改性水热法合成高性能LiFePO_4正极材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石型LiFePO_4具有较高比容量、优异的循环性能、价格低廉、无污染、环境友好等诸多的优点,使其成为最具潜力的商业化锂离子电池正极材料,特别是将其应用到电动汽车方面。本文以材料的实际应用为出发点,以水热法为基础,通过碳包覆来改善材料较低的电子电导率,成功合成了电化学性能优异的石墨烯与LiFePO_4的复合材料,此外还研究有机溶剂和离子液体对于水热过程的影响。
     本文以LiOH、FeSO_4、H3PO_4为原料,成功合成了LiFePO_4正极材料,通过XRD、SEM表征发现材料具有较高的结晶度,其粒径分部均一(200~500nm),进一步对水热法制备工艺优化后,材料表现出优异的电化学性能。其最佳的合成条件为:反应溶液pH=8,温度T=200℃,时间t=600min,可逆比容量依次为146mAh g~(-1)(0.1C)、137mAh g~(-1)(1C)、131mAh g~(-1)(2C)、128mAh g~(-1)(5C)。
     以水热法制备的LiFePO_4为原材料,使用三种不同的含碳前躯体作为碳源研究了碳包覆过程对于LiFePO_4/C的电化学性能影响,结果表明:以蔗糖作为碳源在750℃下煅烧5h得到的LiFePO_4/C复合材料显示出非常均一的碳包覆层,其复合材料表现出优异的电化学性能。
     在碳包覆过程中,通过引入微量的Fe~(2+)成功合成了原位催化生长的LiFePO_4与石墨烯的复合材料,通过SEM和HRTEM测试发现其表面包覆层是一层石墨化碳层厚度约为2.5nm,而且生长出来的石墨烯将颗粒与颗粒相互连接,构成了三维的导电网络,进一步通过CV、Raman、EIS、恒流充放电等电化学测试都证实了LiFePO_4与石墨烯的复合材料具有非常好的电子导电率和锂离子迁移率,其复合材料表现出非常优异的倍率性能和长期循环性能。
     在水热法制备LiFePO_4过程中添加少量离子液体(HMIMBr)有利于材料的成核过程,使纳米粒子在溶液中具有很好的稳定性。XRD的分析结果显示,其暴露出的晶面是沿着锂离子的传输方向,有利于锂离子的嵌入和脱出;而使用有机溶剂EC和PC辅助水热法合成LiFePO_4正极材料,虽然其长期循环性能有所提高,但是其大倍率放电性能略有下降。
Due to the various advantages of high specific capacity, excellent cycle performance,low cost, non-toxicity, environment friendly and so on, LiFePO_4is considered as one of themost potential lithium-ion battery cathode materials for commercial use, especially theapplication to electric vehicles. For the purpose of application, based on the hydrothermalmethod, we improved the low electronic conductivity by carbon coating, and obtained theLiFePO_4/graphene composite of excellent electrochemical performance successfully. Inaddition, we also tried to improve the electrochemical performance of LiFePO_4by addingdifferent organic solvents and ionic liquids during the hydrothermal process.
     Oliver-structured LiFePO_4cathode material was prepared by hydrothermal methodwith the starting materials LiOH, FeSO_4and H3PO_4. As is shown by XRD and SEM, themorphology showed a uniform partial size around200~500nm with high crystalline,resulting in excellent electrochemical performance. The optimized experimental conditionswere pH=8, T=200℃, t=600min.
     We studied the effect of carbon coating process using three carbon precursors ascarbon sources on the electrochemical performance LiFePO_4/C composites. The resultsrevealed that LiFePO_4/C composite showed a uniform carbon layer when sucrose was usedas carbon source with sintering temperature at750℃for5h. The LiFePO_4/C compositesshowed an excellent electrochemical performance.
     In-situ catalytic LiFePO_4/graphene composite was successfully synthesized by addinga few Fe~(2+)into the carbon coating process. The SEM and HRTEM graphs showed that thesurface coating layer was a graphitic carbon layer around2.5nm and the graphene growingfrom the carbon layer connected the particles with each other, constructing a three- dimensional conductive network. CV, Raman, EIS and galvanostatic tests and othermeasuring methods have further proved that the LiFePO_4/graphene composites owedexcellent electronic conductivity and ionic conductivity, therefore the LiFePO_4/graphenecomposite displayed a prominent rate performance and excellent cycle life.
