Rudolph AS, Wistrom CA, Spargo BJ, Anchordoguy TJ, Interactions of sugars with membranes. Biochimica et Biophysica Acta ,1988,947: 367-384.
    Crowe JH, Crowe LM. Preservation of mammalian cells-learning nature's tricks. Nature Biotechnology, 2000, 18: 145-147.
    Crowe LM, Crowe JH, Rudolph A, Womersley C, Appel L. Preservation of freeze-dried liposomes by trehalose. Archives of Biochemistry and Biophysics, 1985, 242: 240-247.
    Dahlqvist A. Specificity of the human intestinal disaccharidases and implications for hereditary disaccharide intolerance. Journal of Clinical Investigation, 1962, 41: 463-470.
    Eastmond PJ, van Dijken AJH, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JDG,
    Smeekens SC, Graham IA. Trehalose-6-phosphate synthase, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryomaturation. Plant Journal, 2002,29:225-235.
    Eastmond PJ,Graham IA. Trehalose metabolism: a regulatory role for trehalose-6-phosphate?Current Opinion in Plant Biology, 2003,6: 231-235.
    Eis C, Nidetzky B. Characterization of trehalose phosphorylase from Schizophyllum commune.Biochem J, 1999, 341 (2): 385-393
    
    Elbein A D.The metabolism of a, a-trehalose. Adv Carbohydr Chem Biochem, 1974 30: 227-256.
    Elbein AD, Pan YT, Pastuszak I, et al. New insights on trehalose:a multifunctional molecule .Glycobiology, 2003, 13: 17-27
    Estruch F. Stress induced genes and stress tolerance in budding yeast. FEMS Microbiol. Rev., 2000,24(4): 469-86.
    Fillinger S, Chaveroche M K, van Dijck P, et al. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology,2001, 147:1851-1862
    Fillinger S, Chaveroche MK, van Dijck P, de Vries R, Ruijter G, Thevelein J, d'Enfert, C. Trehalose is required for the acquisition of tolerance to a variety of stresses in the filamentous fungus Aspergillus nidulans. Microbiology, 2001, 147: 1851-1862.
    Francois JM, Parrou JL. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiology Reviews, 2001, 25: 125-145
    Galinski EA, Herzog RM (1990) The role of trehalose as a substitute for nitrogen-containing compatible solutes (Ectothiorhodospira halochloris) Arch Microbiol 153: 607-613
    Gancedo C, Flores C L. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Research , 2004, 4: 351-359.
    Glaever HM, Styrvold OB, Kaasen J, Strun AR. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol, 1988,170:2841-2849
    Goddijn PJ, van Dun K. Trehalose metabolism in plants. Trends in Plant Science, 1999,4, 315-319.
    Green JL, Angell CA. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. ,1989, 93:2880-2882 .
    Helfert C, Gotsche S, Dahl M. Cleavage of trehalose-phosphate in Bacillus subtilis is catalysed by a phospho-α (1-1)-glucosidase encoded by the treA gene. Mol Microbiol, 1995, 16: 111-120
    
