能谱CT对泌尿系结石化学成分分析的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:泌尿系统结石作为一种全球性的疾病,其人群患病率为1 %~5 % ,治疗后易复发,10年复发率高达50 %,结石有大有小,可单发或多发,典型症状有肾绞痛、血尿,常易造成尿路梗阻或尿路感染,后期导致肾功能破坏,引起尿毒症而危及生命。结石成分的判定可以指导临床选择合适的治疗方法,为病因分析及制定合理的治疗方案提供依据,例如尿酸结石和胱氨酸结石可以口服药物保守治疗,鸟粪石适合体外冲击碎石,磷酸钙结石和草酸钙结石由于硬度较大,适合腹腔镜下气压弹道碎石。目前结石成分分析的可靠方法为红外光谱分析方法、化学分析方法及X射线衍射等,但均为体外分析方法,需要结石排出或取出后方可进行,而治疗前体内分析结石成分更加符合临床治疗的需求。根据临床病史的询问、尿结晶、尿PH值及腹部立位平片等对结石成分预测有一定价值,但仍无法准确分析。多层螺旋CT对泌尿系结石位置、大小的判断有较高的敏感性和特异性,尤其是近年来双能量成像作为一种鉴别组织成分的新技术进入临床应用。能谱CT的出现为泌尿系统结石成分的进一步区分提供了新的平台。本实验研究初步探讨能谱CT区分泌尿系统结石成分的价值。
     材料和方法:264枚经外科手术取出的泌尿系结石(肾结石218枚,输尿管结石34枚,膀胱结石12),分别置于猪肾中,并将其浸入水箱中,采用GE能谱CT行GSI(Gemstone Spectral Imaging)扫描及及常规(conventional polychromatic imaging)120kVp扫描。测量计算GSI图像上结石的有效原子序数(Effective atomic number)、物质分离(Materia Density)的钙水比值(CWR)、能谱衰减曲线斜率、50keV单能量CT值及120kVp混合能量CT值,并采用方差分析比较各组结石上述5个指标的差异,其中钙水比值(CWR)=钙基图(CD)/水基图(WD),能谱曲线斜率== (HU40keV-HU100keV) / 60。
     结果:上述结石分别采用红外光谱分析仪测定其成分,其中成分单一的结石174枚。将174枚结石分为5组(尿酸类结石组26枚,鸟粪石结石组31枚,胱氨酸结石组14枚,磷酸钙结石组36枚,草酸钙结石组67枚)。五组结石的有效原子序数、钙水比值、能谱衰减曲线斜率、50keV单能量CT值及120kVp混合能量CT值分别为:尿酸类结石组为7.39±0.45、0.0327±0.0509、-0.74(-1.62-12.03)、503.08±167.59HU、461.85±103.73HU;鸟粪石结石组12.05±1.01、0.1859±0.0718、18.45(12.24-22.79)、1055.98±290.09HU、764.96±221.72HU;胱氨酸结石组11.16±0.59、0.1253±0.0297、12.79(9.3-14.42)、739.75±172.22HU、564.89±129.09HU;磷酸钙结石组15.98±0.45、0.6921±0.1085、37.36(35.77-38.79)、2567.44±177.62 HU、1601.89±200.14HU;草酸钙结石组15.43±0.52、0.5798±0.0984、36.23(34.53-37.87)、2267.47±384.92 HU、1483.19±286.24HU。经统计学处理,有效原子序数、钙水比值、50keV单能量CT值、120kVp混合能量CT值及能谱衰减曲线斜率、差异均有统计学意义(F值分别为440.615、352.195、196.006、108.734,Z值=82.64、P值均=0.000)。组间两两比较,有效原子序数、钙水比值及50keV单能量CT值均有统计学意义(P<0.05);磷酸钙类与草酸钙类结石(P=0.276)能谱衰减曲线斜率无统计学差异,其余各组结石间斜率均有统计学意义(P<0.05)。磷酸钙类与草酸钙类结石(P=0.068)及尿酸类结石与胱氨酸类结石120kVp混合能量CT值(P=0.240)无统计学差异,其余各组结石间120kVp混合能量CT值均有统计学意义(P<0.05)。
     结论:能谱CT成像为区分泌尿系结石成分提供了新的方法,有效原子序数、钙水比值及50keV单能量CT值,三个指标均可以明显区分尿酸类结石、鸟粪石类结石、胱氨酸结石、磷酸钙类结石及草酸钙类结石。
BACKGROUNDS AND OBJRCTIVES
     Urinary stone disease is a world-wide problem that has become increasingly prevalent and has a high rate of recurrence.Determination of stone composition not only dictates treatment options by the urologists’decision between conservative and surgical intervention, but also provides the basis for prevention of recurrence and cause analysis. For example, uric acid calculi may be treated with urinary alkalinization as a first-line treatment, and struvite calculi are known to be removed with external shockwave lithotripsy (ESWL).X-ray diffraction, polarization microscopy and infrared spectroscopy are common techniques for in vitro stone analysis, but they are costly and time consuming, especially when chemical analysis of the stones is performed after extraction. The analysis of stone composition before treatment is more in-line with clinical needs. Inquiries based on clinical history, urine crystals, pH values of urine and kidney, ureter, and bladder (KUB) have a certain value forecast, but components of the stones still cannot be accurately analyzed.Since its introduction in the early 1990s, unenhanced computed tomography (CT) has become the gold standard for the evaluation of urinary stone diseases at many centers. The speed, safety, high sensitivity and accuracy of unenhanced helical CT make it the method of