     A small addition of ionic liquid HMIMBr to the hydrothermal synthesis process ofLiFePO_4is beneficial to the stability of nano-particles in the solution. The XRD resultsillustrated that the exposed crystal face is ac plane, indicating that the thinnest part of theparticle is along the transportation path of lithium ions, stimulating the easy intercalationand deintercalation of lithium ions. LiFePO_4synthetized with the assistance of organicsolvents EC and PC showed improvement on the cycle performance to some extent whilethe rate discharge capability was slightly weakened.
引文
[1] M. Armand, D.W Murphy, J. Broadhead, B.C.H. Steele, Materials for advancedbatteries, Plenum Press, New York,1980.
    [2]吴平,万春荣,印,朝晖,聚合物锂离子电池,化工业出版社,北京,2004.
    [3] B. Scrosati, Battery technology-Challenge of portable power. Nature,1995.373(6515):557-558.
    [4] A.R. Armstrong, P.G. Bruce, Synthesis of layered LiMnO2as an electrode forrechargeable lithium batteries. Nature,1996.381(6582):499-500.
    [5]郑洪河,锂离子电池电质,化工业出版社,北京,2007.
    [6]炳焜,徐徽,王先,肖立新,锂离子电池,中南大出版社,沙,2002.
    [7] R. Yazami, N. Lebrun, M. Bonneau, M. Molteni, High performance LiCoO2positive electrode material. Journal of power sources,1995.54(2):389-392.
    [8] G.X. Wang, S. Zhong, D.H. Bradhurst, S.X. Dou, H.K. Liu, Synthesis andcharacterization of LiNiO2compounds as cathodes for rechargeable lithiumbatteries. Journal of power sources,1998.76(2):141-146.
    [9] S.S. Zhang, K. Xu, T.R. Jow, Study of the charging process of a LiCoO2-basedLi-ion battery. Journal of power sources,2006.160(2):1349-1354.
    [10] J. Fan, Studies of18650cylindrical cells made with doped LiNiO2positiveelectrodes for military applications. Journal of power sources,2004.138(1):288-293.
    [11] H.H. Chang, C.C. Chang, H.C. Wu, Z.Z. Guo, M.H. Yang, Y.P. Chiang, H.S. Sheu,N.L. Wu, Kinetic study on low-temperature synthesis of LiFePO4via solid-statereaction. Journal of power sources,2006.158(1):550-556.
    [12] K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2(0    [13] D. Huang, Solid solution: new cathodes for next generation lithium-ion batteries.Advanced Battery Technology,1998.11(1):23-27.
    [14] W.B. Luo, J.R. Dahn, Comparative study of Li[Co1zAlz]O2prepared by solid-stateand co-precipitation methods. Electrochimica Acta,2009.54(20):4655-4661.
    [15] C.D.W. Jones, E. Rossen, J.R. Dahn, Structure and electrochemistry of LixCryCo1yO2. Solid State Ionics,1994.68(1):65-69.
    [16] J. Cho, Y.J. Kim, T.J. Kim, B. Park, Zero‐strain intercalation cathode forrechargeable Li-Ion cell. Angewandte Chemie,2001.113(18):3471-3473.
    [17] J. Cho, Y.W. Kim, B. Kim, J.G. Lee, B. Park, A breakthrough in the safety of lithiumsecondary batteries by coating the cathode material with AlPO4nanoparticles.Angewandte Chemie International Edition,2003.42(14):1618-1621.
    [18] Q.M. Zhong, U.V. Sacken, Crystal structures and electrochemical properties ofLiAlyNi1yO2solid solution. Journal of power sources,1995.54(2):221-223.
    [19] H. Arai, S. Okada, Y. Sakurai, J.i. Yamaki, Reversibility of LiNiO2cathode. SolidState Ionics,1997.95(3):275-282.
