脱矿牙本质—树脂混合层的引导组织再矿化机制及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究背景与目的
     随着新型牙科材料和粘接技术的广泛应用,传统龋病治疗中“预防性扩展”的观念已逐渐被“微创治疗”这一新概念所替代。当代微创牙科学(minimally invasive dentistry, MID)的特点是对龋齿进行保守治疗,以保存其自身的再矿化潜能。因此,临床上的粘接基底往往是由正常牙本质和龋坏内层的脱矿牙本质混合而成。在龋病的发展过程中,龋坏内层的脱矿牙本质发生结构改变,如牙本质小管堵塞、牙本质硬度下降等,严重影响了临床上的有效粘接。有研究表明,与正常牙本质相比,粘接剂与脱矿牙本质界面间的微拉伸强度更低,混合层更厚且疏松。近年来,有关水吸收导致的混合层内树脂水解和胶原降解现象的报道增加,而混合层的降解将直接影响到牙色复合树脂的使用寿命。然而,到目前为止,有关如何提高树脂-脱矿牙本质界面间粘接强度的研究非常有限。研究这一问题对于进一步探索能有效保持复合树脂-脱矿牙本质粘接体完整性和延长复合树脂-脱矿牙本质粘接体持久性的方法至关重要。
     引导组织再矿化(guided tissue remineralization, GTR)是一种粒子介导的、非经典的新型仿生再矿化模式。与传统矿化方式不同,GTR通过使用牙本质基质蛋白(dentin matrix proteins, DMPs)类似物引导无定形磷酸钙(amorphous calcium phosphate, ACP)纳米前体在胶原纤维内部水间隔进行有序沉积,形成与自然牙本质结构类似的矿物质,且GTR机制并不依赖于胶原纤维内籽晶的外延生长。本实验组前期研究表明,GTR能够成功地再矿化5-8μm深的树脂渗透差的混合层,并恢复了自然矿化牙本质的硬度及蛋白水解酶的排除机制,从而保持了树脂-牙本质粘接界面的稳定性。龋坏内层脱矿牙本质的深度可达几百微米,但其胶原纤维仍然具备分子间的交联和明显的横纹样结构。因此,从生理学上看,脱矿牙本质具备再矿化的潜能。本研究从矿物质含量和超微结构两个方面检测GTR对脱矿牙本质及脱矿牙本质-树脂混合层的影响,拟通过GTR方式增强脱矿牙本质的硬度且延长脱矿牙本质-树脂界面间的粘接强度。研究分为三个部分:多聚磷酸盐在引导组织再矿化中的作用机制;传统再矿化法与引导组织再矿化法的再矿化效果比较;三偏磷酸钠底剂在引导组织再矿化脱矿牙本质-树脂混合层中的应用研究。
     2.研究材料与方法
     (1)重组单层的Ⅰ型胶原,并用1-乙基-3(3-二甲丙氨基)碳化亚胺(1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide, EDC)/N-羟基丁二酰亚胺(N-hydroxysuccinimide, NHS)混合物交联重组的Ⅰ型胶原。将一部分重组的Ⅰ型胶原用不同浓度的三偏磷酸钠(sodium trimetaphosphate, STMP)或三聚磷酸钠(sodium tripolyphosphate, TPP) (0.313~2.5 wt%)分别磷酸化处理5 min,然后浸泡于含聚丙烯酸(polyacrylic acid, PAA)的模拟体液(simulated body fluid, SBF)/硅酸盐水门汀矿化体系(实验组)或SBF/硅酸盐水门汀矿化体系(模板对照组);另一部分重组的胶原直接浸泡于含PAA的SBF/硅酸盐水门汀矿化体系(PAA对照组)或SBF/硅酸盐水门汀矿化体系(空白组)。采用傅立叶变换红外光谱术(fourier transform-infrared spectroscopy, FT-IR)评估磷酸化修饰后重组胶原的构象变化。矿化4-72 h后采用透射电子显微镜(transmission electron microscopy, TEM)观察晶体的大小、形态以及晶体在胶原内沉积的情况;同时采用选区电子衍射法(selected area electron diffraction, SAED)观察晶相和晶体的排列情况。
     (2)收集30颗新鲜拔除无龋坏的第三磨牙,用慢机垂直牙齿长轴于牙冠中部制备1 mm厚的牙本质片。采用pH循环的方法制备60片脱矿深度为250-500μm,宽度为3 mm部分脱矿的牙本质,以模拟临床上龋齿去腐后剩余的脱矿牙本质。选取24片脱矿深度为300±30μm样本并随机分为三组(N=8):①传统再矿化组(top-down),矿化介质为含钙磷离子的矿化液;②引导组织再矿化组(bottom-up)矿化介质为含牙本质基质蛋白类似物的SBF/硅酸盐水门汀;③阴性对照组,矿化介质为SBF/硅酸盐水门汀。矿化4个月后分别采用显微计算机断层扫描仪(micro-computed tomography,μCT)和TEM检测矿化前后矿物质含量变化以及晶体在矿化胶原基质内的排列情况。
     (3)选取32片脱矿深度为300±30μm的人工脱矿牙本质片,一半样本用2.5 wt%STMP处理5 min作为实验组,另一半样本作为对照组(无STMP处理)。然后分别将实验组和对照组中样本随机分为两个亚组:一组样本表面涂布全酸蚀粘接剂One-Step(N=8),另一组样本表面不涂布任何粘接剂(N=8)。实验组的矿化介质为含PAA的SBF/硅酸盐水门汀,对照组为SBF/硅酸盐水门汀。矿化4个月后,分别用μCT和TEM检测矿化前后矿物质含量变化以及晶体在矿化胶原基质内的排列情况。
     3.研究结果
     (1)在无多聚磷酸盐和PAA存在时,胶原本身并不能引导再矿化。矿化24 h后,TEM镍网内可见较大的无定形磷酸钙(amorphous calcium phosphate, ACP)球(ca.1-3μm)形成,72 h后转化成晶体沉积在胶原纤维外,而胶原纤维内无矿化。模板对照组与空白组结果类似,但ACP相的尺寸稍小。
     (2)当仅有PAA稳定ACP而无多聚磷酸盐磷酸化胶原时,矿化4 h后,TEM镍网内可见大小约10-100 nm ACP相形成,24 h后胶原出现膨胀样变,72 h后胶原恢复原有尺寸,胶原纤维内产生非分级化再矿化,即晶体在胶原内呈连续绳索状,而不是离散的相互重叠的板状排列;当多聚磷酸盐与PAA同时存在时,胶原呈分级化的纤维内矿化,纳米板状晶体在纤维内呈迭序排列,形成横纹样特征。
     (3)从矿物质含量上看,top-down的方法仅仅矿化基底部脱矿的牙本质,脱矿牙本质表面的矿物质含量在矿化前后无明显变化,矿化效果依赖于胶原基质中剩余矿物质的含量;而bottom-up的方法可以矿化整个脱矿的牙本质,从表面到基底部,矿化效果不依赖于矿物质的含量。
     (4)从超微结构上看,top-down方法主要是纤维外矿化;而bottom-up方法则同时存在纤维内和纤维外矿化,矿化后胶原组织中晶体的大小、方向及结构层次和天然矿化胶原类似。
     (5) STMP未处理的脱矿牙本质,无论有无粘接剂的渗透,4个月后均无再矿化发生。
     (6)μCT结果显示,在脱矿深度与矿物质含量的改变上,脱矿牙本质的矿化效果明显优于脱矿牙本质-树脂混合层,脱矿牙本质表层的粘接剂抑制了矿化成分向牙本质基底的渗透;TEM结果显示,矿化4个月后,矿物质稀疏的脱矿牙本质表面存在胶原变性。
     4.研究结论
     多聚磷酸盐在引导Ⅰ型胶原分级化纤维内再矿化过程中起着重要的作用,重现了与天然矿化胶原结构类似的横纹特征。top-down矿化机制依赖于胶原基质内剩余籽晶的外延生长,属于经典的离子介导的矿化模式;而bottom-up矿化机制却涉及到无定形磷酸钙纳米颗粒向晶体的转化,属于非经典的粒子介导的矿化模式。从矿物质含量和超微结构上看,STMP作为牙本质基质蛋白类似物能够特异性地与脱矿牙本质胶原结合,并诱导PAA稳定的无定形磷酸钙前体在纤维内的成核,形成与矿化牙本质结构类似的磷灰石纳米微晶有序地沉积在胶原纤维内间隙,促进了脱矿牙本质的再矿化。GTR通过bottbm-up矿化机制恢复了矿化牙本质的硬度及蛋白水解酶的排除机制,从而保持了树脂-脱矿牙本质粘接界面的稳定性,是一种潜在而有效的保持复合树脂-脱矿牙本质粘接体完整性和延长复合树脂-脱矿牙本质粘接体持久性的方法。
Objectives:
     Over the past few decades, scientific developments in dental materials and bond technology have changed dentistry's approach to manage carious teeth. The hallmark of minimally invasive dentistry (MID) is conservative treatment of caries to preserve their potential for remineralization. Therefore, the clinical bonding substrate is likely to be a combination of normal dentin and caries-affected dentin after caries excavation. It has been shown that bond strengths to caries-affected dentin are significantly lower than those to normal dentin and the hybrid layer created in caries-affected dentin is thicker and more porous compared with that in normal dentin. This may be the result of the changed structures of caries-affected dentin, such as occluded dentin tubules and decreased hardness. However, durability studies on bond strengths to caries-affected dentin are still limited. Our previous studies have shown that the poor-infiltrated hybrid layer (5-8μm) has been successfully remineralized via guided tissue remineralization (GTR), which restores the enzyme exclusion and fossilization properties of naturally mineralized dentin. This proof-of-concept strategy is capable of preserving the longevity of resin-dentin bonds. It has been proved that the collagen matrix of caries-affected dentin demonstrates intermolecular crosslinks and normal cross-banding. And therefore, caries-affected dentin is physiologically remineralizable. As caries-affected dentin can extend several hundred microns below the excavated surface, our objectives in this study is to test the effect of GTR on remineralizing caries-affected dentin and the hybrid layer created in caries-affected dentin.
