生长期大鼠下颌前伸后髁突钙磷元素的动态能谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:应用X射线能谱分析仪从微观上分析功能矫治前伸大鼠下颌后髁突前、中、后部钙磷元素的代谢情况及在保持过程中的改变,从而以Ca/P的动态变化评价功能矫治过程中的骨改建情况,通过检测全过程的钙磷能谱变化评价II类牙合功能矫治的远期效果,为临床提供相应的实验室依据。
     方法:选取健康的5周龄雄性SD大鼠35只(清洁级),体重约90-100g,由河北医科大学实验动物中心提供。经实验室饲养7天,待大鼠适应实验室环境后随机分为:对照组(2周组,4周组,6周组);实验组(戴用矫治器2周组,戴用矫治器4周组,戴用矫治器2周后摘除并观察2周组,戴用矫治器6周组)。每组5只,自由摄食饮水。实验组大鼠配戴自制的上颌可摘式斜面导板矫治器引导下颌前伸,每日戴用时间为10-12小时;对照组不做任何处理,为自然生长组。大鼠断颈处死后取双侧髁突,其中右侧髁突于4%多聚甲醛中固定,10%EDTA脱钙,逐级酒精脱水后常规石蜡包埋,沿髁突矢状切片,厚约5μm,取中间部位的切片,进行组织切片制备,HE染色后光镜下观察其形态,并在10倍镜下应用vista病理图像分析软件采图,测量髁突前、中、后部软骨厚度;左侧髁突于2.5%戊二醛中固定24小时以上,液氮制冷条件下沿矢状方向劈开髁突,暴露观察面。样本经0.1mol/LPBS反复冲洗,再置于0.1mol/LPBS液中超声清洗5分钟,梯度酒精逐级脱水,乙醚置换酒精,干燥后使用导电胶粘于观测台,在扫描电镜定位下分别对髁突前、中、后斜面做X射线能谱分析及元素定量测定。将全部记测数值按顺序输入计算机同时用SPSS 13.0统计分析软件对样本数据进行分析处理。使用t检验比较各组特征数值,分析各组数据之间的差异。
     结果:
     1 HE染色后光镜下观察髁突软骨层变化:
     1.1髁突软骨层形态学变化
     软骨细胞根据形态可将其分为:①纤维层:由平行于髁突表面的胶原纤维构成,含有纤维细胞;②生发层:细胞体积小,呈圆形或卵圆形,排列紧密,核大,胞外基质少;③成熟层:细胞体积明显增大,卵圆形,软骨基质明显增多,细胞排列不规律;④移行层:细胞肿胀,较成熟层明显增大。胞核固缩或肿胀,细胞外软骨基质增多、均匀。软骨层移行并无确切分界,其下方为骨小梁与软骨表面垂直排列。髁突软骨由后向前逐渐变薄,以成熟层、移行层的变化最为明显。对照组大鼠在生长发育过程中可以观察到髁突软骨出现增龄性变化,整个软骨层逐渐变薄,以中后部变化最为明显。细胞体积变小,骨小梁变粗。
     1.2髁突软骨层厚度变化
     1.2.1前部软骨:戴用矫治器2周后其厚度与对照组相比无统计学差异(P>0.05),直到戴用6周后软骨层较对照组变薄(P<0.05),放弃保持的2+2周组大鼠髁突前部软骨较4周组变厚(P<0.05),与对照组相比无统计学差异(P>0.05)。
     1.2.2中部软骨:戴用矫治器2周后较对照组变厚(P<0.05),放弃保持的2+2周组与4周组相比其变化无统计学差异(P>0.05)。
     1.2.3后部软骨:后部软骨层厚度变化较大与对照组相比变厚(P<0.01),放弃保持的2+2周组其后部软骨层与4周组相比变薄(P<0.01),但与对照组相比仍然存在差异(P<0.01)。
     2髁突钙磷能谱变化:
     2.1前部:
     戴用矫治器2周后,Ca元素峰值强度较低,而P含量相对升高,实验组Ca/P较对照组低(P<0.01);
     戴用矫治器4周时,能谱分析显示Ca峰值强度略有升高,变化不明显,而P元素相对降低,实验组Ca/P有所升高但低于对照组(P<0.05);
     6周时,Ca元素含量进一步升高,与P含量差距变大,实验组Ca/P继续升高,但仍然与对照组的Ca/P存在差距(P<0.05);
     放弃保持的2+2周组与一直戴用矫治器的4周组相比,前部软骨P含量相对升高,Ca/P降低(P<0.05)。
     2.2中部:
     Ca、P元素总体变化趋势和前部相似,在戴用矫治器2周后Ca/P明显降低(P<0.05);
     戴用4周后Ca/P与对照组相比无统计学差异(P>0.05);
     放弃保持的2+2周组与一直戴用矫治器的4周组相比Ca/P略有降低(P<0.05)。
     2.3后部:
     戴用矫治器2周后,Ca元素峰值强度较低,而P含量相对升高,实验组Ca/P较对照组低(P<0.01);
     戴用矫治器4周时, Ca峰值强度升高, P元素相对降低,实验组Ca/P虽有所上升,但仍然比对照组低(P<0.05);
     6周时,Ca元素含量进一步升高,此时实验组虽然比对照组的Ca/P低但是已无统计学差异(P>0.05);
     放弃保持的2+2周组与一直戴用矫治器的4周组相比,Ca/P降低(P<0.05)。
     结论:
     1功能矫治2周时大鼠髁突软骨层细胞增生活跃,中后部软骨层厚度明显增大,前部厚度于矫治6周时变薄。治疗后放弃保持则出现明显复发,前、后部变化较显著。
     2对照组大鼠髁突骨矿化程度(Ca/P)在整个实验过程中呈逐渐升高的趋势,是一种发育性的改变。
     3实验组大鼠髁突骨矿化程度(Ca/P)在治疗初期明显降低,随后逐渐升高接近对照组,但中部改建完成较快,前部较慢在实验结束时仍未稳定。
     4放弃保持后,髁突Ca/P降低,是一种复发性表现,这一现象早于软骨厚度的变化。