    [20] S.K. Mishra, G. Ceder, Structural stability of lithium manganese oxides. PhysicalReview B,1999.59(9):6120.
    [21] T.A. Eriksson, M.M. Doeff, A study of layered lithium manganese oxide cathodematerials. Journal of power sources,2003.119:145-149.
    [22] S.J. Hwang, H.S. Park, J.H. Choy, Variation of chemical bonding nature of layeredLiMnO2upon delithiation/relithiation and Cr substitution. Solid State Ionics,2002.151(1):275-283.
    [23] A.R. Armstrong, A.D. Robertson, R. Gitzendanner, P.G. Bruce, The LayeredIntercalation Compounds Li (Mn1yCoy)O2: Positive Electrode Materials forLithium–Ion Batteries. Journal of Solid State Chemistry,1999.145(2):549-556.
    [24] Y. Makimura, T. Ohzuku, Lithium insertion material of LiNi1/2Mn1/2O2for advancedlithium-ion batteries. Journal of power sources,2003.119:156-160.
    [25] M.M. Thackeray, W.F. David, P.G. Bruce, J.B. Goodenough, Lithium insertion intomanganese spinels. Materials Research Bulletin,1983.18(4):461-472.
    [26]黄可龙,王兆翔,刘素琴,锂离子电池原与关技术,化工业出版社,北京,2008.
    [27] M.M. Thackeray, Y. Shao-Horn, A.J. Kahaian, K.D. Kepler, E. Skinner, J.T.Vaughey, S.A. Hackney, Structural Fatigue in Spinel Electrodes in High Voltage(4V) Li/LixMn2O4Cells. Electrochemical and Solid-State Letters,1998.1(1):7-9.
    [28] D.H. Jang, Y.J. Shin, S.M. Oh, Dissolution of Spinel Oxides and Capacity Losses in4V Li/Lix Mn2O4Cells. Journal of The Electrochemical Society,1996.143(7):2204-2211.
    [29] H.T. Huang, C.A. Vincent, P.G. Bruce, Correlating capacity loss of stoichiometricand nonstoichiometric lithium manganese oxide spinel electrodes with theirstructural integrity. Journal of The Electrochemical Society,1999.146(10):3649-3654.
    [30] D.Q. Liu, X.Q. Liu, Z.Z. He, The elevated temperature performance of LiMn2O4coated with Li4Ti5O12for lithium ion battery. Materials Chemistry and Physics,2007.105(2):362-366.
    [31] J.S. Gnanaraj, V.G. Pol, A. Gedanken, D. Aurbach, Improving the high-temperatureperformance of LiMn2O4spinel electrodes by coating the active mass with MgO viaa sonochemical method. Electrochemistry communications,2003.5(11):940-945.
    [32] S.C. Park, Y.M. Kim, S.C. Han, S. Ahn, C.H. Ku, J.Y. Lee, The elevatedtemperature performance of LiMn2O4coated with LiNi1XCoXO2(X=0.2and1).Journal of power sources,2002.107(1):42-47.
    [33] L.H. Yu, X.P. Qiu, J.Y. Xi, W.T. Zhu, L.Q. Chen, Enhanced high-potential andelevated-temperature cycling stability of LiMn2O4cathode by TiO2modification forLi-ion battery. Electrochimica Acta,2006.51(28):6406-6411.
    [34] S.H. Lim, J. Cho, PVP-Assisted ZrO2coating on LiMn2O4spinel cathodenanoparticles prepared by MnO2nanowire templates. Electrochemistrycommunications,2008.10(10):1478-1481.
    [35] H.M. Wu, J.P. Tu, X.T. Chen, D.Q. Shi, X.B. Zhao, G.S. Cao, Synthesis andcharacterization of abundant Ni-doped LiNixMn2xO4(x=0.1~0.5) powders byspray-drying method. Electrochimica Acta,2006.51(20):4148-4152.
    [36] Y.K. Sun, D.W. Kim, Y.M. Choi, Synthesis and characterization of spinel LiMn2xNixO4for lithium/polymer battery applications. Journal of power sources,1999.79(2):231-237.
