磷酸铁锂正极材料的合成及其聚合物包覆改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锂离子电池由于具有高电压、高能量密度、循环性能好、环保、无记忆效应而受到人们的青睐。橄榄石磷酸铁锂由于其突出的循环性能优良,价格低廉、原材料来源广泛而被认为是最有开发前景和潜力的锂离子正极材料。但是较低的导电性和振实密度阻碍了其商业化开发进程。研究工作者在这两方面进行了大量的工作来提高其导电性和振实密度。本文针对上述提出的问题,开展了如下工作:
     (1)采用溶剂热法分别以乙醇、乙二醇以及丙三醇/水为溶剂合成了橄榄石结构的磷酸亚铁锂(LiFeP04)。运用XRD、SEM、FTIR等手段,对产物晶体结构、颗粒形貌和表面微观结构进行表征,详细探讨了溶剂热合成LiFePO4时不同溶剂对产物形貌和结构的影响。运用恒流充放电测试和循环伏安方法对产物的电化学性能进行研究。结果表明:以乙二醇为溶剂合成的LiFePO4呈均匀片状结构,具有尺寸小,厚度薄的特点,这种结构缩短了锂离子的扩散距离,有利于电化学性能的提高,其倍率放电比容量达到161.7mAh·g-1,1C倍率放电时容量仍保持132.6mAh·g-1,0.1C倍率50次循环后容量衰减仅为1.98%。
     (2)通过简单易行的低温溶剂热法合成了由纳米片自组装而成、具有分级结构的球形磷酸铁锂颗粒。制备得到的球形产物直径大小在8um左右,由20nm左右厚的纳米薄片按特定的方式紧密组装而成。这种分级结构的球形磷酸铁锂的振实密度能达到1.6g·cm-3,同时由于一次颗粒尺寸较小,有利于锂离子的嵌入和脱出,从而倍率容量能得到有效改善。在制备过程中尿素和柠檬酸的加入对纳米片状的形成和分级结构的组装有着重要意义。通过时间单因素实验的结果,我们提出了
     一个合理的分级结构形成组装机理图。通过SEM、TEM、XRD、BET比表面积测试和拉曼光谱对其结构和性能进行了进一步表征。充放电结果显示制得的材料具有较高的可循环容量(10C放电倍率下达到93.6 mAh·g-1)和优异的循环性能。
     (3)采用原位氧化聚合法将吡咯直接原位聚合包覆到磷酸铁锂颗粒表面。在原位氧化聚合过程中,加入SDBS以提高聚吡咯包覆的均匀性改善包覆效果,提高材料的整体导电性。LiFePO4、PPy-LiFePO4复合材料、PPy/SDBS-LiFePO4都采用XRD、SEM、TG进行表征。采用恒流充放电和交流阻抗对样品电化学性能进行测试。结果表明,在SDBS加入的情况下,吡咯包覆的磷酸铁锂复合材料表现出良好的动力学性能,并在O.1C倍率放电下容量达到142.7 mAh·g-1。交流阻抗显示,SDBS加入后,吡咯的包覆能更有效地降低电荷转移电阻,这是由于SDBS可以使聚吡咯的包覆更均匀,同时还起到了掺杂提高导电性的作用。
Lithium ion batteries are favorable because of the properties of high voltage, high energy density, long cycling life, little local action, non-memory effect and pollution-free. Olivine LiFePO4 is acknowledged to be the most promising cathode material in HEV for its high theoretical capacity, brillianit cyele stability, cost effective raw materials and non-toxicity. But the low eleetrical conduetivity and low tap-density obstructs its'proeess of commereialization. To cope with this problem, researchers try to improve the eleetrochemical properties and enhance the tap-density of LiFePO4 powders. Aiming at solving the problem mentioned above, we started works as the follows:
     (1) The olivine lithium ion phosphate (LiFePO4) was prepared via solvothermal reaction using ethanol, ethylene glycol(EG), and glycerol-water as solvents respectively. The crystalline structure, particle morphology, and surface microstructure were characterized by high-energy synchrotron XRD, SEM and FTIR spectroscopy. The effects of different solvents on the morphologies and structurtes were investigated in detail. The electrochemical properties were also investigated by charge/discharge test, cyclic voltammetry (CV). The results showed that LiFePO4 nanosheet obtained by using EG as solvent has smaller size, thin features, such a structure reduced the lithium ion diffusion distance and favors the improvement of electrochemical performance. It can deliver a initial discharge capacities of 161.5mAh·g-1 at 0.1 C,132.6mAh·g-1 at 1C and the cycling capacity retention rate reaches 98.02% over 50 cycles at 0.1C.