Objective: Use the X-ray spectrum analyzer from the microcosmic view to analyze the anterior,the middle,and the posterior condyle of the rats. The elements of calcium and phosphorus after mandibular protrusion and between the process of maintaining should be detected. We choose the dynamic changes of Ca/P to evaluate the bone alteration and analyze the dynamic changes of calcium and phosphorus during the whole process to evaluate the long-term effects of II malocclusion after using functional appliance in order to provide the experimental basis for clinical treatment.
     Methods: 35 5-week-old male SD rats were chose (clean level). They weighed about 90-100g. They were provided by the experimental animal center of Hebei Medical University. Fed the rats in the laboratory for seven days until they adopt the condition and then divided into 7 groups randomly: control groups (2 weeks group, 4 weeks group, 6 weeks group), experimental groups (the group of wearing the appliance for 2 weeks, the group of wearing the appliance for 4 weeks, the group of wearing the functional appliance for 2 weeks and casting off the appliance for 2 weeks, the group of wearing the appliance for 6 weeks.) Each group included five rats. Free drinking and timing eating. The rats of experimental groups wore movable upper jaw inclined bite plate to keep the mandible protrusion. The wearing time was 10-12h / d. The control groups received no treatment. They were natural growth groups. The rats were sacrificed and took the bilateral condyle. The right condyle was fixed in the 4% paraformaldehyde and decalcified in the 10%EDTA.The tissues were dehydrated and then embedded in paraffin. The histological section were cut into 5μm in thickness. Took the middle parts of the slice to make tissue sections. The sections were observed through optical microscopy after stained with hematoxylin and eosin. Took the image under the microscope at 10 times and measured the change of the cartilage’s thickness. The left side of condyle was fixed in 2.5% glutaraldehyde for more than 24h.After being frozen in liquid nitrogen the condyle was split into two parts and the observing surface was exposed. The samples were cleaned in 0.1mol/LPBS, and washed in ultrasonic cleaner for 5minutes. Fixed the samples on the observatory using the conductive adhesive after be dehydrated and dried .The elements concentration was detected and analyzed by x-ray energy dispersive system . All the measured values would be recorded by the computer with the SPSS 13.0 statistical analysis software. Compared the characteristic values of each group using the t test and analyzed the differences between the various sets of data.