choice for the assessment of patients with suspected urinary tract calculi . Helical CT can also provide helpful information on the exact localizations of calculi, as well as size and stone composition. Dual-energy CT, by facilitating low and high-energy scanning during a single acquisition, has inherent capabilities to help differentiate between materials that have similar electron densities, but varying photon absorption.The purpose of this study was to assess the capability of determining the chemical composition of urinary stones using spectral imaging (SI) mode on spectral CT in vitro.
     METHODS
     Forty four freshly excised pig kidneys with 264 extracted human Urinary Calculi in them which were immersed in a 10cm-deep water tank underwent CT(Discovery CT750 HD)scans with GSI mode and conventional polychromatic imaging (CPI,120kVp) mode, respectively. All GSI data were transferred to Workstation (AW4.4, GE Healthcare) to acquire monochromatic images of 50keV,Effective Atomic Number(Eff-Z) mapping images, Water (Calcium)-based images and Calcium(Water)-based images with GSI Viewer. CT numbers of stones were measured and compared at 50keV monochromatic images and 120kVp polychromatic images, the mean Eff-Z, Calcium density and Water density were measured at Effective Atomic Number(Eff-Z) mapping images, Calcium(Water)-based images and Water (Calcium)-based images, respectively. The mean Eff-Z , Spectral Hu Curve Slope and Calcium Water Ratio(CWR) were compared. (CWR was defined as the ratio of calcium density to water density and Spectral Hu Curve Slope was defined as: Slope = (HU40keV-HU100keV) / 60, where HU40keV was the CT value of calcium at 40keV image and HU100keV was the CT value of calcium at 100keV image)
     RESULTS
     The composition of Urinary Calculi was determined by infrared spectrometer after CT examination,according to the result of stone composition determined by infrared spectroscopy, 174 pure kidney stones were divided into five groups: Uric Acid stones(UA,n=26), Struvite stones(STR,n=31),Cystine stones(CYS,n=14), Calcium phosphate(CaP,n=36),Calcium oxalate (COX, n=67). The mean Eff-Z , CWR, Spectral Hu Curve Slope and the mean CT numbers at 50keV images and 120kVp images of each group were as below:UA7.39±0.45、0.0327±0.0509、-0.74(-1.62-12.03)、503.08±167.59HU、461.85±103.73HU);STR(12.05±1.01、0.1859±0.0718、18.45(12.24-22.79)、1055.98±290.09HU、764.96±221.72HU);CYS(11.16±0.59、0.1253±0.0297、12.79(9.3-14.42)、739.75±172.22HU、564.89±129.09HU);CaP(15.98±0.45、0.6921±0.1085、37.36(35.77-38.79)、2567.44±177.62 HU、1601.89±200.14HU);COX(15.43±0.52、0.5798±0.0984、36.23(34.53-37.87)、2267.47±384.92 HU、1483.19±286.24HU). There were significant differences the mean Eff-Z, CRW, Spectral Hu Curve Slope ,the mean CT numbers at both 50keV and 120kVp among groups(F=633.860、352.195、242.931、196.006、116.372,P=0.000). the differences in the mean Eff-Z ,CRW, Spectral Hu Curve Slope, the mean CT numbers at both 50keV and 120kVp among groups were statistically significant by Binary comparison (P<0.05),While there were no significant differences in CT numbers at 120kVp images between UA and CYS(P=0.240),CaP and COX(P=0.068)..there were also no significant differences in Spectral Hu Curve Slope between CaP and COX(P=0.276).