     (2) LiFePO4 sphere with hierarchical microstructure self-assembled by nanoplates has been successfully synthesized via a low-temperature solvothermal reaction followed by high-temperature treatment. These resulting sphere show a uniform size distribution of~8um and are hierarchically constructed with two-dimensional nanoplates with~20nm thicknesses, while these tiny plates are densely aggregated in an ordered fashion. The hierarchical structure gives a relatively high tap density of 1.6g.cm-3, and simultaneously, the primary nanoplates could provide a huge electrochemically available surface for enhancing the rate capability of the lithium insertion/deinsertion reaction.The presence of urea and citric play an important role in the formation of nanoplates and construction of hierarchically self-assembled microsphere. A reasonable formation mechanism is proposed on the basis of the result of time-dependent experiments. The materials' physical properties were further characterized by SEM, TEM, XRD, BET and Raman spectroscopy. The charge-discharge test showed that the hierarchical microspheres as a cathode-active material demonstrated high reversible capacity (93.6mAh·g-1 at 10C) and excellent cycle stability.
     (3) A simple chemical oxidative polymerization of pyrrole directly onto the surface of LiFePO4 particles was applied to the synthesis of polypyrrole-LiFePO4 (PPy-LiFePO4) powder. The LiFePO4 sample without carbon coating was synthesized by a solvothermal method. The dodecyl benzenesulfonic acid, sodium salt (SDBS) was used as additive during PPy polymerization for improving the homogeneous distribution of the coating and conductivity of PPy-LiFePO4. Physical properties of resulting LiFePO4, PPy-LiFePO4 and PPy/SDBS-LiFePO4 were characterized by XRD, SEM, TG. The electrochemical behavior of the samples was examined against lithium counter electrode by galvanostatic charge/discharge measurements. Carbon-free LiFePO4 coated with PPy/SDBS hybrid film exhibited good electrode kinetics and a stable discharge capacity of 142.7mAh·g-1 at 0.1C. Impedance measurements showed that the PPy/SDBS coating decreased the charge-transfer resistance of the corresponding LiFePO4 cathode material very effectively, which was attributed to a homogeneous coating and doped effction.
引文
[1]Chen J J, Vacchio M J, Whittingham M S, et al. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Irons,2008,178(31-32):1676-1693
    [2]Cheng F, Tao Z, Liang J, et al. Template-directed materials for rechargeable lithium-ion batteries. Chem. Mater.,2008,20(3):667-681
    [3]Wakihara M. Recent development in lithium ion batteries. Materials Science and Engineering,2001,33(4):109-134
    [4]阚素荣,吴国良.国产石墨作为锂离子蓄电池负极材料的性能.电源技术,2002,26(2):68-68
    [5]Mitzustlima K, Johns P C, Wiseman P J, et al. Mater. Res., Bull.,1980,15: 783-786
    [6]GaurantD. Snythesis by a soft chemistry route and characterization of LiNi1-yCoyO2(0≤y≤1) cathodematerial.J.Solid State Irons,1996,91(2):45-54
    [7]查全性.试论高比容量电池进展.物理,1998,27(10):529-598
    [8]叶乃清,刘长久,沈上越.锂离子正极材料LiNiO2存在的问题与解决办法.无机材料学报,2004,19(6):1217-1224
    [9]Broussely M, Biensan P, Simon B. Lithium insertion into host materials:the key to success for Li ion batteries. Electrochemica Acta,1999,45(1-2):3-22
    [10]Piszora P, Dami J, Nowicki W, et al. Synchrotron X-ray powder diffraction studies on the phase transitions in LiMn2O4. J. Alloys & Compounds,2004, 62(1-2):231-235
    [11]Wu H C, Guo Z Z, Wen H P, et al. Study the fading mechanism of LiMn2O4 battery with spherical and flake type graphite as anode materials. J. Power Sources, 2005,146(1-2):736-740