     Results:
     1 Observe the changes of the condylar cartilage layer under the optical microscope after be stained with hematoxylin and eosin
     1.1 The morphological changes of condylar cartilage layer
     The chondrocytes can be classified according to morphology:①The fiber layer: The collagen fibers parallel the condylar surface and contain fiber cells.②The germinal layers: The cells are small round or oval and closely arranged. Nucleus is big and extracellular matrix is less;③The mature layers: The cell’s volume and the cartilage matrix increase significantly. The cells are ova. The cells arrange irregular.④The transitional layers: The cells are swelling and increase significantly than mature level. Nucleus is condensed or swelling. The cartilage matrix outside the cells is uniform and increases a lot. Transitional layers of the cartilage don’t have the exact boundaries. The trabecular bone locates under the cartilage and perpendicular to the surface. The condylar cartilage becomes thinner from posterior part to anterior part and especially the mature layer and the transitional layer.The condylar cartilage of the control group rats during the growth can be observed age-related changes.The entire cartilage layer becomes thinner gradually. The most obvious changes occur in the rear part. The volume of the cell becomes smaller and the trabecula becomes thicker.
     1.2 The change of the thickness of the condylar cartilage
     1.2.1 The anterior cartilage
     The change after wearing the appliance for 2 weeks had no significant difference comparing with the control group (P>0.05). After wearing the appliance for 6weeks the cartilage became thinner than the control group (P<0.05). The group which gave up maintaining the treatment effect, its anterior condylar cartilage became thicker comparing with the 4W group (P<0.05) and ultimately had no significant difference with the control group (P>0.05).
     1.2.2 The middle cartilage
     After wearing the appliance for 2 weeks the cartilage became thicker comparing with the control group (P<0.05). The group which gave up maintaining the treatment effect changed little (P>0.05).
     1.2.3 The posterior cartilage
     The thickness of the posterior cartilage changed significantly comparing with the control group (P<0.01). The group which gave up maintaining the treatment effect its posterior cartilage layer became thinner comparing with the 4W group. (P<0.01) But the difference with the control group still had statistical significance (P<0.01).
     2 The condylar changes in the spectroscopy of calcium and phosphorus
     2.1 The anterior part
     After wearing the appliance for 2 weeks, the elements of Ca had a lower peak intensity, while the content of P was relatively higher. In the control group the Ca / P was higher than the experimental group (P<0.01). After wearing the appliance for 4 weeks, the energy spectrum analyzer showed that the peak intensity of Ca was slightly elevated but did not change significantly, while the element of P was relatively lower. In the experimental group the Ca / P had increased but still be lower than the control group (P<0.05). In the 6W group, the element of Ca content increased further, and had a bigger gap with the content of P. The Ca / P still had statistical significance between the control group and experimental group (P<0.05). Comparing with the 4W group, the content of P at the front cartilage in the 2 +2 W group was higher and the Ca / P was lower (P<0.05).
     2.2 The middle part
     The trends of the Ca and P elements were similar to the front. After wearing the appliance for 2 weeks the Ca / P decreased significantly (P<0.05).The Ca / P of the 4W group had no significant difference with the control group (P>0.05). The Ca / P of the 2 +2 W group was slightly lower comparing with the 4W group (P<0.05).
     2.3 The posterior part
     After wearing the appliance for 2 weeks, the elements of Ca had a low peak intensity, while the content of P was relatively higher. In the control group the Ca / P was higher than the experimental group (P<0.01). In the 4W group the peak intensity of Ca increased and the element of P was relatively lower. In the control group the Ca / P was higher than the experimental group (P<0.05). In the 6W group the content of Ca increased further. Although the Ca / P of the experimental group was low comparing with the control group but the difference had no statistical significance. (P>0.05).Comparing the 2+2W group with the 4W group, the difference had obvious statistical significance (P<0.05).
     Conclusion:
     1 After wore the functional appliance for 2 weeks the condylar cells proliferated actively in the experimental group. The posterior and the middle cartilage became thicker. The anterior cartilage became thinner in the 6W group. During the puberty if we gave up maintaining the effect of the treatment would bring the apparent recurrence especially at the front and the rear condylar.
     2 The bone mineralization of the control groups’condylar (Ca / P) during the entire experimental process was gradually increased and the trend was a growing change.
     3 The bone mineralization of the experimental groups’condylar (Ca / P)was gradually decreased at the beginning and then increased to normal level. The middle part reconstructed faster while the front part reconstructed slower. In the end of the experiment the front condylar had not yet stabilized.