    Holmstrom K O. Drought tolerance in tobacco, Nature, 1996, 397(22): 683-684
    
    Holmstrom K O. Engineering plant adaptation to water-stress. Acta Universitatis Agriculture Sueciae Agraia, 1998, 84: 49-55.
    Horlacher R, Boos W. Characterization of TreR, the major regulator of the Escherichia coli trehalose system. J Biol Chem, 1997,272:13026-13032
    Hottiger T, Boiler T, Wiemken A. Correlation of trehalose content and heat resistance in yeast mutants altered in the RAS/adenylate cyclase pathway: is trehalose a thermoprotectant? FEBS Lett., 1989,255:431-434.
    Hottiger T, Claudio de Virgilio, Michael N.Hall. The role of trehalose synthesis for the acquisition of thermotolerance in Yeast.Eur.J. Biochem., 1994,219:187-193.
    Hottiger T, Schmutz P, Wiemken A. Heat-induced accumulation and futile cycling of trehalose in Saccharomyces cerevisiae. J. Bacteriol., 1987,169:5518-5522.
    Ishihara R, Taketani S, Sasai M, Kino M, Tokunaga R, Kobayashi Y. Molecular cloning, sequencing and expression of cDNA encoding human trehalase. Gene, 1997, 202:69-74.
    Iwahashi H, Nwaka S, Obuchi K, Komatsu Y. Evidence for the interplay between trehalose metabolism and Hsp104 in yeast. Appl. Environ. Microbiol., 1998, 64: 4614-4617.
    Jorge JA, Polizeli ML, Thevelein JM, Terenzi HF. Trehalases and trehalose hydrolysis in fungi. FEMS Microbiol. Lett., 1997,154: 165-171.
    Joseph A.O, Tony D.A. Alterations in fatty acid composition and trehalose concentration of Saccharomyces brewing strains in response to heat and ethanol shock. Journal oflndustrial Microbiology, 1993,11:113-119.
    Jun-chi Miyazaki, Ken-ichiro Miyagawa.Trehalose accumulation a Basidiomycotinous yeast,Filobasidium floriforme. J.Ferment.Bioeng., 1996, 81(4): 315-319.
    Kaasen I, Falkenberg P, Styrvold O B, Strom A R. Molecular cloning and physical mapping of the otsBA gene, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by KatF (AppR). J Bacteriol, 1992,174:889-898
    Kaasen I, Falkenberg P, Styrvold OB, Strom AR. Molecular cloning and physical mapping of the otsBA gene, which encode the osmoregulatory trehalose pathway of Escherichia coli: evidence that transcription is activated by KatF (AppR). J Bacteriol, 1992, 174:889-898
    Kaasen I, McDougall J, Strom AR. Analysis of the otsBA operon for osmoregulatory trehalnSB CVntheClC In Rcrherirhia rnli and hnmnlnQV of the l1tcA and ntcR proteins to the yeast trehalose-6-phosphate synthase/phosphatase complex. Gene, 1994, 145(1). 9-15
    Kamp RM, Choli-Papadopoulou T, Wittmann-Liebold B. Protein Structure Analysis: Preparation, Characterization and Microsequencing. Berlin: Springer-Verlag Berlin Heidelberg, 1997.
    Kato M, Miura Y, Kettoku M. Purification and characterization of new trehalose—producing enzymes isolated from the hyperthermophilic archae, sulfolobus solfataricus KM11. Biosci Biotechnol Biochem, 1996, 60 (3): 546-550
    Kim J, Alizadeh P, Harding T. Disruption of the yeast ATH 1 gene confers better survival after dehydration, freezing,and ethanolshock: potential commercial applications. Applied and Environmental Microbiology, 1996, 62(5): 1536-1569.
    Kim Y H, Kwon T K, Park S. Trehalose synthesis by sequential reactions of recombinant maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase from Brevibacterium helvolum. Appl Environ Microbiol, 2000 ,11: 4620-4624
    Kitamoto Y, Akashi H, Tanaka H, Mori N. a-Glucose-1-phosphate formation by a novel phosphorylase from Flammulina velutipes. FEMS Microbiol. Lett., 1988,55:147-150.
    Klein W, Horlacher R Boos W. Molecular analysis of treB encoding the Escherichia coli enzyme II specific for trehalose. J Bacteriol,1995, 177:4043-4052
    Kwon H B, Yeo E T, Hahn S E, et al. Cloning and characterization of genes encoding trehalose-6-phosphate synthase (TPSl) and trehalose-6-phosphate phosphatase (TPS2) from Zygosaccharomyces rouxii. FEMS Yeast Research, 2003, 3: 433-440
    Londesborough J, Varimo K. Characterization of two trehalases in baker's yeast. Biochem J, 1984,219:511-518
    Londesborough J, Vuorio O. Trehalose-6-phosphate synthase/phosphatase complex from baker's yeast: purification of a proteolytically activated form. Journal of General Microbiology, 1991,137:323-330.
    Mansure J J, Souza RC, Panek AD. Trehalose metabolism in Saccharomyces cerevisiae during alcoholic fermentation. Biotechnology Letters, 1997, 19(12): 1201-1203.
    Mansure JJ, Silva JT, Panek AD. Characterization of trehalase in Rhodotorula rubra. Biochem Int,1992,28:693-700
    Marechal L R, Belocopitow E. Metabolism of trehalose in Euglena gracilis. I. Partial purification and some properties of trehalose phosphorylase. J Biol Chem,1972, 247: 3223-3228.
    Marshak D R, Kadonaga J T, Burgess R R, Knuth M W., Brennan W A, Lin SH. Strategies for Protein Purification and Characterization: A Laboratory Course Manual. USA: Cold Spring Harbor Laboratory Press, 1976.
    Martin M C, Diaz L A, Manzanal M B, Hardisson C. Role of trehalose in the spores of Streptomyces. FEMS Microbiol Lett, 1986, 35:49-54.
    Martinez P M., Marchler G, Schuller C, Marchler BA, Ruis H, Estruch F. The Saccharomyces cerevisiae zinc-finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress response element (STRE). EMBO J., 1996, 15, 2227-2235.
    