    [37] D. Arumugam, G. Paruthimal Kalaignan, Synthesis and electrochemicalcharacterizations of nano size Ce doped LiMn2O4cathode materials forrechargeable lithium batteries. Journal of Electroanalytical Chemistry,2010.648(1):54-59.
    [38] R. Singhal, S.R. Das, M.S. Tomar, O. Ovideo, S. Nieto, R.E. Melgarejo, R.S.Katiyar, Synthesis and characterization of Nd doped LiMn2O4cathode for Li-ionrechargeable batteries. Journal of power sources,2007.164(2):857-861.
    [39] J.T. Son, H.G. Kim, New investigation of fluorine-substituted spinel LiMn2O4xFxby using sol–gel process. Journal of power sources,2005.147(1):220-226.
    [40] M. Molenda, R. Dziembaj, E. Podstawka, L.M. Proniewicz, Z. Piwowarska, Anattempt to improve electrical conductivity of the pyrolysed carbon-LiMn2O4ySy(0≤y≤0.5) composites. Journal of power sources,2007.174(2):613-618.
    [41] K. Amine, J. Liu, S. Kang, I. Belharouak, Y. Hyung, D. Vissers, G. Henriksen,Improved lithium manganese oxide spinel/graphite Li-ion cells for high-powerapplications. Journal of power sources,2004.129(1):14-19.
    [42] F. Jiao, J.L. Bao, A.H. Hill, P.G. Bruce, Synthesis of ordered mesoporous Li–Mn–Ospinel as a positive electrode for rechargeable lithium batteries. AngewandteChemie,2008.120(50):9857-9862.
    [43] D.K. Kim, P. Muralidharan, H.W. Lee, R. Ruffo, Y. Yang, C.K. Chan, H. Peng, R.A.Huggins, Y. Cui, Spinel LiMn2O4nanorods as lithium ion battery cathodes. Nanoletters,2008.8(11):3948-3952.
    [44] Y.L. Ding, J. Xie, G.S. Cao, T.J. Zhu, H.M. Yu, X.B. Zhao, Single‐CrystallineLiMn2O4Nanotubes Synthesized Via Template‐Engaged Reaction as Cathodes forHigh‐Power Lithium Ion Batteries. Advanced Functional Materials,2011.21(2):348-355.
    [45] J.M. Kim, H.T. Chung, Role of transition metals in layered Li[Ni, Co, Mn]O2underelectrochemical operation. Electrochimica Acta,2004.49(21):3573-3580.
    [46] Y. Chen, G.X. Wang, K. Konstantinov, H.K. Liu, S.X. Dou, Synthesis andcharacterization of LiCoxMnyNi1x yO2as a cathode material for secondary lithiumbatteries. Journal of power sources,2003.119:184-188.
    [47] Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, T. Ohzuku, Crystal and electronicstructures of superstructural Li1x[Co1/3Ni1/3Mn1/3]O2(0≤x≤1). Journal of powersources,2003.119:644-648.
    [48] B. Hwang, Y.W. Tsai, D. Carlier, G. Ceder, A combined computational/experimentalstudy on LiNi1/3Co1/3Mn1/3O2. Chemistry of materials,2003.15(19):3676-3682.
    [49] A.K. Padhi, K. Nanjundaswamy, J.B. Goodenough, Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries. Journal of TheElectrochemical Society,1997.144(4):1188-1194.
    [50] M. Takahashi, S.I. Tobishima, K. Takei, Y. Sakurai, Reaction behavior of LiFePO4as a cathode material for rechargeable lithium batteries. Solid State Ionics,2002.148(3):283-289.
    [51] K. Dokko, S. Koizumi, K. Sharaishi, K. Kanamura, Electrochemical properties ofLiFePO4prepared via hydrothermal route. Journal of power sources,2007.165(2):656-659.
    [52] S.T. Myung, S. Komaba, N. Hirosaki, H. Yashiro, N. Kumagai, Emulsion dryingsynthesis of olivine LiFePO4/C composite and its electrochemical properties aslithium intercalation material. Electrochimica Acta,2004.49(24):4213-4222.
    [53] N. Ravet, Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand,Electroactivity of natural and synthetic triphylite. Journal of power sources,2001.97:503-507.
