生物矿化法制备Fe_3O_4@CaP复合磁性纳米粒子及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四氧化三铁是一种非常重要的磁性材料,尤其是纳米尺度的四氧化三铁因具有生物组织的相容性和与形貌尺寸相关的电磁性能,在生物及其医药领域得到了广泛应用。磷酸钙类生物陶瓷(CaP)具有与骨矿物质相近的组成和良好的生物相容性,主要包括羟基磷灰石(HA)、二水合磷酸氢钙(DCPD)、磷酸三钙(α-TCP,β-TCP)等。采用磷酸钙包覆的四氧化三铁纳米材料兼具了核层和壳层的性能,对于骨组织再生修复有重要意义。
     本论文利用水热法制备Fe_3O_4纳米磁性粒子,采用生物矿化法在Fe_3O_4表面包覆一层CaP生物陶瓷形成核壳纳米复合粒子。产物的结晶性能和组成成分、饱和磁化强度和磁性能、形貌和尺寸以及在水溶液中的分散性等性能分别通过XRD、VSM、SEM、TEM等表征分析。结果显示,水热法制备Fe_3O_4纳米磁性粒子时,提高反应温度、反应时间或分散剂PEG浓度可以提高产物的结晶性、磁性以及粒子尺寸。生物矿化法制备复合粒子时,采用两种不同矿化机理的5倍模拟人体体液(5SBF)分别制备了具有不同结晶形态和钙磷比的包覆层的Fe_3O_4@CaP复合磁性纳米粒子。
     将Fe_3O_4@CaP复合磁性纳米粒子与SD大鼠骨髓间质干细胞(BMSCs)共培养,采用CCK-8法和细胞摄入实验研究复合粒子对细胞的生物相容性。然后通过成骨诱导分化实验对与复合粒子共培养的细胞在3、7、14、21天下的ALP活性和钙离子含量进行测定。结果得出Fe_3O_4@CaP复合磁性纳米粒子有助于细胞的生长、增殖和分化。最后利用外加磁场作用将摄入Fe_3O_4@CaP复合磁性粒子的细胞制备成致密的细胞片(cell-sheet),有望作为骨组织工程无支架再生修复材料。
Iron oxide, especially iron oxide nanoparticle, is a very importantmagnetic material. It has been widely used in biomedical field for itsbiocompatibility, electrology and magnetism properties, which relates toparticle dimension and morphology. Calcium phosphates compounds (CaPs),such as hydroxyapatite (HA), dicalcium pyrophosphate dehydrate (DCPD) andtricalcium phosphate (α-TCP,β-TCP) etc., are biological ceramics owing totheir good biocompatibility and similar compositions with natural boneminerals. To develop a kind of Iron oxide nanobbrids with CaP coating, wouldcombine both the features of core and shell materials, and have potentialapplications in bone tissue engineering.
     In this thesis, Fe_3O_4magnetic nanoparticles were obtained byhydrothermal method, and then coated with CaP compounds viabiomineralization to form core-shell nanohybrids. Properties includingcrystallinity, composition, saturation magnetization and magnetism,morphology and dimension, and dispersibility in water were measured and analyzed by techniques as XRD, VSM, SEM and TEM. The results showedthat the crystallinity, magnetism and dimension of products could be improvedby elevating reaction temperature, prolonging reaction time and increasing theconcentration of PEG. When subjected to biomineralization with simulatedbody fluid (SBF), the produced Fe_3O_4@CaP nanohybrids resulted in differentcrystal morphology and calcium-phosphorus ratio, which apparently dependedon the SBF used.
     SD rats bone mesenchymal stem cells (BMSCs) were cultured in thepresence of Fe_3O_4@CaP nanohybrids at different amounts, CCK-8and cellintake experiment were performed to evaluate the biocompatibility ofFe_3O_4@CaP nanohybrids. Then ALP activity and the content of calcium ion ofthe BMSCs with Fe_3O_4@CaP nanohybrids intake, were determined at3,7,14and21day after osteogenetically induced differentiation. The results exhibitedFe_3O_4@CaP nanohybrids had good biocompatibility, and could promote cellproliferation and differentiation. With the aid of external magnetic field, theBMSCs with Fe_3O_4@CaP nanohybrids intake could be made into a sort ofcompact cell-sheet with several layers of cells. The cells in the cell-sheet wereconfirmed viable and the cell sheet was expected to be used as scaffold-freeregeneration material for bone defects.