     CONCLUSIONS
     Spectral imaging provides a novel method to better characterize pure urinary stones using the mean Eff-Z, CD, CWR and the CT numbers at 50keV. .
引文
1 Deveci S, Coskun M, Tekin MI, et al. Spiral computed tomography: role in determination of chemical compositions of pure and mixed urinary stones--an in vitro study. Urology. 2004. 64(2): 237-40.
    2 Bellin MF, Renard-Penna R, Conort P, et al. Helical CT evaluation of the chemical composition of urinary tract calculi with a discriminant analysis of CT-attenuation values and density. Eur Radiol. 2004. 14(11): 2134-40.
    3邓穗平,陈德志,欧阳健明.泌尿系结石组分分析方法及其研究进展.光谱学与光谱分析. 2006. 26(4): 761-767.
    4 Sheir KZ, Mansour O, Madbouly K, et al. Determination of the chemical composition of urinary calculi by noncontrast spiral computerized tomography. Urol Res. 2005. 33(2): 99-104.
    5 Springhart WP, Preminger GM. Advanced imaging in stone management. Curr Opin Urol. 2004. 14(2): 95-8.
    6张龙江,卢光明.双源CT及其临床应用.中华放射学杂志. 2008. 42(2): 206-208.
    7冯强,马智军.泌尿系结石成分分析的CT研究进展.国际放射医学核医学杂志. 2009. 33(2): 123-125.
    8 Heidenreich A, Desgrandschamps F, Terrier F. Modern approach of diagnosis and management of acute flank pain: review of all imaging modalities. Eur Urol. 2002. 41(4): 351-62.
    9 Saw KC, McAteer JA, Monga AG, et al. Helical CT of urinary calculi: effect of stone composition, stone size, and scan collimation. AJR Am J Roentgenol. 2000. 175(2): 329-32.
    10 Motley G, Dalrymple N, Keesling C, et al. Hounsfield unit density in the determination of urinary stone composition. Urology. 2001. 58(2): 170-3.
    11 Pressler BM, Mohammadian LA, Li E, et al. In vitro prediction of canine urolith mineral composition using computed tomographic mean beam attenuation measurements. Vet Radiol Ultrasound. 2004. 45(3): 189-97.
    12 Zarse CA, McAteer JA, Sommer AJ, et al. Nondestructive analysis of urinary calculi using micro computed tomography. BMC Urol. 2004. 4(1): 15.
    13 Chiro GD, Brooks RA, Kessler RM, et al. Tissue signatures with dual-energy computed tomography. Radiology. 1979. 131(2): 521-3.
    14 Kalender WA, Klotz E, Suess C. Vertebral bone mineral analysis: an integrated approach with CT. Radiology. 1987. 164(2): 419-23.
    15 Johnson TR, Krauss B, Sedlmair M, et al. Material differentiation by dual energy CT: initial experience. Eur Radiol. 2007. 17(6): 1510-7.
    16 Hidas G, Eliahou R, Duvdevani M, et al. Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with x-ray diffraction. Radiology. 2010. 257(2): 394-401.
    17 Matlaga BR, Kawamoto S, Fishman E. Dual source computed tomography: a novel technique to determine stone composition. Urology. 2008. 72(5): 1164-8.
    18杨琪放;张挽时;孟利民等.双源CT双能量成像对泌尿系统结石成分分析的初步研究.中华放射学杂志. 2011. 45(2): 133-137.
    19 Thomas C, Patschan O, Ketelsen D, et al. Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol. 2009. 19(6): 1553-9.
    20 Langan DA. Gemstone spectral imaging :GE white paper. 2008 .
    21林晓珠,陈克敏. CT能谱成像的基本原理与临床应研究进展.中华放射学杂志. 2011. 45(8): 798-800.
    22顾海峰,郑玲,李林.双源CT双能量成像及其初步应用初探.医疗卫生装备. 2009. (06): 63-65.
    23 Remy-Jardin M, Faivre JB, Pontana F, et al. Thoracic applications of dual energy.Radiol Clin North Am. 2010. 48(1): 193-205.
    24 Kang MJ, Park CM, Lee CH, et al. Dual-energy CT: clinical applications in various pulmonary diseases. Radiographics. 2010. 30(3): 685-98.