    Martuta Kazubiko. Cloning and sequencing of Trehalose Biosynthesis Genes from Rhizobium. Sp, M-11. Bioscience, Biotechnology and Biochemistry, 1996,60(4): 717-720.
    Maruta K, Hattori K, Nakada T. Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q361. Biochim Biophys Acta, 1996, 1289 (1): 10-131
    Maruta K, Nakada T , Kubota M, et al . Formation of trehalose from maltooligosaccharides by a novel enzymatic system.. Biosci Biotechnol Biochem, 1995 , 59(10): 1829-1834
    Mittenbuhler K, Holzer H. Purification and characterizationof acid trehalase from the yeast suc2 mutant. J. Biol. Chem., 1988, 263: 8537-8543.
    Miyazaki J, Miyagawa K, Sugiyama Y. Process for production of trehalose. Japan Kokai Tokkyo Koho (Japan patent) JP05292986 ,November 1993.
    Muller J, Wiemken A, Aeschbacher R. Trehalose metabolism in sugar sensing and plant development. Plant Science, 1999,147: 37-47
    Nwaka S, Mechler B, Destruelle M. Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Letters, 1995, 360: 286-290.
    Nwaka Solomon, Bernd Mechler, Helmut Holzer. Deletion of the ATHI gene in Saccharomyces cerevisiae prevents growth on trehalose. FEES Litters, 1996, 386:235-238.
    Okayma-shi Okayama.Non-reducing saccharide and its production and use. Janpan: EP0691407A1, 1996, 1-10.
    Paiva C L, Panek A D. Biotechnological applications of the disaccharide trehalose. Biotechnol Annu Rev, 1996,2:293-314.
    Panek AC, Vania JJ, Paschoalin MF, Panek D. Regulation of trehalose metabolism in Saccharomyces cerevisiae mutants during temperature shifts. Biochimie, 1990,72:77-79.
    Parrou J L, Teste M A, Francois J M. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiology, 1997, 143:1891-1900
    Parrou Jean Luc, Matthieu Jules, Gemma Beltran, Jean Francois .Acid trehalase in yeasts and filamentous fungi:Localization, regulation and physiological function. FEMS Yeast Research,2005,5:503-511
    Parrou JL, Francois JM. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal. Biochem., 1997b, 248: 186-188.
    Patist A, Zoerb H. Preservation mechanisms of trehalose in food and biosystems. Colloids and Surfaces B: Biointerfaces, 2005,40:107-113.
    Pilon-Smits EAH, Terry N, Sears T, Kim H, Zayed A, Hwang S, van Dun K, Voogd E, Verwoerd T.C., Krutwagen R.W.H.H., Goddijn O.J.M., Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. Journal of Plant Physiology, 1998,152: 525-532.
    Plourde-Owobi L, Durner S, Goma G, Francois J. Trehalose reserve in S. cerevisiae: phenomenon of transport, accumulation and role in cell viability. International Journal of Food Microbiology,2000, 55: 33-40.
    Ramirez-Zavala B, Mercado-Flores Y, Hernadez-Rodriguez C, Villa-Tanaca L. Purification and characterization of lysine aminopeptidase from Kluyveromyces marxiamus, FEMS Microbiol.Lett., 2004,235: 369-375.
    Ravich WJ, Bayless TM. Carbohydrate absorption and malabsorption. Clinical Gastroenterology, 1983,12: 335-356.
    Reed RH, Richardson, D L, Warr SR, Stewart WD. Carbohydrate accumulation in cyanobacteria. J Gen Microbiol, 1984,130:1-4
    Reinders A, Romanl I, Wiemken A et al. The Thermophilic Yeast Hansenula polymorpha Does Not Require Trehalose Synthesis for Growth at High Temperatures but Does for Normal Acquisition of Thermotolerance. J Bactoriol, 1999, 181: 4665-4668
    Ribeiro MJ, Silva JT, Panek AD. Trehalose metabolism in Saccharomyces cerevisiae during heat-shock. Biochim. Biophys.Acta, 1994, 1200: 139-147.
    Richards A B, Krakowka S, Dexter L B. Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food and Chemical Toxicology, 2002, 40:871-898.
    Richmond T. Designing degenerate PCR primers CODEHOP: consensus-degenerate hybrid oligonucleotide primers. Genome Biology, 2000, 1(1) :240-251.
    Rimmele M, Boos W. Trehalose-6-phosphate hydrolase of Escherichia coli. J Bacteriol, 1994, 176:5654-5664
    Romero C, Jose M, et al. Expression of the yeast trehalose-6-phosphate synthase gene in transgenic tobacco plants; pleiotropic phenotypes include drought tolerance, planta, 1997, 201: 293-297
    Rose TM, Schultz ER, Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S.Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. NAR, 1998,26: 1628-1635.
    Roser B. Trehalose, a new approach to premium dried foods. Trends Food Sci. Technol., 1991, 2:166-169.
    