    [12]Song D, Ikuta H, Uchida T, et al. The spinel phase LiALyMn2-yO4(y=0,1/ 2,1/9,1/6,1/3) as the cathode for rechargeable lithium batteries. Solid State Ionics, 1999,117(2):151-156
    [13]Streltsov A, Belokneva L, Tsirelson G, et al. Multipole analysis of the electron density of triphylite LiFePO4 using X-ray differaction data. Acta Cryst,1993, 49(1):147-153
    [14]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive electrode materials for rechargeable lithium batteries. J.Electrochem. Soc,1997, 144(4):1188-1194
    [15]Dragana J, Dragan U. A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J. Power Sources 2009,190(2): 538-544
    [16]任俊霞,阎杰,王小建,等.锂离子电池正极材料LiFePO4的研究进展.电池,2004,3(1):53-55
    [17]Thackeray M. Lithium-ion batteries:An unexpected conductor.Nature Mater., 2002,1(2):81-82
    [18]Taraseon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414(6862):359-367
    [19]吴宇平,戴晓兵,马军旗,等.锂离子电池——应用与实践[M].北京:化学工业出版社,2004
    [20]李景虹.先进电池材料[M].北京:化学工业出版社,2004
    [21]Andersson A S, Thomas J O. The source of fist-cycle capacity loss in LiFePO4.J. Power Sources,2001,97-98:498-502
    [22]Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite. J. Power Sources,2001,97-98:503-507
    [23]Piana M, Arrabito M, Bodoardo S, et al. Characterization of phospho-olivines as materials for Li-ion cell cathodes. Solid State Ionics,2002,8(1):17-26.
    [24]Okada S, Sawas S, Egashira M, et al. Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries. J. Power Sources,2001,97-98:430-432.
    [25]Yamada A, Chung S C, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc.,2001,148(3):A224-A229.
    [26]张海朗.锂离子电池新型正极材料LiFePO4的研究评述.现代化工,2005,25(9):18-20
    [27]苏元智,徐徽,陈白珍,等.微波法合成LiFePO4的研究.电池,2006,36(1):43-44
    [28]Masashi H, Keiichi K, et al. Synthesis of LiFePO4 cathode material by microwave processing. J. Power Sources,2003,119-121:258-261
    [29]Park K S, Son J T, et al. Synthesis of LiFePO4 by co-precipitation and microwave heating. Electrochemistry Communications,2003,5(10):839-842
    [30]Xu Z H, Xu L, Lai Q Y, et al. Microemulsion synthesis of LiFePO4/C and its electrochemical properties as cathode materials for lithium-ion cells. Mater. Chem. Phys.,2007,105(1):39-42
    [31]Franger S, Benoit C, Bourbon C, et al. Chemistry and electrochemistry of composite LiFePO4 materials for secondary lithium batteries. Journal of Physics and Chemistry of Solids,2006,67(6):1338-1342
    [32]Myung S T, Komaba S, Hirosaki N, et al. Emulsion drying synthesis of olivine LiFePO4/C composite and electrochemical properties as lithium intercalation material. Electrochimica Acta,2004,49(24):4213-4222
    [33]Barker J, Saidi M Y, Swoyer J L. Lithium Iron (II) Phospho-olivines prepared by a novel carbothermal reduction method. Electrochemical and Solid-State Letters, 2003,6(3):A53-A55
    [34]张静,刘素琴,黄可龙,等LiFePO4的水热合成及性能研究.无机化学学报,2005,21(3):433-436
    [35]文衍宣,郑绵平,黄映恒,童张法.锂离子电池正极材料磷酸铁锂的复合改性研究.青岛新能源材料与技术应用国际论坛论文集,2005
    [36]Carewska M, Scaccia S, Wisniewski P, et al. A New Synthetic route for preparing LiFePO4 with enhanced electrochemical performance. The Electrochemical Society,2002,149(7):A886-A890
    [37]Croce F, Hassoun J, et al. A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid-State Letters,2002, (3):A47-A50
    [38]Park K S, Son J T, Chung H T, et al..Synihesis of LiFePO4 by co-precipiation and microwave heating. J. Electrochem. Commun.,2003,5(10):839-84
    [39]Gaberscek M, Dominko R, Bele M. Porous carbon-decorated LiFePO4 prepared by sol-gel method based on citric acid. Solid State Ionics,2005,176(22):1801-1805
    [40]周恒辉,倪江锋,陈继涛,等LiFePO4的研究及产业化进展.新材料产业,2006,(4):49-52