    25陈孝平.外科学. 2005.人民卫生出版社.
    26叶章群,邓耀良,董诚.泌尿结石. 2003.人民卫生出版社.
    27叶章群.泌尿系结石研究现况与展望.中华实验外科杂志. 2005. 22(3): 261-262.
    28孙西钊,叶章群.结石理化因素对冲击波碎石的影响及对策.临床泌尿外科杂志. 2000. (11): 485-487.
    29孙西钊.枸橼酸氢钾钠防治尿石症研究进展.中华实验外科杂志. 2005. 22(9): 1148-1149.
    30 Ng CS, Streem SB. Contemporary management of cystinuria. J Endourol. 1999. 13(9): 647-51.
    31 Gonzalez EC, Rodriguez MJL, Cabrera PJ, et al. [ESWL-resistant lithiasis]. Actas Urol Esp. 1999. 23(3): 247-55.
    32 Dretler SP. Stone fragility--a new therapeutic distinction. J Urol. 1988. 139(5): 1124-7.
    33詹皇南,陈炜.尿路结石化学成份定性分析(英文).中国现代医学杂志. 2003. (19): 44-46.
    34 Hodgkinson A. A combined qualitative and quantitative procedure for the chemical analysis of urinary calculi. J Clin Pathol. 1971. 24(2): 147-51.
    35 Sharma RN, Shah I, Gupta S, et al. Thermogravimetric analysis of urinary stones. Br J Urol. 1989. 64(6): 564-6.
    36 Kaloustian J, El-Moselhy TF, Portugal H. Determination of calcium oxalate (mono- and dihydrate) in mixtures with magnesium ammonium phosphate or uric acid: the use of simultaneous thermal analysis in urinary calculi. Clin Chim Acta. 2003. 334(1-2): 117-29.
    37 Batchelar DL, Chun SS, Wollin TA, et al. Predicting urinary stone composition using X-ray coherent scatter: a novel technique with potential clinical applications. J Urol. 2002. 168(1): 260-5.
    38张保,王志平,周四维等.维生素C对大鼠肾结石模型体内活性氧及成石的影响.中华泌尿外科杂志. 2002. (11): 42-44.
    39 Beischer DE. Analysis of renal calculi by infrared spectroscopy. J Urol. 1955. 73(4): 653-9.
    40 Pickens CL, Milliron AR, Fussner AL, et al. Abuse of guaifenesin-containing medications generates an excess of a carboxylate salt of beta-(2-methoxyphenoxy)-lactic acid, a guaifenesin metabolite, and results in urolithiasis. Urology. 1999. 54(1): 23-7.
    41 Daudon M. [Component analysis of urinary calculi in the etiologic diagnosis of urolithiasis in the child]. Arch Pediatr. 2000. 7(8): 855-65.
    42谭燕华,马洁,黄峰.红外光谱法在草酸钙结石研究中的应用.光谱学与光谱分析. 2003. (04): 700-704.
    43 Maurice-Estepa L, Levillain P, Lacour B, et al. Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry. Clin Chim Acta. 2000. 298(1-2): 1-11.
    44沈绍基,宋天锐,殷延林.阴极发光技术在尿石分析上的应用.中华泌尿外科杂志. 1995. (05): 265-267+316.
    45 Safranow K, Machoy Z, Ciechanowski K. Analysis of purines in urinary calculi by high-performance liquid chromatography. Anal Biochem. 2000. 286(2): 224-30.
    46朱绍兴.生物化学和分子生物学技术在尿石症研究中的应用.国外医学.泌尿系统分册. 1998. (01): 39-41.
    47程广,谢立平.泌尿系结石ESWL后结石排空率的预测.国外医学:泌尿系统分册. 2005. 25(2): 207-209.
    48 Ramakumar S, Patterson DE, LeRoy AJ, et al. Prediction of stone composition from plain radiographs: a prospective study. J Endourol. 1999. 13(6): 397-401.
    49 Williams JC Jr, Paterson RF, Kopecky KK, et al. High resolution detection of internal structure of renal calculi by helical computerized tomography. J Urol. 2002. 167(1): 322-6.
    50 Newhouse JH, Prien EL, Amis ES Jr, et al. Computed tomographic analysis of urinary calculi. AJR Am J Roentgenol. 1984. 142(3): 545-8.