     Materials and Methods:
     (1) A single-layer of typeⅠcollagen fibrils was reconstituted over formvar-andcarbon-coated 400-mesh Ni TEM grids and cross-linked with 0.3 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/0.06M N-hydroxysuccinimide (NHS). Thereafter, half of TEM grids containing cross-linked collagen fibrils were phosphorylated with 0.313-2.5 wt% hydrolyzed sodium trimetaphosphate (STMP) or sodium tripolyphosphate (TPP) for 5 min. Remineralization was performed initially for 4-24 h to identify the optimal STMP/TPP concentration for further remineralization for 48-72 h. They were floated upside-down over 30μL GTR remineralizing medium containing simulated body fluid (SBF)/Portland Cement with polyacrylic acid (PAA) as a sequestration analog. The templating analog control consisted of STMP/TPP-treated collagen and SBF (no sequestration analog). The sequestration analog control consisted of reconstituted collagen and PAA-containing SBF (no templating analog). The collagen negative control (no sequestration and templating analogs) consisted of reconstituted collagen and SBF. Grids were examined unstained using transmission electron microscopy (TEM) and selected area electron diffraction (SAED) at 110 kV.
     (2) Thirty extracted non-carious human third molars were obtained with patient-informed consent under a protocol approved by the Human Assurance Committee of the Medical College of Georgia. A 1 mm thick dentin disk was prepared by making two parallel cuts perpendicular to the longitudinal axis of each tooth using a low-speed Isomet saw under water cooling. A 250-300μm thick layer of partially demineralized dentin was created by pH-cycling procedure to mimic caries- affected dentin below the excavated surface. The samples were then randomly divided into two groups:half of them were remineralized using a classical top-down approach and the rest using non-classical bottom-up approach. Micro-computed tomography (μCT) and TEM were employed to examine mineral uptake and apatite arrangement within the mineralized collagen matrix.
     (3) Artificial carious lesions with lesion depths of 300±30μm were created by pH-cycling.2.5% hydrolyzed STMP was applied to the artificial carious lesions to phosphorylate the partially-demineralized collagen matrix. Half of the STMP-treated specimens were bonded with One-Step. The adhesive and non-adhesive infiltrated specimens were remineralized in a Portland cement-SBF system containing PAA to stabilize amorphous calcium phosphate (ACP) as nanoprecursors.μCT and TEM were used to evaluate the results of remineralization after a 4-month period.
     Results:
     (1) In the collagen negative control, there was no remineralization. And ACP phases were bigger than those in the sequestration analog control. In the sequestration analog control,1000μg/mL PAA was included in the remineralization medium but did not treat the reconstituted collagen with STMP or TPP.
     (2) For the templating analog control, no sequestration analog was included in the remineralization medium and needle-shaped apatite was randomly precipitated over the surface of collagen fibrils after 72 h. Cross-banding patterns produced by discrete apatite crystallites could be identified only from partially-mineralized collagen fibrils in presence of both templating and sequestration analog.
     (3) In the view of mineral uptake, the top-down approach which relied on the mineral density could remineralize only the base of the partially demineralized dentin. Conversely, the entire partially demineralized dentin, including apatite-depleted collagen fibrils, can be completely remineralized by the bottom-up approach.
     (4) In absence of PAA and STMP as biomimetic analogs (control groups), there was no remineralization irrespective of whether the lesions were infiltrated with adhesive. From ultrastructure, extrafibrillar remineralization was predominantly observed in the top-down approach, while the bottom-up approach showed evidence of both intrafibrillar and extrafibrillar remineralization.
     (5) For the STMP-treated experimental groups immersed in PAA-containing SBF, specimens without adhesive infiltration were more heavily remineralized than those infiltrated with adhesive. Statistical analysis of the 4-monthμCT data revealed significant differences in the lesion depth, relative mineral content along the lesion surface and changes in the intergrated mineral loss (AZ) between the non-adhesive and adhesive experimental groups for all the three parameters.
     (6) TEM examination indicated that collagen degradation occurred in both the non-adhesive and adhesive control and experimental groups after 4 months of remineralization. And even the denatured collagen fibrils could be remineralized via GTR.
     Conclusions:
     There is no difference between STMP and TPP in templating hierarchical intrafibrillar apatite assembly in reconstituted collagen via GTR. The ability of using simple non-protein molecules to reproduce different levels of structural hierarchy in mineralized collagen fibrils indicates the ultimate simplicity in Nature's biomineralization design principles. And this challenges the need for using more complex recombinant matrix proteins in bioengineering applications. The mechanisms involved in the classical top-down and non-classical bottom-up remineralization approaches appear to be different. The former probably relies on epitaxial growth of seed crystallites within the collagen fibrils. The latter involves transformation of ACP nanoparticles into apatite crystallites in the presence of biomimetic analogs. GTR using STMP as a biomimetic ananlog is a promising method to remineralize artificial carious lesions particularly in areas devoid of seed crystallites. Future studies should consider remineralizing the real caries-affected and caries-infected dentin via GTR. During remineralization process, MMP-inhibitors should be incorporated within the partially-demineralized collagen matrix to prevent collagen degradation.
引文
[1]Fusayama T. Two layers of carious dentin:diagnosis and treatment. Oper Dent, 1979;4(2):63~70.
    [2]Brostek AM, Bochenek AJ, Walsh LJ. Minimally invasive dentistry:a review and update. Shanghai J Stomatol (Chin),2006; 15(3):225~49.
    [3]Amaral FL, Colucci V, Palma-Dibb RG, et al. Assessment of in vitro methods used to promote adhesive interface degradation:a critical review. J Esthet Restor Dent,2007; 19(6):340~53.
    [4]NIDCR Strategic Plan 2009-2013. URL available at http://www.nidcr.nih.gov/Research/ResearchPriorities/StrategicPlan.
    [5]Jokstad A, Bayne S, Blunck U, et al. Quality of dental restorations. FDI Commission Projects 2-95. Int Dent J,2001; 51 (3):117~58.
    [6]Armstrong SR, Vargas MA, Fang Q, et al. Microtensile bond strength of a total-etch 3-step, total-etch 2-step, self-etch 2-step, and a self-etch 1-step dentin bonding system through 15-month water storage. J Adhes Dent,2003; 5(1):47~56.
    [7]De Munck J, Van Meerbeek B, Inoue S, et al. Micro-tensile bond strength of one- and two-step self-etch adhesives to bur-cut enamel and dentin. Am J Dent, 2003; 16(6):414~20.
    [8]Silverstone LM, Hicks MJ. The structure and ultrastructure of the carious lesion in human dentin. Gerodontics,1985; 1(4):185~95.
    [9]Zavgorodniy AV, Rohanizadeh R, Swain MV. Ultrastructure of dentine carious lesions. Arch Oral Biol,2008;53(2):124~32.
    [10]Erhardt MC, Toledano M, Osorio R, et al. Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces:effects of long-term water exposure. Dent Mater,2008;24(6):786-98.
    [11]Macedo GV, Yamauchi M, Bedran-Russo AK. Effects of chemical cross-linkers on caries-affected dentin bonding. J Dent Res,2009; 88(12):1096~100.
    [12]Erhardt MC, Osorio R, Toledano M. Dentin treatment with MMPs inhibitors does not alter bond strengths to caries-affected dentin. J Dent, 2008;36(12):1068~73.
    [13]Kunawarote S, Nakajima M, Foxton RM, et al. Effect of pretreatment with mildly acidic hypochlorous acid on adhesion to caries-affected dentin using a self-etch adhesive. Eur J Oral Sci,2011;119(1):86~92.
    [14]Soappman MJ, Nazari A, Porter JA, et al. A comparison of fatigue crack growth in resin composite, dentin and the interface. Dent Mater, 2007;23(5):608~14.
    [15]Wang XT, Ker RF. Creep rupture of wallaby tail tendons. J Exp Biol, 1995;198(Pt 3):831~45.
    [16]Pashley DH, Agee KA, Wataha JC, et al. Viscoelastic properties of demineralized dentin matrix. Dent Mater,2003;19(8):700~6.
    [17]Collins MJ, Nielsen-marsh CM, Hiller J, et al. The survival of organic matter in bone:a review. Archaeometry,2002;44(3):383~94.
    [18]Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials,2008; 29(8):1127~37.
    [19]Tay FR, Pashley DH. Biomimetic remineralization of resin-bonded acid-etched dentin. J Dent Res,2009; 88(8):719~24.
    [20]Kim YK, Yiu CK, Kim JR, et al. Failure of a glass ionomer to remineralize apatite-depleted dentin. J Dent Res,2010; 89(3):230~5.
    [21]Mai S, Kim YK, Toledano M, et al. Phosphoric acid esters cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of resin-bonded dentin. Dent Mater,2009; 25(10):1230~9.
    [22]Mai S, Kim YK, Kim J, et al. In vitro remineralization of severely compromised bonded dentin. J Dent Res,2010;89(4):405~10.
    [23]Nakajima M, Sano H, Burrow MF, et al. Tensile bond strength and SEM evaluation of caries-affected dentin using dentin adhesives. J Dent Res, 1995;74(10):1679~88.
    [24]Ogushi K, Fusayama T. Electron microscopic structure of the two layers of carious dentin. J Dent Res,1975;54(5):1019-26.
    [25]Wang Y, Spencer P, Walker MP. Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J Biomed Mater Res A, 2007;81(2):279~86.
    [26]Nakornchai S, Atsawasuwan P, Kitamura E, et al. Partial biochemical characterisation of collagen in carious dentin of human primary teeth. Arch Oral Biol,2004;49(4):267~73.
    [27]Kim YK, Mai S, Mazzoni A, et al. Biomimetic remineralization as a progressive dehydration mechanism of collagen matrices-implications in the aging of resin-dentin bonds. Acta Biomater,2010;6(9):3729~39.
    [1]Wong TS, Brough B, Ho CM. Creation of functional micro/nano systems through top-down and bottom-up approaches. Mol Cell Biomech, 2009;6(1):1-55.
    [2]Traub W, Arad T, Weiner S. Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA, 1989;86(24):9822~6.
    [3]Wang L, Nancollas GH. Pathways to biomineralization and biodemineralization of calcium phosphates:the thermodynamic and kinetic controls. Dalton Trans,2009;15:2665-72.
    [4]Saito T, Arsenault AL, Yamauchi M, et al. Mineral induction by immobilized phosphoproteins. Bone,1997;21 (4):305~11.