    [54] P.G. Bruce, Solid-state chemistry of lithium power sources. ChemicalCommunications,1997(19):1817-1824.
    [55] A.S. Andersson, J.O. Thomas, The source of first-cycle capacity loss in LiFePO4.Journal of power sources,2001.97:498-502.
    [56] L. Wang, F. Zhou, Y.S. Meng, G. Ceder, First-principles study of surface propertiesof LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential.Physical Review B,2007.76(16):165435.
    [57] L. Laffont, C. Delacourt, P. Gibot, M.Y. Wu, P. Kooyman, C. Masquelier, J.M.Tarascon, Study of the LiFePO4/FePO4two-phase system by high-resolutionelectron energy loss spectroscopy. Chemistry of materials,2006.18(23):5520-5529.
    [58] V. Srinivasan, J. Newman, Discharge model for the lithium iron-phosphateelectrode. Journal of The Electrochemical Society,2004.151(10): A1517-A1529.
    [59] A. Yamada, S.C. Chung, K. Hinokuma, Optimized LiFePO4for lithium batterycathodes. Journal of The Electrochemical Society,2001.148(3): A224-A229.
    [60] C.W. Kim, M.H. Lee, W.T. Jeong, K.S. Lee, Synthesis of olivine LiFePO4cathodematerials by mechanical alloying using iron (III) raw material. Journal of powersources,2005.146(1):534-538.
    [61] J. Barker, M.Y. Saidi, J.L. Swoyer, Lithium iron (II) phospho-olivines prepared by anovel carbothermal reduction method. Electrochemical and Solid-State Letters,2003.6(3): A53-A55.
    [62] N. Ravet, M. Gauthier, K. Zaghib, J.B. Goodenough, A. Mauger, F. Gendron, C.M.Julien, Mechanism of the Fe3+reduction at low temperature for LiFePO4synthesisfrom a polymeric additive. Chemistry of materials,2007.19(10):2595-2602.
    [63] B.Q. Zhu, X.H. Li, Z.X. Wang, H.J. Guo, Novel synthesis of LiFePO4by aqueousprecipitation and carbothermal reduction. Materials Chemistry and Physics,2006.98(2):373-376.
    [64] C.H. Mi, G.S. Cao, X.B. Zhao, Low-cost, one-step process for synthesis ofcarbon-coated LiFePO4cathode. Materials letters,2005.59(1):127-130.
    [65] L.N. Wang, X.C. Zhan, Z.G. Zhang, K.L. Zhang, A soft chemistry synthesis routinefor LiFePO4–C using a novel carbon source. Journal of Alloys and Compounds,2008.456(1):461-465.
    [66] S.F. Yang, P.Y. Zavalij, M. S. Whittingham, Hydrothermal synthesis of lithium ironphosphate cathodes. Electrochemistry communications,2001.3(9):505-508.
    [67] S.F. Yang, Y.N. Song, P.Y. Zavalij, M.S. Whittingham, Reactivity, stability andelectrochemical behavior of lithium iron phosphates. Electrochemistrycommunications,2002.4(3):239-244.
    [68] J.J. Chen, M.S. Whittingham, Hydrothermal synthesis of lithium iron phosphate.Electrochemistry communications,2006.8(5):855-858.
    [69] J.J Chen, S.J. Wang, M.S. Whittingham, Hydrothermal synthesis of cathodematerials. Journal of power sources,2007.174(2):442-448.
    [70] J. Lee, A.S. Teja, Characteristics of lithium iron phosphate (LiFePO4) particlessynthesized in subcritical and supercritical water. The Journal of supercritical fluids,2005.35(1):83-90.
    [71] J. Lee, A.S. Teja, Synthesis of LiFePO4micro and nanoparticles in supercriticalwater. Materials letters,2006.60(17):2105-2109.
    [72] C. Xu, J. Lee, A.S. Teja, Continuous hydrothermal synthesis of lithium ironphosphate particles in subcritical and supercritical water. The Journal ofsupercritical fluids,2008.44(1):92-97.
