锂离子电池正极材料磷酸铁锂的复合改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
橄榄石结构的LiFePO4因其较高比容量、对环境友好、循环性能理想、安全性能好、成本低廉等优点而成为最具开发和应用潜力的新一代锂离子电池正极材料。然而,低的锂离子扩散系数和电子电导率,使得LiFePO4在大倍率充放电时比容量迅速下降,而阻碍了其进一步实用化。而传统的改性方法碳包覆不仅会降低正极材料的体积能量密度,而且也会阻碍锂离子的迁移与扩散。因此,为了提高LiFePO4的倍率性能、克服碳包覆给LiFePO4的能量密度所带来的负面影响,本文在引入石墨烯的基础上对于LiFePO4进行复合改性。
     (一)利用两步法合成了掺杂Ni的磷酸铁锂/石墨烯复合材料,并用XRD、SEM和TEM等手段对LiFePO4石墨烯的物相结构和形貌进行表征,用循环伏安法与恒流循环充放电测试样品的电化学性能。研究结果表明,合成的LiFe0.95Ni0.05PO4/石墨烯复合材料具有优异的电化学性能,该样品在0.1C,1C和5C倍率下的首次放电比容量分别为147.2,128.0和89.5mA-h/g,循环20次后的放电比容量均无明显衰减。
     (二)通过溶剂热原位合成法制备了C-LiFePO4/石墨烯复合材料,电化学测试表明这种正极材料具有良好的电化学性能,尤其是倍率性能十分理想。这是由于C-LiFePO4呈纳米棒状结构,石墨烯片层和热解碳发挥协同作用,两者共同构成的导电网络为LiFePO4提供了良好的电子传输和离子散的通道,不但提高了LiFePO4的导电性能,也使得锂离子能够在活性材料中快速迁移。C-LiFePO4/石墨烯复合材料在0.1,1,10,50和100C充放电倍率下的可逆比容量分别为162.8,140.3,109.2,77.5和59.0 mAh/g。本实验仅仅加入了很少量的石墨烯,所以也不会影响复合材料的体积能量密度。
Olivine-structured LiFePO4 has attracted extensive interest as a promising cathode material for lithium ion batteries due to its appealing advantages, such as relatively high theoretical capacity, environmental benignity, good cycle stability, high safety, and inexpensive cost. However, due to the low intrinsic electronic conductivity and slow lithium ion diffusion, it is difficult to utilize the full theoretical capacity at useful rates. The conventional modification method carbon coating not only impact the volumetric energy density of LiFePO4/C more severely than the gravimetric energy density, but also hindering lithium ion diffusion and resulting in an increase of polarization. To improve the rate capability of LiFePO4 and to overcome the detrimental effects on the tap density and volumetric energy density accompanied by conventional carbon-based additives, the aim of this dissertation is to develop composite modification to synthesis LiFePO4 with graphene incorporated.
     (1) Ni doped LiFePO4/graphene composite cathode material by two-step reaction. The phase structure, surface morphology and electrochemical performance of LiFe0.95Ni0.05PO4/graphene were characterized by XRD, SEM, TEM, cyclic voltammetry and galvanostatic charge-discharge cycling tests, respectively. The results show that LiFe0.95Ni0.05PO4/graphene composite has excellent electrochemical performance.Its initial discharge capacities are 147.2,128.0 and 89.5mA-h/g at 0.1C,1C and 5C rates, respectively, and no obvious capacity fading is found after 20 cycles.
     (2) C-LiFePO4/graphene composite was successfully developed by in-situ solvothermal synthesizing with unique structure, exhibiting favorable electrochemical properties. A key to its realization is, besides the preparation of nanorod-like active particles, the use of a graphene matrix and thin carbon coating, which synergically serve as a mixed conducting nano-network, enabling optimal mixed electronic-ionic transport. Such ultra-thin dual-coating structure leads to electronic interparticle connection, but does not block the transport of lithium ions, resulting in fast Li+ mobility and lower charge-transfer resistance. At 0.1,1,10,50 and 100C, the capacities of C-LiFePO4/graphene are 162.8,140.3,109.2,77.5 and 59.0 mAh/g. Both low and high rate performances are excellent. As compared to the total electrode size, the space and proportion occupied by graphene is negligibly small, which greatly reduces the volume of conductive additive, opening up the possibility to increase substantially the energy storage density and rate capability at equal amounts of loading of conductive additives.