    [5]Colfen H. Bio-inspired mineralization using hydrophilic polymers. Springer-Verlag, Berlin:Heidelberg,2007:271:1~77. Top Curr Chem.
    [6]Gajjeraman S. Narayanan K, Hao J. et al. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hvdroxyapatite.J Biol Chem,2007;282(2):1193~204.
    [7]Weiner S. Biomineralization:a structural perspective. J Struct Biol, 2008;163(3):229~34.
    [8]Hao J, Ramachandran A, George A. Temporal and spatial localization of the dentin matrix proteins during dentin biomineralization. J Histochem Cytochem, 2009;57(3):227~37.
    [9]Sfeir C, Cambell P, Jadlowiex JA, et al. Method of inducing biomineralization method of inducing bone regeneration and methods related thereof. US Patent Appl,2007; No.20070087959.
    [10]Kaplan DL, Huang J, Wong, et al. Fibrous protein fusions and use thereof in the formation of advanced organic/inorganic composite materials. US Patent Appl,2008; No.20080293919.
    [11]Goldberg HA, Hunter GK, Tye CE. Bone sialoprotein collagen-binding peptides.US Patent Appl,2009; 20090005298.
    [12]Girija EK, Yokogawa Y, Nagata F. Apatite formation on collagen fibrils in the presence of polyacrylic acid. J Mater Sci Mater Med,2004;15(5):593~9.
    [13]Chesnick IE, Mason JT, Giuseppetti AA, et al. Magnetic resonance microscopy of collagen mineralization. Biophys J,2008;95(4):2017~26.
    [14]Deshpande AS, Beniash E. Bio-inspired synthesis of mineralized collagen fibrils. Cryst Growth Des,2008;8(8):3084~90.
    [15]Jee SS, Thula TT, Gower LB. Development of bone-like composites via the polymer-induced liquid-precursor (PILP) process. Part 1:influence of polymer molecular weight. Acta Biomater,2010;6(9):3676~86.
    [16]Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev,2008; 108(11): 4551~627.
    [17]Omelon SJ, Grynpas MD. Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev, 2008:108(11):4694~715.
    [18]Usui Y, Uematsu T, Uchihashi T, et al. Inorganic polyphosphate induces osteoblastic differentiation. J Dent Res,2010;89(5):504~9.
    [19]Li Y, de Vries R, Slaghek T, et al. Preparation and characterization of oxidized starch polymer microgels for encapsulation and controlled release of functional ingredients. Biomacromolecules,2009; 10(7):1931~8.
    [20]Leone G, Torricelli P, Giardino R, et al. New phosphorylated derivatives of carboxymethylcellulose with osteogenic activity. Polym Adv Technol, 2008; 19:824~30.
    [21]Gunasekaran S. Purifying type I collagen using two papain treatments and reducing and delipidation agents. US Patent Office,2003; No.6548077.
    [22]Li X, Chang J. Preparation of bone-like apatite-collagen nanocomposites by a biomimetic process with phosphorylated collagen. J Biomed Mater Res A, 2008;85(2):293~300.
    [23]Xu Z, Neoh KG, Kishen A. A biomimetic strategy to form calcium phosphate crystals on type I collagen substrate. Mat Sci Eng C,2010;30(6):822-6.
    [24]Gupta HS, Seto J, Wagermaier W, et al. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci USA, 2006;103:17741~6.
    [25]Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials,2008;29(8):1127~37.
    [26]Kim YK, Gu LS, Bryan TE, et al. Mineralization of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials,2010;31(25):6618~27.
    [27]Gu LS, Kim J, Kim YK, et al. A chemical phosphorylation-inspired design for Type I collagen biomimetic remineralization. Dent Mater,2010; 26(11):1077~89.
    [28]Zhang K, Li Y, Ren Y. Research on the phosphorylation of soy protein isolate with sodium tripolyphosphate. J Food Eng:2007:79(4):1233~7.
    [29]Shen CY. Alkaline hydrolysis of sodium trimetaphosphate in concentrated solutions and its role in built detergents. Ind Eng Chem Prod Res Dev, 1966;5(3):272~6.
    [30]Arai Y, Sparks DL. ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface. J Colloid Interface Sci,2001;241:317-26.
    [31]Jackson M, Choo L-P, Watson PH, et al. Beware of connective tissue proteins: assignment and implications of collagen absorptions in infrared spectra of human tissues. Biochim Biophy Acta,1995;1270(1):1~6.
    [32]Mahamid J, Sharir A, Addadi L, et al. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish:Indications for an amorphous precursor phase. Proc Natl Acad Sci USA,2008;105(35):12748~53.
    [33]Deshpande AS, Fang PA, Simmer JP, et al. Amelogenincollagen interactions regulate calcium phosphate mineralization in vitro. J Biol Chem, 2010;285(25):19277~87.
    [34]Combes C, Rey C. Amorphous calcium phosphates:synthesis, properties and uses in biomaterials. Acta Biomater,2010;6(9):3362~78.
    [35]Toroian D, Lim JE, Price PA. The size exclusion characteristics of type I collagen:implications for the role of noncollagenous bone constituents in mineralization. J Biol Chem,2007;282(31):22437~47.
    [36]He G, Gajjeraman S, Schultz D, et al. Spatially and temporally controlled biomineralization is facilitated by interaction between self-assembled dentin matrix protein 1 and calcium phosphate nuclei in solution. Biochemistry, 2005;44(49):16140~8.
    [37]Kwak SY, Wiedemann-Bidlack FB, Beniash E, et al. Role of 20-kDa amelogenin (P148) phosphorylation in calcium phosphate formation in vitro. J Biol Chem,2009;284(28):18972~9.
    [38]Hu M, Li Y, Decker EA, et al. Influence of tripolyphosphate cross-linking on the physical stability and lipase digestibility of chitosancoated lipid droplets. J Agric Food Chem,2010;58(2):1283~9.
    [39]Hauser PJ, Smith CB, Hashem MM. Ionic crosslinking of cotton. Autex Res J, 2004;4(2):95~100.
    [40]Shu XZ, Zhu KJ. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release.Eur J Pharm Biopharm,2002;54(2):235~43.
    [41]Sonawane SH, Gumfekar SP, Meshram S, et al. Combined effect of surfactant and ultrasound on nano calcium carbonate synthesized by crystallization process. Int J Chem React Eng,2009;7:A47.
    [42]Sedlak JM, Beebe RA. Temperature programmed dehydration of amorphous calcium phosphate. J Colloid Interface Sci,1974;47(2):483~9.
    [43]Muller WE, Wang X, Cui FZ, et al. Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. Appl Microbiol Biotechnol,2009;83(3):397~413.
    [44]Colfen H. Single crystals with complex form via amorphous precursors. Angew Chem Int Ed Engl,2008;47(13):2351~3.
    [45]Meldrum FC, Ludwigs S. Template-directed control of crystal morphologies. Macromol Biosci,2007;7(2):152~62.
    [46]Weiner S, Wagner HD. The material bone:structure mechanical function relations. Ann Rev Mater Sci,1998;28:271~98.
    [47]Balooch M, Habelitz S, Kinney JH, et al. Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J Struct Biol, 2008;162(3):404~10.
    [48]George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev,2008; 108(11):4670~93.
    [49]Zhang TH, Liu XY. How does a transient amorphous precursor template crystallization. J Am Chem Soc,2007;129(44):13520~6.
    [50]Tsuji T, Onuma K, Yamamoto A, et al. Direct transformation from amorphous to crystalline calcium phosphate facilitated by motif-programmed artificial proteins. Proc Natl Acad Sci USA,2008;105(44):16866~70.
    [51]He G, Ramachandran A, Dahl T, et al. Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization. J Biol Chem, 2005;280(39):33109~14.
    [1]Silva GA. Neuroscience nanotechnology:progress, opportunities and challenges. Nat Rev Neurosci,2006;7(1):65~74.
    [2]Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol,2003;21 (10):1171~8.
    [3]Niederberger M, Colfen H. Oriented attachment and mesocrystals:nonclassical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys,2006;8(28):3271-87.
    [4]Wong TS, Brough B, Ho CM. Creation of functional micro/nano systems through top-down and bottom-up approaches. Mol Cell Biomech, 2009;6(1):1-55.
    [5]Traub W, Arad T, Weiner S. Three-dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA,1989;86(24): 9822~6.
    [6]Weiner S, Wagner HD. The material bone:structure-mechanical function relations. Ann Rev Mater Sci.1998:28:271-98.
    [7]Jiang H, Liu XY. Principles of mimicking and engineering the self-organized structure of hard tissues. J Biol Chem,2004;279(40):41286~93.
    [8]Nelson DG, Barry JC. High resolution electron microscopy of nonstoichiometric apatite crystals. Anat Rec,1989;224(2):265~76.
    [9]Klont B, ten Cate JM. Remineralization of bovine incisor root lesions in vitro: the role of the collagenous matrix. Caries Res,1991;25(1):39~45.
    [10]Silverman L, Boskey AL. Diffusion systems for evaluation of biomineralization. Calcif Tissue Int,2004;75(6):494~501.
    [11]Koutsoukos PG, Nancollas GH. Crystal growth of calcium phosphates epitaxial considerations. J Crystal Growth,1981;53(1):10-9.
    [12]Mann S. The chemistry of form. Angew Chem Int Ed Engl,2000;39:3393~406.
    [13]Boskey AL. Biomineralization:an overview. Connect Tissue Res, 2003;44(Suppl.1):5-9.
    [14]Xu AW, Ma Y, Colfen H. Biomimetic mineralization. J Mater Chem,2007; 17: 415~49.
    [15]Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials,2008;29(8):1127~37.
    [16]Tsortos A, Nancollas GH. The role of polycarboxylic acids in calcium phosphate mineralization. J Colloid Interface Sci,2002;250(1):159~67.
    [17]George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev,2008;108(11):4670~93.
    [18]Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev,2008; 108(11): 4551~627.
    [19]Wehrli FW, Fernandez-Seara MA. Nuclear magnetic resonance studies of bone water. Ann Biomed Eng,2005;33(1):79-86.
    [20]Kim YK, Mai S, Mazzoni A, et al. Biomimetic remineralization as a progressive dehydration mechanism of collagen matrices-implications in the aging of resin-dentin bonds. Acta Biomater,2010;6(9):3729~39.