引文
[1] R.M. Cornell, U. Schwertmann. The Iron Oxides: Structure, Properties, Reactions,Occurrences and Uses [M]. Wiley-VCH, Weinheim,2003
    [2]代晓明.全国科学技术名词审定委员会[DB/OL]. http://www.cnctst.gov.cn/index.jsp,2004
    [3] A.S. Teja, P.-Y. Koh. Synthesis, properties, and applications of magnetic iron oxidenanoparticles[J]. Progress in Crystal Growth and Characterization of Materials.2009,55(1-2):22-45
    [4] M.P. Sharrock, R.E. Bodnar. Magnetic materials for recording: An overview with specialemphasis on particles (invited)[J]. Journal of Applied Physics,1985,57(8):3919-3924.
    [5] Jun Chen, Lina Xu, Weiyang Li, et al. α-Fe2O3Nanotubes in Gas Sensor and Lithium-IonBattery Applications[J]. Adv.Mater,2005,17:582-586
    [6] Yuanhui Zheng, Yao Cheng, Yuansheng Wang et al. Quasicubic α-Fe2O3Nanoparticles withExcellent Catalytic Performance [J]. J. Phys. Chem. B,2006,110(7):3093-3097
    [7] Xiaogang Wen, Suhua Wang, Yong Ding, et al. Controlled Growth of Large-Area, Uniform,Vertically Aligned Arrays of α-Fe2O3Nanobelts and Nanowires [J]. J. Phys. Chem. B,2005,109(1):215-220
    [8] L. Wang, D.M. Xing, H.M. Zhang, et al. MWCNTs reinforced Nafion membrane preparedby a novel solution-cast method for PEMFC [J]. Journal of Power Sources,2008,176(1):270-275
    [9] T. Neuberger, B. Schopf, H. Hofmann, M. et al. Superparamagnetic nanoparticles forbiomedical applications: Possibilities and limitations of a new drug delivery system [J].Journal of Magnetism and Magnetic.Materials,2005,293(1):483-496
    [10]潘文宇.一种新型MRI谱仪的设计及关键技术研究[M].安徽:中国科学技术大学,2011
    [11] Stark D D, Weissleder R, Elizondo G, et al. Magnetite nanoparticle dispersion stabilized withtriblock copolymers[J]. Chem Mater.,2003,15(6):1367-13
    [12] Hamm B, Staks T, Taupitz M, et al. Contrast-enhanced MR imaging on liver and spleen: firstexperience in humans with a new superparamagnetic iron oxide [J]. J Magn Reson Imaging,1994,4(5):659-668
    [13] Leenders W. Ferumoxtran-10Advanced Magnetics [J]. IDrugs,2003,6(10):987-993
    [14] V an Beers B E, Pringot J Gallez B. Iron oxides as contrast agents for MRI of the liver [J]. JRadiol,1995,76(11):991-995
    [15] Van den Bos E J, Wagner A, Mahrholdt H, et al. Imprved efficacy of stem cell labeling formagnetic resonance imaging studies by the use of cationic liposomes[J]. CellTransplant.2003,12(7):743-756
    [16] Nielsen O S, Horsman M, Overgaard J. A future for hyperthermia in cancer treatment [J]. Eur.J aneer,2001,37:1587-1589
    [17]贾秀鹏.磁流体在肿瘤学治疗领域的应用进展[J].国外医学肿瘤学分册,2002,6:187-190
    [18] Nam J M, Thaxton C S, Mirkin C A. NanoPartiele-Based Bio-Bar Codes for theUltrasensitive Detection of Proteins [J]. Science,2003,301:1884-1886
    [19] Jordan A, Maier-Hauff K,Johannsen M, et al. Presentaion of a new magnetic field therapysystem for the treatment of human solid tumors with magnetic fluid hyperthermia[J]. Journalof Magnetism and Magnetic Materials,2001,225:118
    [20]贺枰.高Fe3O4含量单分散的P(StAA)纳米复合微球的制备及生物应用研究[M].上海:上海交通大学,2007
    [21] Friedl. A sewage treatment process using highly condensed activated sludge with an apparatusfor magnetic separation [J]. Journal of Immunology,1995,154:4973-4976
    [22] Briscoe. Local prevention of trombosis in animal arteries by means of magnetic targeting ofaspirin-loaded red cells [J]. Journal of Immunology,1997,159:3247-3251