    [41]Ravet N, Herstedt M, Sterndahl M, et al. Surface chemistry of carbon-treated LiFePO4 particles for Li-ion battery cathodes studied by PES. Electrochem. Solid State,2003,6(9):A202-A206
    [42]Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic Triphylite. J. Power Sources,2001,97-98:503-507
    [43]VorkF A T, SehuenLmans B C,Barendrecht E. Influence of inserted anions on the properties of polypyrrole. Electrochim Acta,1990,35(2):567-572
    [44]Wang L, Li X, Yang Y. Preparation, properities and applications of Polypyrroles. Reactive & Funetional Polymers,2001,47(2):125-139
    [45]杨永芳,刘敏江.导电高分子材料的进展.J.塑料科技,2002,4:58-60
    [46]谢允斌,黄美荣,李新贵.多功能性聚吡咯复合膜化学进展.2006,18(12):1677-1683
    [47]Satmon M. A chemical route to pyorrle polymer films. Sci. Polym. Lett. Ed,1982, 20:187-193
    [48]Zotti G, Schiavon G, Comisso N. Anion effects on conductivity of isomorphous polypyrrole charge pinning by nucleophilic anions. Synth. Met.,1991,40(3):309
    [49]王立新,张福强,姜云鹏等PPy/SiO2纳米复合材料导电机理的研究.功能材料,1999,30(3):302-303
    [50]Mogi I, Watanabe K, Motokawa M. Magneto-electro polymerization of conducting Polypyrrole. J.Physical B, Condensed matter,1988,246-247:412-415
    [51]Gemeay M, Hiroshi N, Susumu K, et al. Chemical preparation of manganese dioxide/polypyrrole composites and their use as cathode active materials for rechargeable lithium batteries. J.Electrochem.Soc.,1995,142(12):4190-4195
    [52]Park J Y, Jang M K, Park, et al. Capacitence properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber. J. Power Sources,2002,105(1):20-25
    [53]Sun M M, Zhang S C, Jiang T, et al. Nano-wire networks of sulfur-polypyrrole composite cathode material for rechargeable lithium batteries. Electrochem. Commun.,2008,10(12):1819-1822
    [54]Nishizawa M, Mukai K, Kuwabata S, et al. Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active materials for lithium batteries. J. Electrochem.Soc.,1997,144(6): 1923-1927
    [55]Kuwabata S, Kisimoto A, Tanaka T, et al. Electrochemical synthesis of composite films of manganese dioxide and polypyrrole and their propertiesas an active material in lithium secondary batteries. J. Electrochem. Soc.,1994,141(1):10-15
    [56]Feng C, Chew S Y, Guo Z, et al. An investigation of polypyrrole-LiVsOg composite cathode materials for lithium-ion batteries. J. Power Sources,2007, 174(2):1095-1099
    [57]Chew S Y, Feng C, Ng S H, et al. Low-temperature synthesis of polypyrrole-coated LiV3O8 composite with enhanced electrochemical properties. J. Electrochem. Soc.,2007,154(7):A633-A637
    [58]Sun M M, Zhang S C, Jiang T, et al. Nano-wire networks of sulfur-polypyrrole composite cathode material for rechargeable lithium batteries. Electrochem. Commun.,2008,10(12):1819-1822
    [59]Anguchamy Y K, Lee J W, Popov B N. Electrochemical performance of polypyrrole/silvervanadium oxide composite cathodes in lithium primary batteries. J. Power Sources,2008,184(1):297-302
    [60]刘恩辉.锂离子电池正极材料钒氧基化合物的制备及电化学性能研究:[博士学位论文].长沙:中南大学,2004
    [61]龚本利.碳热还原法合成磷酸亚铁锂及其电极过程研究:[硕士学位论文].长沙:中南大学,2007
    [62]Yang S F, Song Y N, Ngala K, et al. Performance of LiFePO4 as lithium battery cathode and comparison with manganese andvanadium oxides. Journal of Power Sources,2003,119-121(1):239-246
    [63]Prosini P P, Marida L, Zane D, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid state ionics,2002,148(1):45-51
    [64]Churikov A V, Ivanishchev A V, Ivanishcheva I A, et al. Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochimica Acta,2010,55(8):2939-2950
    [65]Chung S Y, Bloking J T, Chiang Y-M.Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials,2002,1(2):123-128
    [66]Doeff M M, Wilcox J D, Kostecki R, et al. Optimization of carbon coatings on LiFePO4. Journal of Power Sources,2006,163(1):180-184.