    Ruis H, Schuller C. Stress signaling in yeast. Bioessays, 1995,17: 959-965.
    Sacktor B. Trehalase and the transport of glucose in the mammalian kidney and intestine. Proceedings of the National Academy of Sciences of the U.S.A., 1968, 60: 1007-1014.
    Saito K, Kase Tl, Purification and characterization of a trehalose synthase from the basidiomycete grifola frondosa. Appl Environ Microbiol, 1998, 64(11): 4340-4345
    Salminen S O, Streeter J G. Enzymes of α,α-trehalose metabolism in soybean nodules. Plant Physiol,1986,81:538-541
    Schick I, Haltrich D, Kulbe K D. Trehalose phosphorylase from Pichiafermentans and its role in the metabolism of trehalose. Appl. Microbiol. Biotechnol., 1995,43:1088-1095.
    Schiraldi C, Di Lernia I, De Rosa M. Trehalose production: exploiting novel approaches. Trends Biotechnol, 2002, 20 (10): 420-425.
    Schmitt AP, McEntee K. Msn2p, a zinc-finger DNAbinding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA, 1996, 93: 5777-5782.
    Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vivo and in vitro. Mol Cell, 1998, 1:639-648
    Sola-Penna M, Meyer-Fernandes JR. Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars? Arch Biochem Biophys., 1998, 360(1): 4-10.
    Soto T, Fernandez J, Vicente-Soler J. Accumulation of trehalose by overexpression of tps1, coding for trehalose-6-phosphate synthase, causes increased resistance to multiple stresses in the fission yeast Schizosaccharomyces pombe. Appl Environ Microbiol 1999, 65: 2020-2024
    Spargo B J, Crowe L M, Ioneda T, Beaman B L, Crowe J H. Cord factor (α, α-trehalose 6,6' dimycolate) inhibits fusion betweenphospholipid membranes. Proc Natl Acad Sci, 1991, 88:737-740.
    Stanford Database. 2003, http://genome -www.stanford.edu /yeaststress/data/ rawdata/ complete dataset.txt
    Stewart PR. In: Prescott, D.M. (Ed.), Methods in Cell Biology, vol. 12. London and New York:Academic Press, 1982, pp. 111- 147.
    Strom AR, Kaasen I. Trehalose metabolism in Escherichia coli: stress protection and stress regulation of gene expression. Mol Microbiol, 1993, 8: 205-210
    Sussich F, Princivalle F, Cesaro A. The interplay of the rate of water removal in the dehydration of a,a-trehalose. Carbohydrate Research, 1999,322: 113-119.
    Swain M, Ross N W. A silver stain protocol for proteins yielding high resolution and transparent background on sodium dodecyl sulfate-polyacrylamide gels. Electrophoresis, 1995, 16: 948-951
    Telenius H, Carter NP, Bebb CE. Degenrate oligonucleotide- primed PCR: general amplidication of target DNA by a single degenernte primer. Genomics, 1992, 13(3): 718-728
    Thevelein J M. Regulation of trehalose mobilization in fungi. Microbiol Rev, 1984, 48: 42-59
    Thevelein JM, Hohmann S. Trehalose synthase: guard to the gate of glycolysis in yeast. Trends in Biochemical Sciences, 1995, 20: 3-10.
    