    [23] Alexiou, C, Schmid, R. J, Jurgons, R.et al. Targeting cancer cells: magnetic nanoparticles asdrug carriers [J].Eur. Biophys. J.,2006,35(5):446
    [24] Gallo, J. M, Varkonyi, P, Hassan, E. E, et al. Targeting anticancer drugs to the brain: II.Physiological pharmacokinetic model of oxantrazole following intraarterial administration torat glioma-2(RG-2) bearing rats [J]. J. Pharmacokinet. Biopharm,1993,21(5):575
    [25] Sophie Laurent, Delphine Forge, Marc Port, et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biologicalapplications [J]. Muller.Chem. Rev.2008,108(6):2064–2110
    [26]汪汉斌.超小型高分散纳米四氧化三铁粒子的制备及表征[D].武汉:华中科技大学,2004
    [27] B. Pal, M. Sharon. Preparation of iron oxide thin film by metal organic deposition fromFe(III)-acetylacetonate: a study of photocatalytic properties[J]. Thin Solid Films,2000,379:83-88
    [28] Jie Chen, FangbinWang, Kelong Huang, et al. Preparation of Fe3O4nanoparticles withadjustable morphology[J]. Journal of Alloys and Compounds,2009,475:898–902
    [29]刘献明,刘晶,吉宝明. Fe3O4纳米棒的水热法制备及其磁性能研究[J].电子元件与材料,2008,27(12):47-50
    [30]于文广,张同来,张建国等.纳米四氧化三铁(Fe3O4)的制备和形貌[J].化学进展,2007,6:884-892
    [31] Liu Z L, Wang X,Yao K L,et al. Synthesis of magnetite nanoparticles in W/O microemulsion[J]. J. Mater. Sci.,2004,39(12):2633-2637
    [32]胡书春,周祚万,楚珑晟.纳米PEG/Fe3O4磁流体的制备[J].西南交通大学学报,2004,39(6):805-808
    [33] Morais P C, Azevedo R B, Rabelo D, et al. Synthesis of Magnetite Nanoparticles inMesoporous Copolymer Template: A Model System for Mass-Loading Control [J]. Chem.Mater.,2003,15(13):2485-2487
    [34] Solinas M, Crisan M, Petrache C, et al. Sol-gel formation of γ-Fe2O3/SiO2nanocomposites[J]. Acta Mater,2001,49(14):2805-2811
    [35] Y.Y. Zheng, X.B. Wang, L. Shang et al. Fabrication of shape controlled Fe3O4nanostructure[J]. MATERIALS HARACTERIZATION,2010,61:489-492
    [36] J. Hu, T.W. Odom, C.M. Lieber. Chemistry and Physics in One Dimension: Synthesis andProperties of Nanowires and Nanotubes[J]. Acc. Chem. Res.1999,32(5):435-445
    [37] Junxi Wan, Xiangying Chen, Zhenghua Wang et al. A soft-template-assisted hydrothermalapproach to single-crystal Fe3O4nanorods [J]. Journal of Crystal Growth,2005,276:571–576
    [38] Jun Wang, Zhenmeng Peng, Yujie Huang et al. Growth of magnetite nanorods along itseasy-magnetization axis of [110][J]. Journal of Crystal Growth,2004,263:616-619
    [39]唐萌.氧化铁纳米材料生物效应和安全应用[M].北京:科学出版社,2010.74
    [40]安德森, M A,鲁宾A J.水溶液吸附化学[M].北京:科学出版社,1989
    [41] Cornell R M, Schertmann U. Iron Oxides in the Laboratory: Preparation andCharacterization[M]. VCH Publishers: Weinheim, Germany,1991
    [42] Sahoo Y, Pizem H, Fried T, et al. Alkyl Phosphonate/Phosphate Coating on MagnetiteNanoparticles: A Comparison with Fatty Acids [J]. Langmuir,2001,17(25):79077911
    [43] R.Y. Hong, S.Z. Zhang, G.Q. Di et al. Preparation, characterization and application ofFe3O4/ZnO core/shell magnetic nanoparticles [J]. Materials Research Bulletin,2008,43:2457–2468
    [44]丁星兆,董远达.溶胶-凝胶薄膜工艺及其应用[J].材料导报,1993(3):32-36
    [45] Im S H, Herricks T, Lee Y T, et al. Synthesis and characterization of monodisperse silicacolloids loaded with superparamagnetic iron oxide nanoparticlesOriginal [J]. Chem. Phys.Lett.,2005,401(1-3):19-23
    [46] Dong Kee Yi, Su Seong Lee, Georgia C et al. Nanoparticle Architectures Templated bySiO2/Fe2O3Nanocomposites [J].Chem. Mater.,2006,18(3),614-619