    [73] F. Croce, A. D’Epifanio, J. Hassoun, A. Deptula, T. Olczac, B. Scrosati, A novelconcept for the synthesis of an improved LiFePO4lithium battery cathode.Electrochemical and Solid-State Letters,2002.5(3): A47-A50.
    [74] S.Y. Chung, J.T. Bloking, Y.M. Chiang, Electronically conductive phospho-olivinesas lithium storage electrodes. Nature materials,2002.1(2):123-128.
    [75] S.Y. Chung, Y.M. Chiang, Microscale measurements of the electrical conductivityof doped LiFePO4. Electrochemical and Solid-State Letters,2003.6(12):A278-A281.
    [76] C.Y. Ouyang, S.Q. Shi, Z.X. Wang, X.J. Huang, L.Q. Chen, First-principles studyof Li ion diffusion in LiFePO4. Physical Review B,2004.69(10):104303.
    [77] G.X. Wang, S. Bewlay, J. Yao, J.H. Ahn, S.X. Dou, H.K. Liu, Characterization ofLiMxFe1xPO4(M=Mg, Zr, Ti) Cathode Materials Prepared by the Sol-Gel Method.Electrochemical and Solid-State Letters,2004.7(12): A503-A506.
    [78] D.Y. Wang, H. Li, S.Q. Shi, X.J. Huang, L.Q. Chen, Improving the rateperformance of LiFePO4by Fe-site doping. Electrochimica Acta,2005.50(14):2955-2958.
    [79] D.X. Gouveia, V. Lemos, J.A.C. de Paiva, A.G. Souza Filho, J. Mendes Filho, S.M.Lala, L.A. Montoro, J.M. Rosolen, Spectroscopic studies of LixFePO4andLixM0.03Fe0.97PO4(M=Cr, Cu, Al, Ti). Physical Review B,2005.72(2):024105.
    [80] M. Abbate, S.M. Lala, L.A. Montoro, J.M. Rosolen, Ti-, Al-, and Cu-dopinginduced gap states in LiFePO4. Electrochemical and Solid-State Letters,2005.8(6):A288-A290.
    [81] Y.D. Cho, G.T.K. Fey, H.M. Kao, Physical and electrochemical properties ofLa-doped LiFePO4/C composites as cathode materials for lithium-ion batteries.Journal of Solid State Electrochemistry,2008.12(7-8):815-823.
    [82] D. Li, Y.D. Huang, N. Sharma, Z.X. Chen, D.Z. Jia, Z.P. Guo, Enhancedelectrochemical properties of LiFePO4by Mo-substitution and graphiticcarbon-coating via a facile and fast microwave-assisted solid-state reaction.Physical Chemistry Chemical Physics,2012.14(10):3634-3639.
    [83] H.C. Shin, S.B. Park, H. Jang, K.Y. Chung, W.I. Cho, C.S. Kim, B.W. Cho, Rateperformance and structural change of Cr-doped LiFePO4/C during cycling.Electrochimica Acta,2008.53(27):46-7951.
    [84] M.R. Roberts, G. Vitins, J.R. Owen, High-throughput studies of Li1-xMgx/2FePO4and LiFe1-yMgyPO4and the effect of carbon coating. Journal of power sources,2008.179(2):754-762.
    [85] M.S. Islam, D.J. Driscoll, C.A. Fisher, P.R. Slater, Atomic-scale investigation ofdefects, dopants, and lithium transport in the LiFePO4olivine-type battery material.Chemistry of materials,2005.17(20):5085-5092.
    [86] N. Ravet, A. Abouimrane, M. Armand, On the electronic conductivity of phospho-olivines as lithium storage electrodes. Nature materials,2003.2(11):702-703.
    [87] P. S. Herle, B. Ellis, N. Coombs, L.F. Nazar, Nano-network electronic conduction iniron and nickel olivine phosphates. Nature materials,2004.3(3):147-152.
    [88] C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J.B. Leriche, M. Morcrette, J.M.Tarascon, C. Masquelier, Toward understanding of electrical limitations (electronic,ionic) in LiMPO4(M=Fe, Mn) electrode materials. Journal of The ElectrochemicalSociety,2005.152(5): A913-A921.