    [21]Kim YK, Gu LS, Bryan TE, et al. Mineralisation of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials,2010;31(25):6618~27.
    [22]Wiesmann HP, Meyer U, Plate U, et al. Aspects of collagen mineralization in hard tissue formation.Int Rev Cytol,2005;242:121~56.
    [23]ten Cate JM, Buijs MJ, Damen JJ. PH-cycling of enamel and dentin lesions in the presence of low concentrations of fluoride. Eur J Oral Sci, 1995;103(6):362~7.
    [24]Neves Ade A, Coutinho E, Vivan Cardoso M, et al. Micro-CT based quantitative evaluation of caries excavation. Dent Mater,2010;26(6):579-88.
    [25]Gelhard TBFM, Arends J. Microradiography of in vivo remineralized lesions in human enamel. J Biol Buccale,1984;12(1):59~65.
    [26]ten Cate JM. Remineralization of caries lesions extending into dentin. J Dent Res,2001;80(5):1407~11.
    [27]Eanes ED. Amorphous calcium phosphate. Monogr Oral Sci,2001;18:130~47.
    [28]Kawasaki K, Ruben J, Stokroos I, et al. The remineralization of EDTA treated human dentine. Caries Res,1999; 33(4):275~80.
    [29]Lo EC, Zhi QH, Itthagarun A. Comparing two quantitative methods for studying remineralization of artificial caries. J Dent,2010; 38(4):352~9.
    [30]Delbem AC, Sassaki KT, Vieira AE, et al. Comparison of methods for evaluating mineral loss:hardness versus synchrotron microcomputed tomography. Caries Res,2009; 43(5):359~65.
    [31]Pashley DH, Tay FR, Yiu C, et al. Collagen degradation by host-derived enzymes during aging. J Dent Res,2004;83(3):216~21.
    [32]Carrilho MR, Tay FR, Donnelly AM, et al. Host-derived loss of dentin matrix stiffness associated with solubilization of collagen. J Biomed Mater Res B Appl Biomater,2009; 90(1):373~80.
    [33]Tezvergil-Mutluay A. Agee KA. Hoshika T. et al. The inhibitory effect of polyvinylphosphonic acid on functional matrix metalloproteinase activities in human demineralized dentin. Acta Biomater,2010;6(10):4136~42.
    [34]Kawasaki K, Ruben J, Tsuda H, et al. Relationship between mineral distributions in dentin lesions and subsequent remineralization in vitro. Caries Res,2000;34(5):395~403.
    [35]Balooch M, Habelitz S, Kinney JH, et al. Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J Struct Biol, 2008;162(3):404-10.
    [36]Kim J, Arola DD, Gu LS, et al. Functional biomimetic analogs help remineralize apatite-depleted demineralized resin-infiltrated dentin via a bottom-up approach. Acta Biomater,2010;6(7):2740~50.
    [37]Kinney JH, Habelitz S, Marshall SJ, et al. The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res, 2003;82(12):957~61.
    [38]Bertassoni LE, Habelitz S, Kinney JH, et al. Biomechanical perspectibe on the remineralization of dentin. Caries Res,2009;43(1):70-7.
    [39]Jaer I, Fratzl P. Mineralized collagen fibrils:a mechanical model with a staggered arrangement of mineral particles. Biophys J,2000;79(4):1737-46.
    [40]Veis A. Mineral-matrix interactions in bone and dentin. J Bone Miner Res, 1993;8(suppl2):S493-7
    [41]Hunter GK, Hauschka PV, Poole AR, et al. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J, 1996;317(Ptl):59-64.
    [42]Saito T, Yamauchi M, Crenshaw MA. Apatite induction by insoluble dentin collagen. J Bone Miner Res,1998;13(2):265~70.
    [1]Fusayama T. Two layers of carious dentin:diagnosis and treatment. Oper Dent, 1979;4(2):63~70.
    [2]Marshall GW, Marshall SJ, Kinney JH, et al. The dentin substrate:structure and properties related to bonding. J Dent,1997;25(6):441~58.
    [3]Nakajima M, Sano H, Urabe I, et al. Bond strengths of single-bottle dentin adhesives to caries-affected dentin. Oper Dent,2000;25(1):2~10.
    [4]Yoshiyama M, Urayama A, Kimochi T, et al. Comparison of conventional vs self etching adhesive bonds to caries-affected dentin. Oper Dent, 2000;25(3):163-9.
    [5]Wei S, Sadr A, Shimada Y, et al. Effect of caries-affected dentin hardness on the shear bond strength of current adhesives. J Adhes Dent,2008; 10(6):431-40.
    [6]Ito S, Saito T, Tay FR, et al. Water content and apparent stiffness of non-caries versus caries-affected human dentin. J Biomed Mater Res B Appl Biomater, 2005;72(1):109~16.
    [7]Haj-Ali R, Walker M, Williams K, et al. Histomorphologic characterization of noncarious and caries-affected dentin/adhesive interfaces. J Prosthodont, 2006;15(2):82-8.
    [8]Hsu KW, Marshall SJ, Pinzon LM, et al. SEM evaluation of resin-carious dentin interfaces formed by two dentin adhesive systems. Dent Mater, 2008;24(7):880~7.
    [9]Perdigao J. Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater,2010;26(2);e24-37.
    [10]Kuboki Y, Tsuzaki M, Sasaki S, et al. Location of the intermolecular cross-links in bovine dentin collagen, solubilization with trypsin and isolation of cross-link peptides containing dihydroxylysinonorleucine and pyridinoline. Biochem Biophys Res Commun,1981; 102(1):119~26.
    [11]Ogushi K, Fusayama T. Electron microscopic structure of the two layers of carious dentin. J Dent Res,1975;54(5):1019-26.
    [12]Kuboki Y, Ohgushi K, Fusayama T. Collagen biochemistry of the two layers of carious dentin. J Dent Res,1977;56(10):1233-7.
    [13]Nakornchai S, Atsawasuwan P, Kitamura E, et al. Partial biochemical characterisation of collagen in carious dentin of human primary teeth. Arch Oral Biol,2004;49(4):267~73.
    [14]George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth and inhibition. Chem Rev,2008;108(11):4670-93.
    [15]Lee SH, Yang JI, Hong SM, et al. Phosphorylation of peptides derived from isolated soybean protein:effects on calcium binding, solubility and influx into Caco-2 cells. Biofactors,2005;23(3):121-8.
    [16]Zhang K, Li Y, Ren Y. Research on the phosphorylation of soy protein isolate with sodium tripolyphosphate. J Food Eng,2007;79(4):1233~7.
    [17]Leone G, Torricelli P, Giardino R, et al. New phosphorylated derivatives of carboxymethylcellulose with osteogenic activity. Polym Adv Technol, 2008;19(7):824~30.
    [18]Gunasekaran S. Purifying type I collagen using two papain treatments and reducing and delipidation agents. United States Patent Office,2003;6548077.
    [19]Li X, Chang J. Preparation of bone-like apatite-collagen nanocomposites by a biomimetic process with phosphorylated collagen. J Biomed Mater Res A, 2008;85(2):293-300.
    [20]Olszta MJ, Odom DJ, Douglas EP, et al. A new paradigm for biomineral formation:mineralization via an amorphous liquid-phase precursor. Connect Tissue Res,2003;44(Suppl.l):326-34.
    [21]Gajjeraman S, Narayanan K, Hao J, et al. Matrix macromolecules in hard tissues control the nucleation and hierarchical assembly of hydroxyapatite.J Biol Chem,2007;282(2):1193~204.
    [22]Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials,2008(8);29:1127-37.
    [23]Kim YK, Gu LS, Bryan TE, et al. Mineralization of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials,2010;31 (25):6618~27.
    [24]Liu Y, Kim YK, Dai L, et al. Hierarchical and non-hierarchical mineralization of collagen. Biomaterials,2011;32(5):1291~300.
    [25]Gu LS, Kim J, Kim YK, et al. A chemical phosphorylation-inspired design for Type I collagen biomimetic remineralization. Dent Mater, 2010;26(11):1077~89.
    [26]Zhang RY, Ma PX. Porous poly(1-lactic acid)/apatite composites created by biomimetic process. J Biomed Mater Res,1999;45(4):285~93.
    [27]Kikuchi M, Itoh S, Ichinose S, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials,2001;22(13):1705~11.
    [28]Hartgerink JD, Beniash E, Stupp SI. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science,2001;294(5547):1684~8.
    [29]Shen CY. Alkaline hydrolysis of sodium trimetaphosphate in concentrated solutions and its role in built detergents. Ind Eng Chem Prod Res Dev. 1966;5(3):272~6.
    [30]Meyer JL, Eanes ED. A thermodynamic analysis of the secondary transition in the spontaneous precipitation of calcium phosphate. Calcif Tissue Res, 1978;25(3):209~16.
    [31]Robinson C. Fluoride and the caries lesion:interactions and mechanism of action. Eur Arch Paediatr Dent,2009; 10(3):136-40.
    [32]Manesh SK, Darling CL, Fried D. Nondestructive assessment of dentin demineralization using polarization-sensitive optical coherence tomography after exposure to fluoride and laser irradiation. J Biomed Mater Res B Appl Biomater,2009;90(2):802~12.
    [33]Navarro MF, Rigolon CJ, Barata TJ, et al. Influence of occlusal access on demineralized dentin removal in the atraumatic restorative treatment (ART) approach. Am J Dent,2008;21(4):251-4.
    [34]Silverstone LM. The surface zone in caries and in caries-like lesions produced in vitro. Br Dent J,1968; 125(4):145~57.
    [35]ten Cate JM, Duijsters PP. Alternating demineralization and remineralization of artificial enamel lesions. Caries Res,1982;16(3):201~10.
    [36]Clarkson BH, Wefel JS, Miller I. A model for producing caries-like lesions in enamel and dentin using oral bacteria in vitro. J Dent Res,1984;63(10):1186~9.
    [37]Marquezan M, Correa FN, Sanabe ME, et al. Artificial methods of dentine caries induction:A hardness and morphological comparative study. Arch Oral Biol,2009; 54(12):1111~7.
    [38]Pashley EL, Talman R, Horner JA, et al. Permeability of normal versus carious dentin. Endo Dent Traumatol,1991;7(5):207~11.