    [67]Wang G X, Yang L, Bewlay S L, et al. Electrochemical properties of carbon coated LiFePO4 cathode materials. Journal of Power Sources,2005,146(1-2): 521-524
    [68]Shin H C, Cho W I, Jang H. Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. Journal of Power Sources,2006,159(2):1383-1388
    [69]Wang G X, Bewlay S, Needham S A. Synthesis and characterization of LiFePO4 and LiTi0.01Fe0.99PO4 cathode materials. Journal of the Electrochemical Society, 2006,153(1):A25-A31
    [70]Islam M S, Driscoll D J, Fisher C A. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivin-type battery material. Chemistry of Materials,2005,17(20):5085-5092
    [71]张宝,李新海,罗文斌,等LiFe(1-x)MgxPO4锂离子电池正极材料的电化学性能.中南大学学报,自然科学版,2006,37(6):1094-1097
    [72]Singhal A, Skandan G, Amatucci G, et al. Nanostructured electrodes for next generation rechargeable electrochemical devices. Journal of Power Sources,2004, 129(1):38-44
    [73]Hu Y Q, Doeff M M, Kostecki R, et al. Electrochemical performance of Sol-Gel synthesized LiFePO4 in lithium batteries. Journal of the Electrochemical Society, 2004,151 (8):A1279-A1285
    [74]Chen J J, Wang S J, Whittingham S M. Hydrothermal synthesis of cathode materials. Journal of Power Sources,2007,174 (2):442-448
    [75]Saravanan K, Reddy M V, Balaya P. Storage performance of LiFePO4 nanoplates. Journal of materials chemistry,2009,19(5):553-668
    [76]Aimable A,Aymes D, Bernard F, et al. Characteristics of LiFePO4 obtained through a one-step continuous hydrothermal synthesis process working in supercritical water. Solid State Ionics,2009,180(11-13):861-866
    [77]Rangappaa D, Ichihara M, Kudo T, et al. Surface modified LiFePO4/C nanocrystals synthesis by organic molecules assisted supercritical water process. Journal of Power Sources,2009,194(2):1036-1042
    [78]Zhao L J, Zhang H J, Xing Y, et al.Morphology-controlled synthesis of magnetites with nanoporous structures and excellent magnetic properties. Chemistry of Materials,2008,20(1):198-204
    [79]Andersson A S, Thomas J O. The source of first-cycle capacity loss in LiFePO4. Journal of Power Sources,2001,97-98(2):498-502
    [80]Huang H, Yin S C, Nazar L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett.,2001,4(10): A170.-A172
    [81]Kim H S, Cho B W, Cho W I. Cycling performance of LiFePO4 cathode material for lithium secondary batteries. J. Power Sources,2004,132(1-2):235-239
    [82]Dominko R, Goupil J M, Bele M, et al. Impact of LiFePO4/C composites porosity on their electrochemical performance. J.Electrochem.Soc.2005,152(5): A858-A863
    [83]Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite.J. Power Sources,2001,97-98:503-507
    [84]Gaberscek M;Dominko R, Jamnik. Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochem. Commun., 2007,9(12):2778-2783
    [85]Wang Y, Hosono E, et al. The design of a LiFePO4/carbon Nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. J. Angew. Chem., Int. Ed,2008,47(39):7461-7465
    [86]Lim S, Yoon C S, Cho J. Synthesis of nanowire and hollow LiFePO4 cathodes for high-performance lithium batteries. Chem Mater,2008,20(14):4560-4564