    51 Hillman BJ, Drach GW, Tracey P, et al. Computed tomographic analysis of renal calculi. AJR Am J Roentgenol. 1984. 142(3): 549-52.
    52陈志强,叶章群.螺旋CT判定尿结石成分的体外研究.临床泌尿外科杂志. 2005. (10): 35-37.
    53 Demirel A, Suma S. The efficacy of non-contrast helical computed tomography in the prediction of urinary stone composition in vivo. J Int Med Res. 2003. 31(1): 1-5.
    54 Nakada SY, Hoff DG, Attai S, et al. Determination of stone composition by noncontrast spiral computed tomography in the clinical setting. Urology. 2000. 55(6): 816-9.
    55沈肖曹,陈继民,史时芳.螺旋CT诊断泌尿系结石的临床研究.中华外科杂志. 2004. 42(8): 499-500.
    56 Levi C, Gray JE, McCullough EC, et al. The unreliability of CT numbers as absolute values. AJR Am J Roentgenol. 1982. 139(3): 443-7.
    57 Mostafavi MR, Ernst RD, Saltzman B. Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol. 1998. 159(3): 673-5.
    58 Zarse CA, McAteer JA, Tann M, et al. Helical computed tomography accurately reports urinary stone composition using attenuation values: in vitro verificationusing high-resolution micro-computed tomography calibrated to fourier transform infrared microspectroscopy. Urology. 2004. 63(5): 828-33.
    59 Stolzmann P, Scheffel H, Rentsch K, et al. Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urol Res. 2008. 36(3-4): 133-8.
    1 Chiro GD, Brooks RA, Kessler RM, et al. Tissue signatures with dual-energy computed tomography. Radiology. 1979. 131(2): 521-3.
    2 Kalender WA, Klotz E, Suess C. Vertebral bone mineral analysis: an integrated approach with CT. Radiology. 1987. 164(2): 419-23.
    3林晓珠,沈云,陈克敏.CT能谱成像的基本原理与临床应研究进展.中华放射学杂志,2011,45:798-800
    4 Lee MJ, Kim S, Lee SA,et al . Overcoming artifacts from metallicorthopedic implants arthopedic implants at high field-strength MR imaging and multidetector CT . RadioGraphics, 2007,12: 236-241.
    5李晓莉,冯卫华,董诚,等.CT能谱成像技术减除金属植入物伪影的定量实验研究.中华放射学杂志,2011,45:736-739
    6 Lin XZ, Miao F ,Li JY, et al . High-definition CT gemstone spectral imaging of the brain: initial results of selecting optimal monochromatic image for beam-harding artifacts and image noise reduction .J Comput Assist Tomogr,2011,35:294-297
    7惠萍,王新江,崔志鹏,等.CT能谱成像在消除金属移植物伪影中的应用价值.中华放射学杂志,2011,45:740-742
    8吴华伟,程杰军,李剑颖,等.CT能谱成像定量碘基物质图对肺栓塞的诊断价值.中华放射学杂志,2011,45:727-730
    9 Marin D,Nelson RC,Samei E,et al.Hypervascular liver tumors:low tube voltage,high tube current multi-detector CT during late hepatic arterial phase for detection--initial clinical experience.Radiology,2009,251:771-779.
    10李铭,郑向鹏,李剑颖,等.甲状腺结节的能谱CT研究.中华放射学杂志,2011,45: 780-781
    11叶晓华,周诚,吴国庚,等.CT能谱单能量成像对不同肝脏肿瘤检出影响的初步探讨.中华放射学杂志,2011,45:718-722
    12吕培杰.CT能谱成像在小肝癌中的应用价值.放射学实践,2011,26:321-324
    13张晓鹏.探索的精神与乐趣—CT能谱成像临床应用研究中的思考.中华放射学杂志,2011,45:709-712
    14林晓珠,陈克敏,吴志远,等.CT能谱成像在鉴别胰腺寡囊型浆液性囊腺瘤与粘液性囊性肿瘤中的价值.中华放射学杂志,2011,45:713-717
    15刘金刚,刘亚,李丽新,等.CT能谱成像在诊断肿瘤淋巴结转移和肿瘤性质中的作用.中华放射学杂志,2011,45:731-735
    16 Lv P, Lin XZ, Li J, Li W, Chen K. Differentiation of Small Hepatic Hemangioma from Small Hepatocellular Carcinoma: Recently Introduced Spectral CT Method. Radiology. 2011. 259(3): 720-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700