     4 When give up wearing functional appliance to keep the effect, the Ca / P of the condylar became lower. This was a recurrent manifestation. The phenomenon presented earlier than the change of the cartilage thickness.
引文
1 Tagliaro ML, Rassi-Guimaraes ML, Pereira-Padilha DM, et al. Mandibular advancement and morphological changes in the mandibles of female mice of diffrerent ages. Experimental Gerontology, 2006, 41: 1157–1164
    2 Voudouris JC, Kuftinec MM. Improved clinical use of Twin-block and Herbst as a result of radiating viscoelastic tissue forces on the condyle and fossa in treatment and long-term retention:Growth relativity. Am J Othod Dentofacial Orthop, 2000, 117(3): 247-266
    3 Pancherz H, Fischer S. Amount and Direction of Temporomandibular Joint Growth Changes in Herbst Treatment: A Cephalometric Long-Term Investigation. Angle Orthod, 2003, 73(5): 493-501
    4 Shen G, Rabie AB, Zhao ZH, et al. Forward deviation of the mandibular condyle enhances endochondral ossification of condylar cartilage indicated by increased expression of type X collagen. Archives of Oral Biology, 2006, 51(4): 315-324
    5 Gupta A, Virender SK, Pushpa VH, et al. Stress distribution in the temporomandibular joint after mandibular protraction: A 3-dimensional finite element method study. American Journal of Orthodontics and Dentofacial Orthopedics. 2009, 135(6): 737-748
    6 J?levik B. Secondary ion mass spectrometry and X-ray microanalysis of hypomineralized enamel in human permanent first molars. Archieves of Oral Biology, 2001, 46(3): 239-247
    7陈刚,王大章,申岱,等.牵张成骨矫治腭裂动物模型新骨Ca/P元素能谱分析.现代口腔医学杂志,2007,21(5):462-464
    8 Petrovic AG, Stutzmann JJ, Oudet CL. Control processes in the postnatal growth of the condylar cartilage of the mandible. Center for Human Growth and Development. Michigan: Ann Arbor, 1975
    9王艳民.前伸下颌后大鼠髁突软骨内MMPs和TIMP-1表达变化的研究.四川大学口腔医学博士专业学位论文,2005
    10实验动物解剖学.人民教育出版社,1982,第一版
    11 Kajikawa A, Hirabayashi S, Harii K. An experimental study on the growth of condylar cartilage, using a new vascularized mandible heterotopic transplant model. J Oral Maxillofac Surg. 2003, 61(2): 239-245
    12 Kiliaridis S, Thilander B, Kjellberg H, et al. Effect of low masticatory function on condylar growth :a morphometric study in the rat. Am J Orthod Dentofacial Orthop. 1999, 116(2): 121-125
    13 Sasaguri K, Jiang H, Chen J. The effect of altered functional forces on the expression on bone-matrix proteins in developing mouse mandibular condyle. Arch Oral Biol. 1998, 43(1):83-92
    14 Tang GH, Rabie AB, H?gg U, et al. PTHrP Regulates Chondrocyte Maturation in Condylar Cartilage. J Dent Res, 2003, 82(8): 627-631.