    [89] K.S. Park, J.T. Son, H.T. Chung, S.J. Kim, C.H. Lee, K.T. Kang, H.G. Kim, Surfacemodification by silver coating for improving electrochemical properties of LiFePO4.Solid State Communications,2004.129(5):311-314.
    [90] B. León, C.P. Vicente, J. Tirado, P. Biensan, C. Tessier, Optimized chemical stabilityand electrochemical performance of LiFePO4composite materials obtained by ZnOcoating. Journal of The Electrochemical Society,2008.155(3): A211-A216.
    [91] Y.S. Hu, Y.G. Guo, R. Dominko, M. Gaberscek, J. Jamnik, J. Maier, Improvedelectrode performance of porous LiFePO4using RuO2as an oxidic nanoscaleinterconnect. Advanced Materials,2007.19(15):1963-1966.
    [92] Y.G. Wang, Y.R. Wang, E. Hosono, K.X. Wang, H.S. Zhou, The design of aLiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by anin situ polymerization restriction method. Angewandte Chemie InternationalEdition,2008.47(39):7461-7465.
    [93] C. Delacourt, P. Poizot, S. Levasseur, C. Masquelier, Size Effects on Carbon-FreeLiFePO4Powders The Key to Superior Energy Density. Electrochemical andSolid-State Letters,2006.9(7): A352-A355.
    [94] H.C. Shin, W.I. Cho, H. Jang, Electrochemical properties of carbon-coatedLiFePO4athode using graphite, carbon black, and acetylene black. ElectrochimicaActa,2006.52(4):1472-1476.
    [95] R. Dominko, M. Bele, M. Gaberscek, M. Remskar, D. Hanzel, S. Pejovnik, J.Jamnik, Impact of the carbon coating thickness on the electrochemical performanceof LiFePO4/C composites. Journal of The Electrochemical Society,2005.152(3):A607-A610.
    [96] Y.H. Huang, J.B. Goodenough, High-rate LiFePO4lithium rechargeable batterypromoted by electrochemically active polymers. Chemistry of materials,2008.20(23):7237-7241.
    [97] K.S. Park, S.B. Schougaard, J.B. Goodenough, Conducting‐Polymer/Iron‐Redox‐Couple Composite Cathodes for Lithium Secondary Batteries. AdvancedMaterials,2007.19(6):848-851.
    [98] Z.Y. Chen, H.L. Zhu, S. Ji, R. Fakir, V. Linkov, Influence of carbon sources onelectrochemical performances of LiFePO4/C composites. Solid State Ionics,2008.179(27):1810-1815.
    [99] M.M. Doeff, J.D. Wilcox, R. Yu, A. Aumentado, M. Marcinek, R. Kostecki, Impactof carbon structure and morphology on the electrochemical performance ofLiFePO4/C composites. Journal of Solid State Electrochemistry,2008.12(7-8):995-1001.
    [100] J.J Wang, X.L. Sun, Understanding and recent development of carbon coating onLiFePO4cathode materials for lithium-ion batteries. Energy&EnvironmentalScience,2012.5(1):5163-5185.
    [101] H.Q. Li, H.S. Zhou, Enhancing the performances of Li-ion batteries bycarbon-coating: present and future. Chemical Communications,2012.48(9):1201-1217.
    [102] G.X. Wang, L. Yang, Y. Chen, J. Wang, B. Steve, H. Liu, An investigation ofpolypyrrole-LiFePO4composite cathode materials for lithium-ion batteries.2005.50(24):4649-4654.
    [103] K. Dokko, S. Koizumi, H. Nakano, K. Kanamura, Particle morphology, crystalorientation, and electrochemical reactivity of LiFePO4synthesized by thehydrothermal method at443K. Journal of Materials Chemistry,2007.17(45):4803-4810.
    [104] Q. Song, X. Ou, L. Wang, G. Liang, Z. Wang, Effect of pH value on particlemorphology and electrochemical properties of LiFePO4by hydrothermal method.Materials Research Bulletin,2011.46(9):1398-1402.