    [87]Kuppan S, Reddy M V, Balaya P. Storage performance of LiFePO4 nanoplates. Journal of Material Chemistry,2009,19(4):553-668
    [88]Dominko R, Bele M, Gaberscek M, et al. Porous olivine composites synthesized by sol-gel technique. J. Power Sources,2006,153(1):274-280
    [89]Yu F, Zhang J, Yang Y, et al. Preparation and characterization of mesoporous LiFePO4/C microsphere by spray drying assisted template method. J. Power Sources,2009,189(1):794-797
    [90]Yang H, Wu X L, Cao M H. Solvothermal synthesis of LiFePO4 hierarchically dumbbell-Like microstructures by nanoplate self-assembly and their application as a cathode material in Lithium-ion batteries. J. Phys. Chem. C,2009,113(8), 3345-3351
    [91]Doeff M M, Hu Y Y, McLarnon F, et al. Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochem. Solid State Lett.,2003, 6(10):A207-A209
    [92]Yu Y, Doeff M, Kostecki R, et al. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries. J.Electrochem. Soc.,2004,151(8): A1279-A1285
    [93]Qian J F, Zhou M, Cao Y L, et al. Template-Free hydrothermal synthesis of nanoembossed mesoporous LiFePO4 microspheres for high-performance lithium-Ion batteries. J. Phys. Chem. C,2010,114(8):3477-3482
    [94]Wang L F, Sondi I, Matijevic E. J. Preparation of uniform needle-like aragonite particles by homogeneous precipitation. Colloid Interface Sci.,1999,218(2): 545-561
    [95]Sondi I, Matijevic F. Homogeneous precipitation of calcium carbonates by enzyme catalyzed reaction. J. Colloid Interface Sci.,2001,238(1):208-212
    [96]Lu C Z, Fey T K, Kao H M. Study of LiFePO4 cathode materials coated with high surface area carbon. J Power Sources,2009,189(1):155-162
    [97]Shin H C, ChoW I, Jang H. Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochim Acta,2006, 52(4):1472-1476
    [98]陈学军,赵新兵,曹高劭,等.一步固相合成Nb掺杂LiFePO4/C及其电化学性能.中国有色金属学报,2006,16(10):1665-1671
    [99]刘旭恒,赵中伟.碳源和铁源对LiFePO4/C材料的制备及性能的影响.中国有色金属学报,2008,18(3):541-545
    [100]Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phosphor-olivines as lithium storage electrodes. Nature Mater,2002,1(2): 123-128
    [101]Park K S, Kang K T, Lee S B, et al. Synthesis of LiFePO4 with fine particle by co-precipitation method. Material Reserch Bullion,2004,39(12):1803-1810
    [102]Kim D H, Kim J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid-State Lett,2006,9(9): A439-442
    [103]Chen Z H, Dahn J R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc.,2002,149(9):A1184-A1189
    [104]Otero T F, Cantero I. Conducting polymers as positive electrodes in rechargeable lithium-ion batteries. J. Power Sources,1999,81-82:838-843
    [105]Y Kudoh. Properties of polypyrrole prepared by chemical polymerization using aqueous solution containing Fe2(SO4)3 and anionic surfactant. Synth. Met.,1996, 79(1):17-22.
    [106]Cohen Y S, Levi M D, Aurbach D. Micromorphological dynamics of polypyrrole films in propylene carbonate solutions studied by in situ AFM and EQCM. Langmuir,2003,19(23):9804-9811.
    [107]Feng W, Wei W, Wu H C. Synthesis and properties of the soluble conductivity polyaniline. Journal of Functional Polymers,1998,11(2):237-240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700