    15 Rabie AB, Wong L, Tsai M, Replicating mesenchymal cells in the condyle and the glenoid fossa during mandibular forward positioning. Am J Orthod Dentofacial Orthop, 2003, 123(1): 49-57
    16 Kirsch T, Swoboda B, Mark KV. Ascorbate independent differentiation of human chondrocytes in vitro: simultaneous expression of types I and X collagen and matrix mineralization. Differentiation, 2006, 52(1): 89-100
    17 Proff P, Gedrange T, Franke R, et al. Histological and histomorphometric investigation of the condylar cartilage of juvenile pigs after anterior mandibular displacement. Annals of Anatomy-Anatomischer Anzeiger, 2007,189(3):269-275
    18李小兵,罗颂椒,张世羽.功能矫形前伸大鼠下颌后髁突软骨β转化生长因子-1(TGF-β1)表达变化的研究.华西口腔医学杂志,1998,16(4):352-354
    19 Ghafari J, Degroote C. Condylar cartilage response to continuous mandibular displacement in the rat. Angle Orthod, 1986, 56(1): 49-57
    20左艳萍,功能矫治引导下颌前伸对下颌骨的影响.河北医科大学博士毕业生研究论文,2003
    21 Copray JC, Jansen HW, Duterloo HS. An in-vitro system for studying the effect of variable compressive forces on the mandibular condylar cartilage of therat. Arch Oral Biol, 1985, 30(4): 305-311
    22 Yamamoto TT, Nakagawa K, Kawakami M, et al. Comparison of the effects of hydrostatic compressive force on glycosaminoglycan synthesis and proliferation in rabbit chondrocytes from mandibular condylar cartilage, nasal septum, and spheno-occipital synchondrosis in vitro. AM J Orthod Dentafac Orthop, 1991,99(5):448-455
    23 Boskey AL, Posner AS. Bone structure composition and mineralization. Orthop Cline North Am, 1984, 15(4): 597-612
    24栗振宝,孙庆,潘力.软骨钙化的X射线能谱半定量分析.电子显微学报,1994,5:394
    25 Ngo H, Ruben J, Arends J, et al. Electron probe microanalysis and transverse microradiography study of artificial lesions in enamel and dentin:a comparative study [J]. Adv Dent Res, 1997, 11(4):426-432
    26 Frazier PD. Electron probe analysis of human teeth: Ca/P ratios in incipient carious lesions[J]. Archives of Oral Biology,1967, 12(1) :25-33
    27叶虎.下颌皮质骨颊向牵张成骨的实验研究.西安:第四军医大学,2003
    28付建宏.大鼠正畸牙移动局部牙槽骨Ca/P比值变化与相关组织学研究,西安:第四军医大学,2003
    29陈勤,李世普,合季平,等.多孔B-TCP生物陶瓷骨内植入后得X射线能谱分析.生物化学与生物物理学报,1999,31(4):409-414
    30于世凤.破骨细胞及其骨吸收调控研究进展.中国骨质疏松杂志,2000,6(1):78-83
    31 Posnor AS. The mineral of bone. Clin Orthop,1985,200:87-99
    32 Rafferty KL, Sun ZY, Egbert M, et al. Changes in growth and morphology of the condyle following mandibular distraction in minipigs: Overloading or underloading? Archives of Oral Biology, 2007,52(10) : 967-976
    33 DeVincenzo JP. Changes in mandibular length before, during, and after successful orthopedic correction of Class II malocclusions, using a functional appliance. American Journal of Orthodontics and Dentofacial Orthopedics, 1991,99(3):241-257
    34 Freeman DC, McNamara JA, Baccetti T, et al. Long-term treatment effects of the FR-2 appliance of Fr?nkel. American Journal of Orthodontics andDentofacial Orthopedics, 2009,135(5): 570 e1-570 e6
    
    1何金兰,杨克让,李小戈.仪器分析原理.第二版.北京:科学出版社,2004:258-259
    2 J.I.戈尔茨坦著,张大同译.扫描电子显微技术与X射线显微分析.第二版.北京:科学出版社,1988