    Thevelein JM. Signal transduction in yeast. Yeast, 1994,10: 1751-1790
    Timasheff SN. The control of protein stability and association by weak interactions with water: How do solvents affect these processes? Annu. Rev. Biophys. Biomol. Struct., 1993, 22: 67-97
    Tsusaki K, Nishimoto T, Nakada T. Cloning and sequencing of trehalose synthase gene from Pimelobacter sp. R481 Biochim Biophys Acta, 1996, 1290 (1): 1-3
    Tsusaki K, Nishimoto T , Nakada T, et al. Cloning and sequencing of trehalose synthase gene from Thermus aquaticus ATCC339231 Biochim Biophys Acta, 1997 , 1334(1): 28-32
    Urek R O, Pazarlioglu N K. Purification of partial characterization of manganese peroxidase from immobilized Phanerochaeto chrysosporium, Proc. Biochem., 2004, 39: 2061-2068.
    Uritani M, Takal M, Yoshinaga K. Protective effect of disaccharides on restriction endonucleases during drying under vacuum. Journal of Biochemistry, 1995, 117: 774-779
    Valenzuela-Soto E M, Escalante J M M, Iturriaga G., et al Trehalose-6-phosphate synthase from Selaginella lepidophylla: purification and properties. Biochem Biophys Research Communications, 2004, 313: 314-319
    
    Van Dijck P, Colavizza D, Smet P, Thevelein JM. Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol, 1995,61:109-115
    
    Vogel G, Fiehn O, Jean-Richard-dit-Bressel L, Boiler T, Wiemken A, Aeschbacher R A, Wingler A. Trehalose metabolism in Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. Journal of Experimental Botany, 2001,52: 1817-1826.
    
    Voit E O. Biochemical and genomic regulation of the trehalose cycle in yeast: review of observations and canonical model analysis. J. Theoretical Biology, 2003, 223: 55-78.
    Vuorio, O. E., Kalkkinen N, Londesborough J. Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur. J.Biochem., 1993, 216: 849-861.
    
    Wanderley K J, Torres F A G, Morae, L M P, Ulhoa C J. Biochemical characterization of α-amylase from the yeast Cryptococcus flavus, FEMS Microbiol. Lett., 2004, 231: 165-169.
    
    Wannet W J B, Op den Camp HJM, Wisselink HW, van der Drift C, Van Griensven LLD, Vogels GD. Purification and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus. Biochimica et Biophysica Acta, 1998, 1425:177-188.
    