引文
[1]M.S.Whittingham, Electrical Energy-Storage and intercalation chemistry, Science, 1976,11:1126
    [2]K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough. Lithium Cobalt Oxide (LiCoO2) (0    [3]T Nagaura, K Tozawak. Lithium Ion Rechargeable Battery [J]. Prog.BaRs.Sol Cells.1990,9:209-210
    [4]M Wakihara. Recent developments in lithium ion batteries [J]. Mater. Sci. Eng., 2001,33(4):109-134
    [5]M.S.Whittingham. Lithium batteries and cathode materials [J]. Chem. Rev.2004, 104,4271-4301.
    [6]J.M.Paulsen, J.R.Muller-Nehaus, J.R.Dahn. Layered LiCoO2 with a Different Oxygen Stacking (O2 structure) as a Cathode Material for Rechargeable Lithium Batteries. J. Electrochem. Soc.2000,147(2):508-516.
    [7]Cho J, Kim Y J, Kim T J, Byungwoo P. Zero-strain intercalation cathode for rechargeable Li-ion cell. Angew. Chem. Int. Edit.,2001,40(18):3367-3369.
    [8]T. Ho, G. Kim, C.Kim. Comparison of Al2O3 and AlP04-coated LiCoO2 Cathode Materials for a Li-ion Cell. J. Power. Sources.2005,146:58-64.
    [9]J. Cho, Y. J. Kim, B. Park. Novel LiCoO2 Cathode Material with A12O3 Coating for a Li Ion Cell. Chem. Mater.2000,12(12):3788-3791.
    [10]J. Cho, C. S. Kim, S. I. Yoo. Improvement of Structural Stability of LiCoO2 Cathode during Electrochemical Cycling by Sol-gel Coating of SnO2. Electrochem. Solid State Lett.2000,3(8):362-365.
    [11]Z. Chen, J. R. Dahn. Methods to Obtain Excellent Capacity Retention in LiCoO2 Cycled to 4.5V. Eletrochimica. Acta.2004,49(7):1079-1090.
    [12]K. Fey, Z. F. Wang, C. Z. Lu. MgAl2O4 Spinel-coated LiCo02 as Long-cycling Cathode Materials. J. Power Sources.2005,146:245-249.
    [13]Thackeray M M, David W IF, Bruce P G, Goodenough J B. Lithium insertion into manganese spinels.Mater. Res. Bull.,1983,18(4):461-472.
    [14]Y.Gao, J.R Dahn. Synthesis and Characterization of Li1+xMn2-xO4 for Li-ion Battery Applications. J. Electrochem. Soc.1996,143:100-114.
    [15]Kumar G, Schlorb H, Rahner D. Synthesis and electrochemical characterization of 4V LiRxMn2-xO4 spinels for rechargeable lithium batteries[J]. Mater. Chem. Phys., 2001,70(2):117-123.
    [16]Tsuji T, Nagao M, Yamamura Y, Tai N T. Structural and thermal properties of LiMn2O4 substituted for manganese by iron. Solid State Ionics,2002,154-155(2): 381-386.
    [17]Y. M. Lin, H. C. Wu, Y. C. Yen, et al. Enhanced High-rate Cycling Stability of LiMn2O4 Cathode by ZrO2 Coating for Li-ion Battery. J. Electrochem. Soc.2005, 152(8):A1526-A1532.
    [18]S. Jouanneau, K. W. Eberman, L. J. Klause, J. R. Dahn. Synthesis, characterization, and electrochemical behavior of improved Li[NixCo1-2xMnx]O2 (0.1≤x≤0.5) [J]. J. Electrochem. Soc.,2003,150:A1637-A1642.
    [19]J. K. Ngala, N. A. Chernova, M. M. Ma, M. Mamak, RY. Zavalij, M. S. Whittingham. The synthesis, characterization and eleetrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound [J]. J. Mater. Chem.,2004,14:214-220
    [20]Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B., Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997,144(4),1188-1194.
    [21]N. Recham, J. N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J. M. Tarascon, A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nature Materials 2010,9, (1),68-74.
    [22]B.Jin, H.B.Gu. Preparation and Characterization of LiFePO4 Cathode Materials by Hydrothermal Method. Solid State Ionics.2008,178:1910-1915.