    3 Ngo H , Ruben J, Arends J, et al. Electron probe microanalysis and transverse microradiography study of artificial lesions in enamel and dentin:a comparative study [J].Adv Dent Res,1997,11(4):426-432
    4 Frazier PD. Electron probe analysis of human teeth: Ca/P ratios in incipient carious lesions[J].Archives of Oral Biology,1967, 12(1) :25-34
    5 Sasaki T, Debari K, Higashi S. Energy-dispersive X-ray microanalysis and scanning electron microscopy of developing and mature cat enamel[J]. Archives of Oral Biology, 1984,29(6): 431-436
    6朱宜,汪裕萍,陈文雄.扫描电镜图像的形成处理和显微分析.第一版,北京:北京大学出版社,1991
    7出中敬一,永谷隆著,李文镇,等译.图解电子扫描显微镜-生物样品制备.第一版.北京:科学出版社,1985:180-194
    8 Anderson HC. Calcification processes. Pathol Annu,1980,15(2):45-75
    9 Eisenmann DR. Enamel structure. Oral Histology (4th edition ed.).Missouri, St. Louis. In: ten Cate, A.R., Editor,1994:239–256
    10 J?levik B, Odelius H, Dietz W,et al. Secondary ion mass spectrometry and X-ray microanalysis of hypomineralized enamel in human permanent first molars . Archieves of Oral Biology,2001,46(3):239-247
    11于世凤.现代康复.2001,5(2):10-13
    12 Boskey AL, Posner AS. Bone structure composition and mineralization. Orthop Cline North Am,1984,15(4):597-612
    13 Terry LA, Velayudhan N, James FM. Electron-probe microanalysis aid in the study of skin granulomas. Arch Dermatol,1980,116(11): 1272-127
    14高顺生,章晓霜,屈菊兰,等.不同强度训练对去卵巢大鼠股骨微区骨矿成分的影响分析.中国运动医学杂志,2003,22(5):518-519
    15 Lee IS, Whang CN, Lee GH, et al. Effect of ion beam assist on the information of calcium phosphate film [J]. Nuclear Instruments and Methods in Physics Research,2003,206: 522-526
    16 Anderson HC. Calcification processes. Pathol Annu,1980,15(2):45-75
    17崔丽,潘力,栗振宝,等.衰老大鼠心肌细胞器形态的定性定量改变及其调控钙离子能力分析.解剖学报,2001,32(1):72-75
    18 Siesjo BK, Zhao Q, Pahlmark K, et al. Glutamate, calcium and free radicals as mediators of ischemic brain damage. Ann Thorac Surg,1995, 59:1316-1320.
    19孙明林,胡蕴玉.磷酸钙骨水泥作为骨形成蛋白载体修复节段性骨缺损及相关研究.中国骨科杂志,2003,23(2):114-120
    20毕龙,李丹,刘民,等.脱蛋白液对异种骨移植替代物生物学特性影响.中国骨肿瘤骨病,2008,7(6):357-360
    21耿华欧,周磊,蔡俊才,等.去卵巢大鼠骨基质明胶修复骨缺损骨痂的X射线显微分析.广东牙病防治,2002,10(3):163-164
    22潘力,崔丽,崔新明,等.红景天素抗心肌老化的电镜观察和能谱分析.电子显微学报,2000,19(3):307-308
    23 Burkhart CG, Burnham JC. Elevated phosphorus in psoriatic skin determined by energy dispersive x-ray micro-analysis.[J] Cutan pathol, 1983,10(3):171-177
    24 Thomas GG, Godfried MR, Forslind Bo, et al. X-ray microanalysis of psoriatic skin. [J] Invest Dermatol,1985,85:378-380
    25张忠提,闫露,钟鸣,等.金属烤瓷修复后变色牙龈的结构与自由基清除剂活性变化.上海口腔医学,2007,16(2):176-179
    26吕卉,杨晓东,陈明.镍铬合金烤瓷修复体局部牙龈组织的电镜和X线能谱分析.中国医科大学学报,2001,30(5):385-387
    27 Jaffin RA, Berman CL. The excessive loss of branemark fixtures in type IV bone: a 5-year analysis. J Periodontol,1991,62(1):2-4
    28 Bathomarco RV, Solorzano G, Elias CN, et al. Atomic force microscopy analysis of different surface treatments of Ti dental implant surfaces. Applied Surface Science,2004,233(1-4):29-34
    29白薇,陈治清,张敏,等.氨基注入钛表面及其微观分析.华西口腔医学杂志,2003,21(1):22-24
    30刘慧颖,王学金,伊哲,等.氟离子注入钛表面改性对成骨细胞黏着斑形成的影响.华西口腔医学杂志,2008,26(2):137-140
    31赵宝红,白薇,崔福斋,等.应用IBAD方法制备纯钛表面多孔TCP/HA涂层材料得微观分析.上海口腔医学,2004,13(5):385-388
    32 Ducheyne P, Qiu Q. Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function. Biomaterials, 1999,20(23-24):2287-2303