    [39]Sa LT, Gonzalez-Cabezas C, Cochran MA, et al. Fluoride releasing materials: their anti-cariogenic properties tested in in vitro caries models. Oper Dent, 2004;29(5):524~31.
    [40]Yang B, Flaim G, Dickens SH. Remineralization of human natural caries and artificial caries-like lesions with an experimental whisker-reinforced ART-composite. Acta Biomater 2011, doi:10.1016/j.actbio.2011.01.002.
    [41]Xu AW, Ma Y, Colfen H. Biomimetic mineralization. J Mater Chem,2007; 17:415~49.
    [42]Tartaix PH, Doulaverakis M, George A, et al. In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions. J Biol Chem,2004;279(18):18115~20.
    [43]Kawasaki K, Ruben J, Tsuda H, et al. Relationship between mineral distributions in dentin lesions and subsequent remineralization in vitro. Caries Res,2000;34(5):395~403.
    [44]Preston KP, Smith PW, Higham SM. The influence of varying fluoride concentrations on in vitro remineralisation of artificial dentinal lesions with differing lesion morphologies. Arch Oral Biol,2008;53(1):20-6.
    [45]Marion AA, Becker RO. Evidence for epitaxy in the formation of collagen and apatite. Nature,1970;226(5246):652~3.
    [46]Koutsoukos PG. Nancollas GH. Crystal growth of calcium phosphates-epitaxial considerations. J Cryst Growth,1981;53(1):10~9.
    [47]Doi Y, Eanes ED. Transmission electron microscopic study of calcium phosphate formation in supersaturated solutions seeded with apatite. Calcif Tissue Int,1984;36(1):39-47.
    [48]Liu Y, Sethuraman G, Wu W, et al. The crystallization of fluorapatite in the presence of hydroxyapatite seeds and of hydroxyapatite in the presence of fluorapatite seeds. J Colloid Interface Sci,1997; 186(1):102~9.
    [49]Baysan A, Lynch E, Ellwood R. et al. Reversal of primary root caries using dentifrices containing 5000 and 1100 ppm fluoride. Caries Res, 2001;35(1):41-6.
    [50]Kim YK, Mai S, Mazzoni A, et al. Biomimetic remineralization as a progressive dehydration mechanism of collagen matrices:implications in the aging of resin-dentin bonds. Acta Biomater,2010;6(9):3729~39.
    [51]Dickens SH, Flaim GM. Effect of a bonding agent on in vitro biochemical activities of remineralizing resin-based calcium phosphate cements. Dent Mater, 2008;24(9):1273~80.
    [52]Spencer P, Wang Y, Katz JL, et al. Physicochemical interactions at the dentin/adhesive interface using FTIR chemical imaging. J Biomed Opt, 2005;10(3):031104.
    [53]Zanchi CH, Lund RG, Perrone LR, et al. Microtensile bond strength of two-step etch-and-rinse adhesive systems on sound and artificial caries-affected dentin. Am J Dent,2010;23(3):152-6.
    [54]Wang Y, Spencer P. Quantifying adhesive penetration in adhesive/dentin interface using confocal Raman microspectroscopy. J Biomed Mater Res, 2002;59(1):46-55.
    [55]Rolland SL, Walls AW, McCabe JF, et al. Use of micro-Raman spectroscopy to investigate hybrid layer quality in demineralized root dentine. J Biomed Mater Res B Appl Biomater,2010;95(1):62-8.
    [56]Silva NR, Carvalho RM, Pegoraro LF, et al. Evaluation of a self-limiting concept in dentinal caries removal. J Dent Res,2006;85(3):282~6.
    [57]Pashley DH, Tay FR, Yiu C, et al. Collagen degradation by host-derived enzymes during aging. J Dent Res,2004;83(3):216~21.
    [58]Tezvergil-Mutluay A, Agee KA, Hoshika T, et al. The requirement of zinc and calcium ions for functional MMP activity in demineralized dentin matrices. Dent Mater,2010;26(11):1059~67.
    [59]Liu Y, Tjaderhane L, Breschi L, et al. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 2011, doi:10.1177/0022034510391799.825.
    [60]Liu Y, Mai S, Li N, et al. Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds. Acta Biomater,2011;7(4):1742~51.
    [61]Wang Y, Spencer P. Analysis of acid-treated dentin smear debris and smear layers using confocal Raman microspectroscopy. J Biomed Mater Res, 2002;60(2):300~8.
    [62]Karan K, Yao X, Xu C, et al. Chemical profile of the dentin substrate in non-carious cervical lesions. Dent Mater,2009;25(10):1205~12.
    [63]Tezvergil-Mutluay A, Agee KA, Hoshika T, et al. The inhibitory effect of polyvinylphosphonic acid on functional matrix metalloproteinase activities in human demineralized dentin. Acta Biomater,2010;6(10):4136~42.
    [64]Mai S, Kim YK, Kim J, et al. In vitro remineralization of severely compromised bonded dentin. J Dent Res,2010;89(4):405~10.
    [65]Gu L, Kim YK, Liu Y, et al. Biomimetic analogs for collagen biomineralization. J Dent Res,2011;90(1):82-7.
    [66]Kim YK, Yiu CK, Kim JR, et al. Failure of a glass ionomer to remineralize apatite-depleted dentin. J Dent Res,2010; 89(3):230-i
    [67]van der Reijden WA, Buijs MJ, Damen JJ, et al. Infl(?)nce of polymers for use in saliva substitutes on de- and remineralization of e(?)mel in vitro. Caries Res, 1997;31(3):216-23.
    [1]Tay FR, Pashley DH. Dental adhesives of the future. J Adhes Dent 2002; 4(2):91~103.
    [2]Marshall SJ, Bayne SC, Baier R, et al. A review of adhesion science. Dent Mater,2010;26(2):e11~6.
    [3]Sharrock P, Gregoire G. HEMA reactivity with demineralized dentin. J Dent, 2010; 38(4):331~5.
    [4]Tay FR, Pashley DH. Have dentin adhesives become too hydrophilic? J Can Dent Assoc,2003;69(11):724~31.
    [5]Spencer P, Ye Q, Park J, et al. Adhesive/dentin interface:the weak link in the composite restoration. Ann Biomed Eng,2010; 38(6):1989~2003.
    [6]Ferracane JL. Hygroscopic and hydrolytic effects in dental polymer networks. Dent Mater.2006; 22(3):211-22.
    [7]Eliades G, Vougiouklakis G, Palaghias G. Heterogeneous distribution of single-bottle adhesive monomers in the resin-dentin interdiffusion zone. Dent Mater,2001;17(4):277~83.
    [8]Hashimoto M, Ohno H, Sano H, et al. Micromorphological changes in resin-dentin bonds after 1 year of water storage. J Biomed Mater Res, 2002;63(3):306-1.
    [9]Pashley DH, Tay FR, Yiu C, et al. Collagen degradation by host-derived enzymes during aging. J Dent Res,2004;83(3):216~21.
    [10]Tay FR, Pashley DH, Yoshiyama M. Two modes of nanoleakage expression in single-step adhesives. J Dent Res,2002;81(7):472~6.
    [11]de Almeida Neves A, Coutinho E, Cardoso MV, et al. Current concepts and techniques for caries excavation and adhesion to residual dentin. J Adhes Dent., 2011;13(1):7-22.
    [12]Pereira PN, Nunes MF, Miguez PA, et al. Bond strengths of a 1-step self-etching system to caries-affected and normal dentin. Oper Dent,2006; 31(6):677-81.
    [13]Yoshiyama M, Urayama A, Kimochi T, et al. Comparison of conventional vs. self-etching adhesive bonds to caries-affected dentin. Oper Dent,2000; 25(3): 163~9.
    [14]Silverstone LM, Hicks MJ. The structure and ultrastructure of the carious lesion in human dentin. Gerodontics,1985;1(4):185~95.
    [15]Zavgorodniy AV, Rohanizadeh R, Swain MV. Ultrastructure of dentine carious lesions. Arch Oral Biol,2008;53(2):124~32.
    [16]Nakajima M, Hosaka K, Yamauti M, et al. Bonding durability of a self-etching primer system to normal and caries-affected dentin under hydrostatic pulpal pressure in vitro. Am J Dent,2006; 19(3):147~50.
    [17]Erhardt MC, Toledano M, Osorio R, et al. Histomorphologic characterization and bond strength evaluation of caries-affected dentin/resin interfaces:effects of long-term water exposure. Dent Mater,2008;24(6):786~98.
    [18]Frank RM. Ultrastructure of human dentine 40 years ago-progress and perspectives. Arch Oral Biol,1999;44(12):979~84.
    [19]Nakornchai S, Atsawasuwan P, Kitamura E, et al. Partial biochemical characterisation of collagen in carious dentin of human primary teeth. Arch Oral Biol,2004;49(4):267~73.
    [20]Arnold WH, Kanopka S, Gaengler P. Qualitative and quantitative assessment of intratubular dentin formation in human natural carious lesions. Calcif Tissue Int, 2001;69(5):268~73.
    [21]Marshall GW, Chang YJ, Gansky SA, et al. Demineralization of caries-affected transparent dentin by citric acid:an atomic force microscopy study. Dent Mater, 2001;17(1):45~52.
    [22]Daculsi G, LeGeros RZ, Jean A, et al. Possible physicochemical processes in human dentin caries. J Dent Res,1987;66(8):1356~9.
    [23]Duke ES, Lindemuth J. Variability of clinical dentin substrates. Am J Dent, 1991;4(5):241~6.
    [24]Nanci A. Ten Cate's Oral Histology:Development, Structure and Function.6th ed. St. Louis:Mosby; 2003.
    [25]Fisher LW, Termine JD. Noncollagenous Proteins Influencing the Local Mechanisms of Calcification. Clin Orthop Relat Res,1985;200:362~85.
    [26]Ogawa K, Yamashita Y. Ichijo T, et al. The ultrastructure and hardness of the transparent layer of human carious dentin. J Dent Res,1983;62(1):7-10.
    [27]Kuboki Y, Tsuzaki M, Sasaki S. et al. Location of the intermolecular cross-links in bovine dentin collagen, solubilization with trypsin and isolation of cross-link peptides containing dihydroxylysinonorleucine and pyridinoline. Biochem Biophys Res Commun,1981; 102(1):119~26.
    [28]Ogushi K, Fusayama T. Electron microscopic structure of the two layers of carious dentin. J Dent Res,1975;54(5):1019-26.