    [47]陈加娜,叶红齐,谢辉玲.超细粉体表面包覆技术综述[J].安徽化工,2006,104(2):12-15
    [48]邢曦,李疏芬.纳米粒子的表面包覆技术[J].高分子材料科学与工程,2003,19(6):10-13
    [49]裴雪涛.干细胞实验指南[M].北京:科学出版社,2006.267
    [50] Guoping Chen, Takashi Ushida, Tetsuya Tateishi. Scaffold Design for Tissue Engineering [J].Macromol. Biosci.,2002,2:67-77
    [51] Katsuko S. Furukawa, Shunsuke Miyauchi, Daisuke Suzuki,et al. Bone tissue engineeringbased on bead–cell sheets composed of calciumphosphate beads and bone marrow cells[J].Materials Science and Engineering C,2004,24:437–440
    [52] Middleton J C, Tipton A J. Synthetic biodegradable polymers as orthopedic devices [J].Biomaterials,2000,21(23):2335-2346
    [53] Bergsma J E, Rozema F R, Bos R R M,et al. In vivo degradation and biocompatibility studyof in vitro pre-degraded as-polymerized polylactide particles [J]. Biomaterials,1995,16(4):267-274
    [54]徐青青.电纺聚乳酸/明胶复合纤维及性能研究[D].北京:北京化工大学,2010
    [55] Noriaki Matsuda, Tatsuya Shimizu,Masayuki Yamato, et.al. Tissue Engineering Based on CellSheet Technology [J]. Adv. Mater.2007(19):3089–3099
    [56] Marta A. Cooperstein and Heather E. Canavan. Biological Cell Detachment fromPoly(N-isopropyl acrylamide) and Its Applications [J]. Langmuir,2010,26(11):7695–7707
    [57] Rahman, Shafiqur (EDT). Progress in Molecular Biology and Translational Science [M].ACADEMIC PR INC: America,2011.355-395
    [58] Akira Ito, Hideaki Jitsunobu, Yoshinori Kawabe et al. Construction of Heterotypic Cell Sheetsby Magnetic Force-Based3-D Coculture of HepG2and NIH3T3Cells[J]. JOURNAL OFBIOSCIENCE AND BI OENGINEERING,2007,104(5):371–378
    [59] Glauco R. Souzal, JenniferR.Molina, Robert M. Raphael et al. Three-dimensional tissueculture based on magnetic cell levitation [J]. Nature nanotechnology,2010,5:291-296
    [60] Tanahashi M, Yao T, Kokubo T,et al. Apatite coatingon organic polymersby a biomimeticprocess [J]. Am CERAM Soc1994;77(11):2805–2808
    [61]汪汉斌.超小型高分散纳米四氧化三铁粒子的制备及表征[D].武汉:华中科技大学,2004
    [62]邹涛,郭灿雄,段雪等.强磁性Fe3O4纳米粒子的制备及其性能表征[J].精细化工,2002,19:707-710
    [63]王亭杰,王伟林,金涌等.针状经基氧化铁晶体的成核与生长[J].仪器仪表学报,1996,17:399-403
    [64] Akifumi Nakamura, Manabu Akahane, Hideki Shigematsu, et al. Cell sheet transplantation ofcultured mesenchymal stem cells enhances bone formation in a rat nonunion model [J].Bone,2010,46:418–424
    [65] Kazunori Shimizu, Akira Ito,Tatsuro Yoshida, et al. Bone Tissue Engineering With HumanMesenchymal Stem Cell Sheets Constructed Using Magnetite Nanoparticles and MagneticForce [J]. Biomaterials,2007,82B(2):471-480
    [66] Goro Ebihara, Masato Sato, Masayuki Yamato, et al. Cartilage repair in transplantedscaffold-free chondrocyte sheets using a minipig model [J]. Biomaterials,2012,33:38463851
    [67] Yu-Fen Choua, Weibiao Huang, James C.Y. Dunn, et al. The effect of biomimetic apatitestructure on osteoblast viability, proliferation, and gene expression [J]. Biomaterials,2005,26:285–295
    [68] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity [J].Biomaterials,2006,27:2907-2915.
    [69] Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast
    phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast
    proliferation and differentiation during formation of the bone extracellular matrix [J]. J Cell
    Physiol,1990,143:420-430

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700