    33陈建治,张富强,石玉龙,等.电解液钙磷比对微弧氧化法制备含钙磷氧化物膜结构的影响.实用口腔医学杂志,2007,23(2):249-251
    34王家伟,程祥荣,王革,等.纯钛阳极氧化伴水热处理后羟基磷灰石薄涂层种植体的实验研究.中华口腔医学杂志,2001,36(5):351-353
    35 Han Y, Hong SH, Xu KW. Structure and in vitro bioactivity of titanium-based films by micro-arc oxidation. Surface and Coatings Technology, 2003,168(2-3):249-258
    36何帅,陈吉华,王光耀,等.不同表面处理方法对氧化锆支架材料与Vitadur alpha瓷结合性能的影响.上海口腔医学,2005,14(4):397-401
    37 Burchardt H. The biology of bone graft repair.Clin Orthop,1983,174:28-42
    38李明,杨湛,温玉明,等.新鲜自体骨移植界面愈合过程中钙磷硫元素含量的动态分析研究.现代口腔医学杂志,2001,15(1):8-10
    39 Barber TA, Golledge SL, Castner DG, et al. Peptide-modified p(AAm-co-EG/AAc)IPNs grafted to bulk titanium modulate osteoblast behavior in vitro [J].J Biomed Master Res A,2003,64(1):38-47
    40张建设,雷士泽,李晨军,等.掺铝β-磷酸三钙及掺锶β-磷酸三钙植入兔骨缺损区形态及组织学观察.实用口腔医学杂志,2002,18(1):65-67
    41 Ilizarov GA. The tension-stress effect on the genesis and growth of tissues.PartI:the influence of stability of fixation and soft tissue preparation. Clin Orthop,1989,238:249-81
    42 Ilizarov GA. The tension-stress effect on the genesis and growth of tissues.PartII: the influence of the rate and frequency of distraction. ClinOrthop,1989,239:263-85
    43 Califano L, Cortese A, Aupi A, et al. Mandibular lengthening by external distraction:An experimental study in the rabbit. Journal of Oral and Maxillofacial Surgery,1994,52(11):1179-1183
    44李文,岑远坤,廖运茂,等.脱钙牙本质基质及其复合物整复节段性骨缺损的X线及新骨钙磷动态变化研究.华西口腔医学杂志,1998,16(3):267-269
    45胡静,李继华,王大章,等.山羊下颌牵张成骨的超微结构观察及新骨钙磷元素测定.华西口腔医学杂志,2001,19(1):9-11
    46王小娟,轩东英,董绍忠,等.颅骨锁骨发育不良患者牙齿矿化不全超微结构的研究.实用口腔医学杂志,2009,25(3):356-360
    47 Qin L, Raggatt LJ, Partridge NC. Parathyroid hormone:a double edged sword for bone metaboliam[J]. Trends in Endocrinology and Metabolism, 2004,15(2):60-65
    48谢毓秀,吴奇光.牙本质透明层的X射线能谱分析.现代口腔医学杂志,2001,15(1):16-17
    49郭淑娟,张蕴惠,萧卓然.胶原膜引导牙周组织再生的研究II.牙周新附着超微结构观察及能谱分析.华西口腔医学杂志,1993,11(4):277-279
    50付建宏,段银钟,李烈凤.正畸牙移动过程中牙槽骨局部Ca/P比值的动态分析.第四军医大学学报,2003,24(9):782-784
    51左艳萍.功能矫治引导下颌前伸对下颌骨的影响.河北医科大学博士毕业生研究论文, 2003
    52 Ghafari J, Degroote C. Condylar cartilage response to continuous mandibular displacement in the rat. Angle Orthod 1986,56(1):49-57
    53 Maria AF, Lynne A, Peter B, et al. Lateral functional shift of the mandible: Part I. Effects on condylar cartilage thickness and proliferation. AM J Orthod Dentofacial Orthop, 2003,123(2):153-159
    54 Rabie AB, Wong L, Tsai M. Replicating mesenchymal cells in the condyle and the glenoid fossa during mandibular forward positioning. AM J Orthod Dentofacial Orthop, 2003, 123, ( 1): 49-57
    55 Shen G, Rabie AB, Zhao ZH, et al. Forward deviation of the mandibularcondyle enhances endochondral ossification of condylar cartilage indicated by increased expression of type X collagen.Archives of Oral Biology, 2006,51(4) : 315-324
    56 Pancherz H, Fischer S. Amount and Direction of Temporomandibular Joint Growth Changes in Herbst Treatment: A Cephalometric Long-Term Investigation. Angle Orthod,2003,73(5):493-501
    57梁文勇,罗颂椒,饶跃.功能矫治前伸大鼠下颌后的髁突组织学和组织化学观察.华西口腔医学杂志,1994,12(4):246-249

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700