    [29]Wang Y. Spencer P. Walker MP. Chemical profile of adhesive/caries-affected dentin interfaces using Raman microspectroscopy. J Biomed Mater Res A, 2007;81(2):279~86.
    [30]LeGeros RZ. Chemical and crystallographic events in the caries process. J Dent Res,1990;69:567-74.
    [31]Kuboki Y, Ohgushi K. Fusayama T. Collagen biochemistry of the two layers of carious dentin. J Dent Res,1977;56(10):1233~7.
    [32]Shimizu C, Yamashita Y, Ichijo T, et al. Carious change of dentin observed on long span ultrathin sections. J Dent Res,1981;60(11):1826-31.
    [33]Marshall GW, Habelitz S, Gallagher R, et al. Nanomechanical properties of hydrated carious human dentin. J Dent Res,2001;80(8):1768~71.
    [34]Nakajima M, Sano H, Burrow MF, et al. Tensile bond strength and SEM evaluation of caries-affected dentin using dentin adhesives. J Dent Res, 1995;74(10):1679~88.
    [35]Zheng L, Hilton JF, Habelitz S, et al. Dentin caries activity status related to hardness and elasticity. Eur J Oral Sci,2003; 111(3):243~52.
    [36]Kinney JH, Balooch M, Marshall GW, et al. A micromechanics model of the elastic properties of human dentine. Arch Oral Biol,1999; 44(10):813-22.
    [37]Ceballos L, Camejo DG, Victoria Fuentes M, et al. Microtensile bond strength of total-etch and self-etching adhesives to caries-affected dentine. J Dent,2003; 31(7):469~77.
    [38]Yoshiyama M, Tay FR, Doi J, et al. Bonding of self-etch and total-etch adhesives to carious dentin. J Dent Res,2002; 81(8):556~60.
    [39]Nakajima M, Sano H, Zheng L, et al. Effect of moist vs dry bonding to normal vs caries-affected dentin with Scotchbond Multi-Purpose Plus. J Dent Res, 1999;78(7):1298-303.
    [40]Nakajima M, Sano H, Urabe I, et al. Bond strengths of single-bottle dentin adhesives to caries-affected dentin. Oper Dent,2000;25(1):2-10.
    [41]Prati C, Chersoni S, Mongiorgi R, et al. Resin infiltrated dentin layer formation of new bonding systems. Oper Dent,1998; 23(4):185~94.
    [42]Ito S, Saito T, Tay FR, et al. Water content and apparent stiffness of non-caries versus caries-affected human dentin. J Biomed Mater Res B Appl Biomater, 2005;72(1):109~16.
    [43]Jacobson T, Soderholm KJ. Some effects of water on dentin bonding. Dent Mater,1995; 11 (2):132~6.
    [44]Tay FR, Pashley DH. Water treeing-a potential mechanism for degradation of dentin adhesives. Am J Dent,2003;16(1):6-12.
    [45]Frank RM, Voegel JC. Ultrastructure of the human odontoblast process and its mineralization during dental caries. Caries Res,1980; 14(6):367-80.
    [46]Penel G, Delfosse C, Descamps M, et al. Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone, 2005;36(5):893~901.
    [47]Van Meerbeek B, De Munck J, Yoshida Y, et al. Buonocore memorial lecture. Adhesion to enamel and dentin:current status and future challenges. Oper Dent, 2003; 28(3):215~35.
    [48]Gwinnett AJ. Moist versus dry dentin:its effect on shear bond strength. Am J Dent,1992; 5(3):127~9.
    [49]Xuan W, Hou BX, Lu YL. Bond strength of different adhesives to normal and caries-affected dentins. Chin Med J (Engl),2010;123(3):332~6.
    [50]Van Meerbeek B, Conn LJ Jr, Duke ES, et al. Correlative transmission electron microscopy examination of nondemineralized and demineralized resin-dentin interfaces formed by two dentin adhesive systems. J Dent Res,1996; 75(3): 879~88.
    [51]Kanca J 3rd. Resin bonding to wet substrate.1. Bonding to dentin. Quintessence Int,1992; 23(1):39~41.
    [52]Tay FR, Gwinnett JA, Wei SH. Micromorphological spectrum from overdrying to overwetting acid-conditioned dentin in water-free acetone-based, single-bottle primer/adhesives. Dent Mater,1996; 12(4):236~44.
    [53]Pashley DH, Ciucchi B, Sano H, et al. Permeability of dentin adhesive agents. Quintessence Int,1993;24(9):618-31.
    [54]Spencer P, Wang Y, Walker MP, et al. Molecular structure of acid-etched dentin smear layers-in situ study. J Dent Res,2001;80(9):1802~7.
    [55]Ruse ND, Smith DC. Adhesion to bovine dentin-surface characterization. J Dent Res,1991;70(6):1002~8.
    [56]Wang Y, Spencer P. Analysis of acid-treated dentin smear debris and smear layers using confocal Raman microspectroscopy. J Biomed Mater Res, 2002;60(2):300~8.
    [57]Perdigao J. Dentin bonding-variables related to the clinical situation and the substrate treatment. Dent Mater,2010;26(2):e24~37.
    [58]Taniguchi G, Nakajima M, Hosaka K, et al. Improving the effect of NaOCl pretreatment on bonding to caries-affected dentin using self-etch adhesives. J Dent,2009;37(10):769~75.
    [59]Van Meerbeek B, Perdigao J, Lambrechts P, et al. The clinical performance of adhesives. J Dent,1998;26(1):1~20.
    [60]Mountouris G, Silikas N, Eliades G. Effect of sodium hypochlorite treatment on the molecular composition and morphology of human coronal dentin. J Adhes Dent,2004;6(3):175~82.
    [61]Montes MA, de Goes MF, Sinhoreti MA. The in vitro morphological effects of some current pre-treatments on dentin surface:a SEM evaluation. Oper Dent, 2005;30(3):201~12.
    [62]Zanchi CH. D'Avila OP, Rodrigues-Junior SA, et al. Effect of additional acid etching on bond strength and structural reliability of adhesive systems applied to caries-affected dentin. J Adhes Dent,2010; 12(2):109-15.
    [63]Kunawarote S, Nakajima M, Foxton RM, et al. Effect of pretreatment with mildly acidic hypochlorous acid on adhesion to caries-affected dentin using a self-etch adhesive. Eur J Oral Sci,2011;119(1):86~92.
    [64]Marshall GW. Marshall SJ, Kinney JH, et al. The dentin substrate:structure and properties related to bonding. J Dent,1997;25(6):441~58.
    [65]Nakabayashi N, Nakamura M, Yasuda N. Hybrid layer as a dentin bonding mechanism. J Esthet Dent,1991; 3(4):133~8.
    [66]Yamauchi M. Shiiba M. Lysine hydroxylation and crosslinking of collagen. Methods Mol Biol,2002; 194:277~90.
    [67]Bedran-Russo AK. Pashley DH, Agee K, et al. Changes in stiffness of demineralized dentin following application of collagen crosslinkers. J Biomed Mater Res B Appl Biomater,2008; 86B(2):330~4.
    [68]Southern LJ, Hughes H, Lawford PV, et al. Glutaraldehyde-induced cross-links: a study of model compounds and commercial bioprosthetic valves. J Heart Valve Dis,2000; 9(2):241-8.
    [69]Ritter AV, Swift EJ Jr, Yamauci M. Effects of phosphoric acid and glutaraldehyde-HEMA on dentin collagen. Eur J Oral Sci,2001;109(5):348~53.
    [70]Han B, Jaurequi J, Tang BW, et al. Proanthocyanidin:a natural crosslinking reagent for stabilizing collagen matrices. J Biomed Mater Res A,2003; 65(1):118~24.
    [71]Pierpoint WS. Quinones formed in plant extracts:their reactions with amino acids and peptides. Biochem J,1969;112(5):609~16.
    [72]Loomis WD. Overcoming problems of phenolics and quinines in the isolation of plant enzymes and organelles. Methods Enzymol,1974; 31(Pt A):528~44.
    [73]Ku CS, Sathishkumar M, Mun SP. Binding affinity of proanthocyanidin from waste Pinus radiata bark onto proline-rich bovine achilles tendon collagen type Ⅰ. Chemosphere,2007;67(8):1618~27.
    [74]Macedo GV, Yamauchi M, Bedran-Russo AK. Effects of chemical cross-linkers on caries-affected dentin bonding. J Dent Res,2009; 88(12):1096~100.
    [75]Breschi L, Perdigao J, Gobbi P, et al. Immunocytochemical identification of type Ⅰ collagen in acid-etched dentin. J Biomed Mater Res A,2003,15: 66(4):764~9.
    [76]Breschi L, Prati C, Gobbi P, et al. Immunohistochemical analysis of collagen fibrils within the hybrid layer:a FEISEM study. Oper Dent.2004:29(5): 538~46.
    [77]Suppa P, Ruggeri A, Tay FR, et al. Reduced antigenicity of type Ⅰ collagen and proteoglycans in sclerotic dentin. J Dent Res,2006;85(2):133~7.
    [78]Toledano M, Perdigao J, Osorio E, et al. Influence of NaOCl deproteinization on shear bond strength in function of dentin depth. Am J Dent. 2002;15(4):252~5.
    [79]Marshall GW, Inai N, Wu-Magidi IC, et al. Dentin demineralization:effects of dentin depth, pH and different acids. Dent Mater,1997;13(6):338~43.
    [80]Osorio R, Ceballos L, Tay F, et al. Effect of sodium hypochlorite on dentin bonding with a polyalkenoic acid-containing adhesive system. J Biomed Mater Res.,2002;60(2):316-24.
    [81]Van Meerbeek B, Vargas M, Inoue S, et al. Microscopy investigations. Techniques, results, limitations. Am J Dent,2000;13(Spec No):3D-18D.
    [82]Brackett WW, Tay FR, Brackett MG, et al. The effect of chlorhexidine on dentin hybrid layers in vivo. Oper Dent,2007;32(2):107~11.
    [83]Mazzoni A, Pashley DH, Nishitani Y, et al. Reactivation of inactivated endogenous proteolytic activities in phosphoric acid-etched dentine by etch-and-rinse adhesives. Biomaterials,2006;27(25):4470~6.