    Wera S, De Schrijver E, Geyskens I, Nwaka S, Thevelein JM. Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochem. J., 1999,343:621-628
    Whatmore BM, Reed RH. The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol, 1990, 136: 2527-2535
    Wiemken A. Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek, 1990, 58: 209-217.
    Winderickx J, de Winde JH, Crauwels M, Hino A, Hohmann S, Van Dijck P, Thevelein JM Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Mol Gen Genet, 1996,252: 470-482
    
    Wingler A. The function of trehalose biosynthesis in plants. Phytochemistry, 2002, 60: 437-440.
    Winkler K, Kienle I, Burgert M, Wagner JC, Holzer H. Metabolic regulation of the trehalose content of vegetative yeast. FEBS Lett., 1991, 291: 269-272.
    Wolfe KH, Lohan AJ. Sequence around the centromere of Saccharomyces cerevisiae chromosome II: similarity of CEN2 to CEN4. Yeast, 1994, 10: 41-46.
    Wyatt GR, Kalf GF. The chemistry of insect hemolymph. II. Trehalose and other carbohydrates.Journal of General Physiology, 1957, 40: 833-847.
    Yokomise H, Inui K, Wada H, Hasegawa S, Ohno N, Hitomi S. Reliable cryopreservation of trachea for one month in a new trehalose solution. Journal of Thoracic and Cardiovascular Surgery,1995,110:382-385.
    Zahringer H, Thevelein JM, Nwaka S. Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol, 2000, 35: 397-406.
    Zaragoza O, Blazquez MA, Gancedo C. Disruption of the Candida albicans TPS1 gene encoding trehalose-6P-synthase impairs formation of hyphae and decreases infectivity. J Bacteriol,1998,180:3809-3815.
    Zentella R, Mascorro-Gallardo JO, Van Dijck P, Folch-Mallol J, Bonini B, Van Vaeck C, R. Gaxiola,Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga G. A Seraginella lepidophylla Trehalose-6-Phosphate Synthase Complements Growth and Stress-Tolerance Defects in a Yeast tpsl Mutant. Plant Physiol, 1999, 119(4): 1473-1482.
    杜连祥.工业微生物学实验技术.天津:天津科学技术出版社,1992.
    高峻,池振明.耐高浓度酒精酵母菌与酒精敏感酵母菌中海藻糖含量与耐酒精的关系.食品与发酵工业,2001,27(5):4—7.
    郭尧君.蛋白质电泳技术,北京:科学出版社,2001。
    胡宗利,夏玉先,陈国平,蔡绍皙.海藻糖的生产制备及其应用前景.中国生物工程杂志,2004,24(4):45-48.
    黄平.奇妙的双糖——海藻糖.生命的化学,1995,15(4):26-29.
    刘莉,陈炜,金城.芝田硫化叶菌新型α-淀粉酶基因在大肠杆菌中的克隆和表达.微生物学报,2000,40(3):323-326
    任媛媛,刘景芳,戴秀玉,向华.海藻糖代谢途径相关基因及生物工程.微生物报,2003,43(6):821-825.
    萨姆布鲁克 J,费里奇 EF,T 曼尼阿蒂斯.分子克隆实验指南(第二版).北京:科学出版社,1999.
    杉本利行.糖类新资源的开发现状和应用.食品工业,1995,5:34-38.
    沈萍主编.微生物学.北京:高等教育出版社,2000.
    沈同,王镜岩.生物化学(第二版).北京:高等教育出版社,1990.
    史兆兴,王恒樑,苏国富,黄留玉.简并PCR及其应用.生物技术通讯,2004,15(2):172—175
    王洪振,周晓馥,宋朝霞,刘文广,曾宪录.简并PCR技术及其在基因克隆中的应用.遗传,2003,25(2):201-204
    杨小民,杨基础.几种糖对纤维素酶热稳定性影响的研究.清华大学学报(自然科学版),2000,40(2):51-54.
    张树珍,郑学勤,林俊芳,郭丽琼.海藻糖合酶基因的克隆及转化甘蔗的研究.农业生物技术学报,2000,8(4):385-388.
    周坚,杨波,戴秀玉.转基因烟草中的海藻糖测定.微生物学报,2001,41(3):378-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700