    [105] C.W. Sun, S. Rajasekhara, J.B. Goodenough, F. Zhou, Monodisperse porousLiFePO4microspheres for a high power Li-ion battery cathode. Journal of theAmerican Chemical Society,2011.133(7):2132-2135.
    [106] S.L. Yang, X.F. Zhou, J.G. Zhang, Z.P. Liu, Morphology-controlled solvothermalsynthesis of LiFePO4as a cathode material for lithium-ion batteries. Journal ofMaterials Chemistry,2010.20(37):8086-8091.
    [107] D.H. Kim, J. Kim, Synthesis of LiFePO4nanoparticles in polyol medium and theirelectrochemical properties. Electrochemical and Solid-State Letters,2006.9(9):A439-A442.
    [108] C.R. Sides, F. Croce, V.Y. Young, C.R. Martin, B. Scrosati, A High-Rate,Nanocomposite LiFePO4/carbon Cathode. Electrochemical and Solid-State Letters,2005.8(9): A484-A487.
    [109] J.F. Ni, M. Morishita, Y. Kawabe, M. Watada, N. Takeichi, T. Sakai, Hydrothermalpreparation of LiFePO4nanocrystals mediated by organic acid. Journal of powersources,2010.195(9):2877-2882.
    [110] M. Konarova, I. Taniguchi, Synthesis of carbon-coated LiFePO4nanoparticles withhigh rate performance in lithium secondary batteries. Journal of power sources,2010.195(11):3661-3667.
    [111] Y.W. Denis, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa, S.Fujitani, Study of LiFePO4by cyclic voltammetry. Journal of The ElectrochemicalSociety,2007.154(4): A253-A257.
    [112] R. Dominko, M. Gaberscek, J. Drofenik, M. Bele, S. Pejovnik, J. Jamnik, The roleof carbon black distribution in cathodes for Li ion batteries. Journal of powersources,2003.119:770-773.
    [113] M.M. Doeff, Y. Hu, F. McLarnon, R. Kostecki, Effect of surface carbon structureon the electrochemical performance of LiFePO4. Electrochemical and Solid-StateLetters,2003.6(10): A207-A209.
    [114] Y. Shi, S.L. Chou, J.Z. Wang, D. Wexler, H.J. Li, H.K. Liu, Y.P. Wu, Graphenewrapped LiFePO4/C composites as cathode materials for Li-ion batteries withenhanced rate capability. Journal of Materials Chemistry,2012.22(32):16465-16470.
    [115] B. Wang, D.L. Wang, Q.M. Wang, T.F. Liu, C.F. Guo, X.S. Zhao, Improvement ofthe electrochemical performance of carbon-coated LiFePO4modified with reducedgraphene oxide. Journal of Materials Chemistry A,2013.1(1):135-144.
    [116] X.F. Zhou, F. Wang, Y.M. Zhu, Z.P. Liu, Graphene modified LiFePO4cathodematerials for high power lithium ion batteries. Journal of Materials Chemistry,2011.21(10):3353-3358.
    [117] K. Shiraishi, K. Dokko, K. Kanamura, Formation of impurities on phospho-olivineLiFePO4during hydrothermal synthesis. Journal of power sources,2005.146(1):555-558.
    [118] G. Liu, H. Zheng, S. Kim, Y. Deng, A. Minor, X. Song, V. Battaglia, Effects ofVarious Conductive Additive and Polymeric Binder Contents on the Performance ofa Lithium-Ion Composite Cathode. Journal of The Electrochemical Society,2008.155(12): A887-A892.
    [119] H.H. Zheng, K. Jiang, T. Abe, Z. Ogumi, Electrochemical intercalation of lithiuminto a natural graphite anode in quaternary ammonium-based ionic liquidelectrolytes. Carbon,2006.44(2):203-210.
    [120]张星辰,离子体-论基础究展,化工业出版社,北京,2009.
    [121] L. Wang, X.M. He, W.T. Sun, J.L. Wang, Y.D. Li, S.S. Fan, Crystal OrientationTuning of LiFePO4Nanoplates for High Rate Lithium Battery Cathode Materials.Nano letters,2012.12(11):5632-5636.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700