    [84]Nishitani Y, Yoshiyama M, Wadgaonkar B, et al. Activation of gelatinolytic/collagenolytic activity in dentin by self-etching adhesives. Eur J Oral Sci,2006; 114(2):160~6.
    [85]Carrilho MR, Geraldeli S, Tay F, et al. In vivo preservation of the hybrid layer by chlorhexidine. J Dent Res,2007;86(6):529~33.
    [86]Carrilho MR, Carvalho RM, de Goes MF, et al. Chlorhexidine preserves dentin bond in vitro. J Dent Res,2007;86(1):90-4.
    [87]Martin de las Heras S, Valenzuela A, Overall CM. The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol, 2000;45(9):757~65.
    [88]Hebling J, Pashley DH, Tjaderhane L, et al. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res,2005; 84(8):741~6.
    [89]Erhardt MC, Osorio R, Toledano M. Dentin treatment with MMPs inhibitors does not alter bond strengths to caries-affected dentin. J Dent, 2008;36(12):1068~73.
    [90]Cederlund A, Jonsson B, Blomlof J. Shear strength after ethylenediaminetetraacetic acid conditioning of dentin. Acta Odontol Scand, 2001;59(6):418~22.
    [91]Marshall GW, Balooch M, Kinney JH, et al. Atomic force microscopy of conditioning agents on dentin. J Biomed Mater Res,1995;29:1381~7.
    [92]Osorio R, Erhardt MC, Pimenta LA, et al. EDTA treatment of dentin improves resin-dentin bonds durability. J Biomed Mater Res,1995; 29(11):1381~7.
    [93]Perdiga~o J, Denehy GE, Swift Jr EJ. Effects of chlorhexidine on dentin surfaces and shear bond strengths. Am J Dent,1994;7(2):81-4.
    [94]Ruggeri Jr A, Prati C, Mazzoni A, et al. Effects of citric acid and EDTA conditioning on exposed root dentin:an immunohistochemical analysis of collagen and proteoglycans. Arch Oral Biol,2007;52(1):1-8.
    [95]Habelitz S, Balooch M, Marshall SJ, et al. In situ atomic force microscopy of partially demineralized human dentin collagen fibrils. J Struct Biol, 2002;138(3):227~36.
    [96]Gendron R, Grenier D, Sorsa T, et al. Inhibition of the activities of matrix metalloproteinases 2,8, and 9 by chlorhexidine. Clin Diagn Lab Immunol, 1999;6(3):437~9.
    [97]Kim J, Gu L, Breschi L, et al. Implication of ethanol wet-bonding in hybrid layer remineralization. J Dent Res,2010;89(6):575~80.
    [98]Pashley DH, Zhang Y, Carvalho RM, et al. H+-induced tension in demineralized dentin matrix. J Dent Res,2000;79(8):1579~83.
    [99]Mann S. The chemistry of form. Angew Chem Int Ed Engl,2000;39:3393-406.
    [100]Veis A. Mineral-matrix interactions in bone and dentin. J Bone Miner Res, 1993;8(suppl2):S493-7.
    [101]Saito T, Arsenault AL, Yamauchi M, et al. Mineral induction by immobilized phosphoproteins. Bone,1997;21(4):305~11.
    [102]Saito T, Yamauchi M, Abiko Y, et al. In vitro apatite induction by phosphophoryn immobilized on modified collagen fibrils. J Bone Miner Res, 2000;15(8):1615~9.
    [103]Sarikaya, M. Biomimetics:Materials fabrication through biology. Proc Natl Acad Sci U S A,1999,7;96(25):14183~5.
    [104]Fisher LW, Termine JD. Noncollangenous proteins influencing the local mechanism of calcification. Clin Orthop Rel Res,1985; 200:362~85.
    [105]Veis A. Biochemical studies of vertebrate tooth mineralization, in Biomineralization. Chemical and Biochemical Perspectives, Mann S, Webb J, Williams RJP, Eds., VCH, Weinheim, FRG,1989; 190.
    [106]Dimuzio MT, Veis A. The biosynthesis of phosphophoryns and dentin collagen in the continuously erupting rat incisor. J Biol Chem,1978,253(19):6845~52.
    [107]Veis A. Phosphoproteins from teeth and bone. Ciba Found Symp,1988; 136: 161~77.
    [108]Sabsay B, Stetler-Stevenson WG, Lechner JH, et al. Domain structure and sequence distribution in dentin phosphophoryn. Biochem J,1991;276 (Pt3):699~707.
    [109]Weinstock M, Leblond CP. Radioautographic visualization of the deposition of a phosphoprotein at the mineralization front in the dentin of the rat incisor. J Cell Biol,1973;56(3):838~45.
    [110]Hunter GK, Hauschka PV, Poole AR, et al. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J,1996;317 (Pt1):59~64.
    [111]Dahl T, Veis A. Electrostatic interactions lead to the formation of asymmetric collagen-phosphophoryn aggregates. Connect Tissue Res,2003;44 Suppl 1:206~13.
    [112]Eanes ED, Gillessen IH, Posner AS. Intermediate states in the precipitation of hydroxyapatite. Nature,1965;23;208(5008):365~7.
    [113]Takagi Y, Veis A, Sauk JJ. Relation of mineralization defects in collagen matrices to noncollagenous protein components. Identification of a molecular defect in dentinogenesis imperfecta. Clin Orthop Relat Res. 1983;(176):282~90.
    [114]Stetler-Stevenson WG, Veis A. Bovine dentin phosphophoryn:calcium ion binding properties of a high molecular weight preparation. Calcif Tissue Int. 1987;40(2):97~102.
    [115]Lee SL, Veis A. Cooperativity in calcium ion binding to repetitive, carboxylate-serylphosphate polypeptides and the relationship of this property to dentin mineralization. Int J Pept Protein Res,1980; 16(3):231~40.
    [116]Fujisawa R., Kuboki Y, Sasaki S. Changes in interaction of bovine dentin phosphophoryn with calcium and hydroxyapatite by chemical modification. Calcif Tissue Int,1986;39(4):248~51.
    [117]Traub W, Jodaikin A, Arad T, et al. Dentin phosphophoryn binding to collagen fibrils. Matrix,1992; 12(3):197~201.
    [118]Doniach S. Changes in biomolecular confor-mation seen by small angle X-ray scattering. Chem Rev,2001; 101 (6):1763-78.
    [119]Veis A, Payne K. Collagen:chemistry, biology, and biotechnology, Boca Raton, FL:CRC Press,1988; 113~37.
    [120]He G, Ramachandran A, Dahl T, et al. Phosphorylation of phosphophoryn is crucial for its function as a mediator of biomineralization. J Biol Chem, 2005;280(39):33109~14.
    [121]Dahlin S, Angstrom J, Linde A. Dentin phosphoprotein sequence motifs and molecular modeling:conformational adaptations to mineral crystals. Eur J Oral Sci,1998;106(Suppl 1):239~48.
    [122]Srinivasan R, Chen B, Gorski JP, et al. Recombinant expression and characterization of dentin matrix protein 1. Connect Tissue Res,2000; 40(4): 251~8.
    [123]D'Souza RN, Cavender A, Sunavala G, et al. Gene expression patterns of murine dentin matrix protein 1 (Dmpl) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo. J Bone Miner Res, 1997;12(12):2040~9.
    [124]He G, Dahl T, Veis A, et al. Dentin matrix protein 1 initiates hydroxyapatite formation in vitro. Connect Tissue Res,2003; 44(Suppl 1):240~5.
    [125]George A, Sabsay B, Simonian PA, et al. Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization. J Biol Chem,1993; 268(17):12624~30.
    [126]Terasawa M, Shimokawa R, Terashima T, et al. Expression of dentin matrix protein 1 (DMP1) in nonmineralized tissues. J Bone Miner Metab, 2004;22(5):430-8.
    [127]Feng JQ, Huang H, Lu Y, et al. The Dentin matrix protein 1 (Dmp1) is specifically expressed in mineralized, but not soft, tissues during development. J Dent Res,2003;82(10):776-80.
    [128]George A, Gui J, Jenkins NA, et al. In situ localization and chromosomal mapping of the AG1 (Dmp1) gene. J Histochem Cytochem,1994; 42(12): 1527~31.
    [129]MacDougall M, Gu TT, Luan X, et. Identification of a novel isoform of mouse dentin matrix protein 1:spatial expression in mineralized tissues. J Bone Miner Res,1998; 13(3):422~31.
    [130]He G, Dahl T, Veis A, et al. Nucleation of apatite crystals in vitro by self assembled dentin matrix protein 1. Nat Mater,2003; 2(8):552~8.
    [131]Kulkarni GV, Chen B, Malone JP, et al. Promotion of selective cell attachment by the RGD sequence in dentine matrix protein 1. Arch Oral Biol,2000; 45(6): 475~84.
    [132]Gericke A, Qin C, Sun Y, et al. Different forms of DMP1 play distinct roles in mineralization. J Dent Res,2010; 89(4):355~9.
    [133]Lowenstam, HA, Weiner S. On Biomineralization. Oxford University Press, New York,1989;25~49.
    [134]Mann S. Biomineralization. Oxford University Press, Oxford,2001.
    [135]Baeuerlein E. in:Baeuerlein E (Ed.), Biomineralization. Progress in Biology. Molecular Biology and Application. Wiley-VCH, Weinheim,2004, pp.1~14.
    [136]Marsh ME. Biomineralization, Progress in Biology, Molecular Biology and Application,2nd completely revised and extended ed., Wiley-VCH, Weinheim, 2004; 197.
    [137]Miiller WE, Wang X, Cui FZ, et al. Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. Appl Microbiol Biotechnol,2009;83(3):397~413.
    [138]Colfen H. Single crystals with complex form via amorphous precursors. Angew Chem Int Ed Engl,2008;47(13):2351-3.
    [139]Politi Y, Arad T, Klein E, et al. Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase. Science,2004;12;306(5699):1161~4.
    [140]Kim YY, Douglas EP, Gower LB. Patterning inorganic (CaCO3) thin films via a polymer-induced liquid-precursor process. Langmuir,2007,24;23(9):4862~70.
    [141]Meldrum FC. Ludwigs S. Template-directed control of crystal morphologies. Macromol Biosci.2007:7(2):152~62.
    [142]Landis WJ, Song MJ, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol,1993:110(1):39~54.
    [143]Bonucci E. Role of collagen fibrils in calcification. In:Bonucci (ed) Calcification of Biological Systems. CRC Press, Boca Raton,1992;19-39.
    [144]Eanes ED. Amorphous calcium phosphate:thermodynamic and kinetic considerations. In:Amjad Z, editor. Calcium phosphates in biological and industrial systems. Dordrecht:Kluwer Academic; 1998; 21-39.
    [145]Grynpas MD, Bonar LC, Glimcher MJ. On the question of amorphous tricalcium phosphate in bone mineral. Dev Biochem 1981;22:279~83.
    [146]Crane NJ, Popescu V, Morris MD, et al. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone,2006;39(3):434~42.
    [147]Beniash A. Metzler RA. Lam RSK. et al. Transient amorphous calcium phosphate in forming enamel. J Struct Biol,2009; 166(2):133-43.
    [148]Mahamid J. Sharir A. Addadi L, et al. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish:indications for an amorphous precursor phase. Proc Natl Acad Sci,2008; 105(35):12748~53.
    [149]Traub W. Arad T. Weiner S. Three dimensional ordered distribution of crystals in turkey tendon collagen fibers. Proc Natl Acad Sci USA,1989; 86(24):9822~6.
    [150]Landis WJ, Hodgens KJ. Arena J, et al. Structural relations between collagen and mineral in bone as determined by high voltage electron microscopic tomography. Microsc Res Tech,1996; 33(2):192~202.
    [151]Bonar LC, Lees S, Mook HA. Neutron diffraction studies of collagen in fully mineralized bone. J Mol Biol,1985:20;181(2):265~70.
    [152]Jaer I, Fratzl P. Mineralized collagen fibrils:a mechanical model with a staggered arrangement of mineral particles. Biophys J,2000;79(4):1737-46.
    [153]Kawasaki K, Ruben J, Stokroos I, et al. The remineralization of EDTA treated human dentine. Caries Res,1999; 33(4):275~80.
    [154]ten Cate JM. Remineralization of caries lesions extending into dentin. J Dent Res,2001;80(5):1407~11.
    [155]Bertassoni LE, Habelitz S, Kinney JH, et al. Biomechanical perspective on the remineralization of dentin. Caries Res,2009; 43(1):70-7.
    [156]Kinney JH, Habelitz S, Marshall SJ, et al. The importance of intrafibrillar mineralization of collagen on the mechanical properties of dentin. J Dent Res, 2003;82(12):957~61.
    [157]Silva GA. Neuroscience nanotechnology:progress, opportunities and challenges. Nat Rev Neurosci,2006;7(1):65~74.
    [158]Zhang S. Fabrication of novel biomaterials through molecular self-assembly. Nat Biotechnol,2003;21 (10):1171~8.
    [159]Ngo H. Glass-ionomer cements as restorative and preventive materials. Dent Clin North Am,2010; 54(3):551~63.
    [160]Peters MC, Bresciani E, Barata TJ, et al. In vivo dentin remineralization by calcium-phosphate cement. J Dent Res,2010;89(8):286~91.
    [161]Koutsoukos PG, Nancollas GH. Crystal growth of calcium phosphates-epitaxial considerations. J Cryst Growth,1981;53(1):10~9.
    [162]Jiang H, Liu XY. Principles of mimicking and engineering the self-organized structure of hard tissues. J Biol Chem,2004; 297(40):41286~93.
    [163]Wong TS, Brough B, Ho CM. Creation of functional micro/nano systems through top-down and bottom-up approaches. Mol Cell Biomech, 2009;6(1):1~55.
    [164]Kim YK, Mai S, Mazzoni A, et al. Biomimetic remineralization as a progressive dehydration mechanism of collagen matrices-implications in the aging of resin-dentin bonds. Acta Biomater,2010;6(9):3729~39.
    [165]George A. Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev.2008:108(11):4670~93.
    [166]Wang L. Nancollas GH. Pathways to biomineralization and biodemineralization of calcium phosphates:the thermodynamic and kinetic controls. Dalton Trans.2009; 15:2665~72.
    [167]Niederberger M, Colfen H. Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly. Phys Chem Chem Phys,2006; 8(28):3271~87.
    [168]Gower LB. Biomimetic model systems for investigating the amorphous precursor pathway and its role in biomineralization. Chem Rev,2008; 108(11): 4551-627.
    [169]Mahamid J, Aichmayer B, Shimoni E. et al. Mapping amorphous calcium phosphate transformation into crystalline mineral from the cell to the bone in zebrafish fin rays. Proc Natl Acad Sci USA,2010:107(14):6316~21.
    [170]Sfeir C, Cambell P. Jadlowiex JA, et al. Method of inducing biomineralization method of inducing bone regeneration and methods related thereof. US Patent Appl,2007; No.20070087959.
    [171]Kaplan DL. Huang J, Wong, et al. Fibrous protein fusions and use thereof in the formation of advanced organic/inorganic composite materials. US Patent Appl,2008; No.20080293919.
    [172]Goldberg HA, Hunter GK, Tye CE. Bone sialoprotein collagen-binding peptides. US Patent Appl,2009; No.20090005298.
    [173]Girija EK, Yokogawa Y, Nagata F. Apatite formation on collagen fibrils in the presence of polyacrylic acid. J Mater Sci Mater Med,2004;15(5):593~9.
    [174]Deshpande AS, Beniash E. Bio-inspired synthesis of mineralized collagen fibrils. Cryst Growth Des,2008;8(8):3084~90.
    [175]Nudelman F, Pieterse K, George A, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater, 2010; 9(12):1004~9.
    [176]Kim J, Uchiyama T, Carrilho M, et al. Chlorhexidine binding to mineralized versus demineralized dentin powder. Dent Mater,2010; 26(8):771~8.
    [177]Olszta MJ, Odom DJ, Douglas EP, et al. A new paradigm for biomineral formation:mineralization via an amorphous liquid-phase precursor. Connect Tissue Res,2003; 44(Suppl 1):326~34.
    [178]He G, Gajjeraman S, Schultz D, et al. Spatially and temporally controlled biomineralization is facilitated by interaction between self assembled dentin matrix protein 1 and calcium phosphate nuclei in solution. Biochemistry,2005; 44(49):16140~8.
    [179]Gajjeraman S, He G, Narayanan K, et al. Biological assemblies provide novel templates for the synthesis of hierarchical structures and facilitate cell adhesion. Adv Funct Mater,2008; 18(24):3972~80.
    [180]Omelon SJ, Grynpas MD. Relationships between polyphosphate chemistry, biochemistry and apatite biomineralization. Chem Rev, 2008;108(11):4694~715.
    [181]Usui Y, Uematsu T, Uchihashi T, et al. Inorganic polyphosphate induces osteoblastic differentiation. J Dent Res,2010;89(5):504~9.
    [182]Li X, Chang J. Preparation of bone-like apatite-collagen nanocomposites by a biomimetic process with phosphorylated collagen. J Biomed Mater Res A, 2008;85(2):293~300.
    [183]Liou SC, Chen SY, Liu DM. Synthesis and characterization of needlelike apatitic nanocomposite with controlled aspect rations. Biomaterials 2003;24(22):3981~8.
    [184]Gupta HS, Seto J, Wagermaier W, et al. Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc Natl Acad Sci USA, 2006; 103(47):17741~6.
    [185]Xu AW, Ma Y, Colfen H. Biomimetic mineralization. J Mater Chem 2007; 17:415~49.
    [186]Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials,2008; 29(8):1127~37.
    [187]Kim YK, Gu LS, Bryan TE, et al. Mineralization of reconstituted collagen using polyvinylphosphonic acid/polyacrylic acid templating matrix protein analogues in the presence of calcium, phosphate and hydroxyl ions. Biomaterials,2010;31(25):6618~27.
    [188]Gu LS, Kim YK, Liu Y, et al. Biomimetic analogs for collagen biomineralization. J Dent Res,2011;90(1):82-7.
    [189]Gu LS, Kim J, Kim YK, et al. A chemical phosphorylation-inspired design for Type I collagen biomimetic remineralization. Dent Mater,2010; 26(11):1077~89.
    [190]Balooch M, Habelitz S, Kinney JH, et al. Mechanical properties of mineralized collagen fibrils as influenced by demineralization. J Struct Biol,2008; 162(3):404~10.
    [191]Lees S, Page EA. A study of some properties of mineralized turkey leg tendon. Connect Tissue Res,1992; 28(4):263~87.
    [192]Toroian D, Lim JE, Price PA. The size exclusion characteristics of type I collagen:implications for the role of noncollagenous bone constituents in mineralization. J Biol Chem,2007; 282(31):22437~47.
    [193]Nielsen-Marsh CM, Hedges REM, Mann T, et al. A preliminary investigation of the application of differential scanning calorimetry to the study of collagen degradation in archaeological bone. Thermochim Acta,2000; 365(1-2):129~39.
    [194]Klont B, ten Cate JM. Susceptibility of the collagenous matrix from bovine incisor roots to proteolysis after in vitro lesion formation. Caries Res,1991; 25(1):46~50.
    [195]De Munck J, Van Landuyt K, Peumans M, et al. A critical review of the durability of adhesion to tooth tissue:methods and results. J Dent Res, 2005;84(2):118~32.
    [196]Liu Y, Tjaderhane L, Breschi L, et al. Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res,2011; doi:10.1177/0022034510391799.825. [Epub ahead of print]
    [197]Tay FR, Pashley DH. Biomimetic remineralization of resin-bonded acid-etched dentin. J Dent Res,2009; 88(8):719~24.
    [198]Kim YK, Yiu CK, Kim JR, et al. Failure of a glass ionomer to remineralize apatite-depleted dentin. J Dent Res,2010; 89(3):230~5.
    [199]Mai S, Kim YK, Toledano M, et al. Phosphoric acid esters cannot replace polyvinylphosphonic acid as phosphoprotein analogs in biomimetic remineralization of resin-bonded dentin. Dent Mater,2009; 25(10):1230~9.
    [200]Mai S, Kim YK, Kim J, et al. In vitro remineralization of severely compromised bonded dentin. J Dent Res,2010;89(4):405~10.
    [201]Dickens SH, Flaim GM. Effect of a bonding agent on in vitro biochemical activities of remineralizing resin-based calcium phosphate cements. Dent Mater, 2008;24(9):1273~80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700