    [23]A.Ait-Salaha, J.Doddb, A.Mauger, R.Yazami, F.Gendron, C.M.Julien. Structural and Magnetic Properties of LiFePO4 and Lithium Extraction Effects. Anorg. Allg. Chem.2006,1598
    [24]A.S.Anderson, B.Kalska, I. Haggstrom, J.O.Thomas. Lithium extraction/ insertion in LiFePO4:an x-ray diffraction and Mossbauer spectroscopy study [J]. Solid State Ionics,2000,130(1-2):41-52.
    [25]P. P. Prosini, M. Lisi, D. Zane, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics,2002,148:45-51
    [26]Atsuo Yamada, ai-Cheong Chung.Crystal chemistry of the olivine-type Li(MnyFe1-y)PO4 and Li(MnyFe1-y)PO4 as possible 4V cathode materials for lithium batteries. Journal of Electrochem Soc,2001,148(8):A960-A967
    [27]yung-Sun Kim, Byung-Won Cho, Won-Ⅱ Cho, et al.Cycling performance of LiFePO4 cathode material for lithium secondary batteries.Journal of Power Soueces, 2004,132:235-239
    [28]Cao G S, Zhao X B, et al.Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode.Materials Letters,2005,59:127-130
    [29]Yu Wang, Xiaodong Wu, Zhaoxiang Wang, et al.Cracking causing cyclic instability of LiFePO4 cathode material. Journal of Power Sources,2005,140:125-128
    [30]Jun Kwon, Cheol Woo Kim, Woon Tae Jiong, et al.Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying.Journal of Power Sources,2004,137:93-99
    [31]Masashi Higuchi, Keiichi Katayama, Yasuo Azuma, et at. Synthesis of LiFePO4 cathode material by microwave processing. Journal of Power Sources,2003, 119-121:258-261
    [32]Doeff M M, Finones R, Yaoqin H, et al.11th International Meeting on Lithium Battery.Monterey, CA, USA,2002
    [33]朱伟,樊小勇,胡杰,等LiFePO4的制备及其电化学性能研究.功能材料,2004,35(6):734-738
    [34]Seung-Baek Myung, Shinichi Komaba, Norimitsu Hirosaki, et al..Electrochimica Acta,2004,49:4213-4222
    [35]Shoufeng Yank, Peter Y.Zavalij, M.Stanley Whittingham, et al.Hydro thermal synthesis of lithium iron phosphate cathodes.Electrochemistry Communications, 2001,3:505-508
    [36]Park K S, Kang K T, Lee S B, et al. Synthesis of LiFePO4 with fine particle by co-precipitation method.Materials Research Bulletin,2004,39:1803-1810
    [37]Park K S, Son J T, Chung H T, et al. Surface modification by silver coating for improving electrochemical properties of LiFePO4. Electrochemistry Communications,2003,5:839-842
    [38]Arnold G, Carche J, Hemmer R, et al.Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation .Journal of Power Sources,2003,119-121:247-251
    [39]Bewlay S L, Konstantinov K, Wang G X, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Materials Letters,2004, 58:1788-1791
    [40]Wang G X, Bewlay S L, Konstantinov K, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source. Electrochimica Acta, 2004,50:443-447
    [41]N. Ravet, Chouinard Y. Magan J F. Electroactivity of natural and synthetic triphylite [J]. J. Power Sources,2001,97-98:503-507.
    [42]Wang, Y. G.; Wang, Y. R.; Hosono, E. J.; Wang, K. X.; Zhou, H. S., The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem.-Int. Edit.2008,47 (39), 7461-7465.
    [43]Yu, F.; Zhang, J. J.; Yang, Y. F.; Song, G. Z., Effects of Carbon Sources on Properties of Porous LiFePO4/C Microsphere for Secondary Lithium Batteries. Chin. J. Inorg. Chem.2009,25 (1),42-46.
    [44]Croce, F.; Epifanio, A. D.; Hassoun, J.; Deptula, A.; Olczac, T.; Scrosati, B., A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochem. Solid State Lett.2002,5 (3), A47-A50.
    [45]Park, K. S.; Son, J. T.; Chung, H. T.; Kim, S. J.; Lee, C. H.; Kang, K. T.; Kim, H. G., Surface modification by silver coating for improving electrochemical properties of LiFePO4. Solid State Commun.2004,129 (5),311-314.
    [46]韩翀.球形磷酸铁钾/镍复合材料的制备过程研究[D].镇江:江苏大学,2008:
    [47]Wang, G. X.; Yang, L.; Chen, Y.; Wang, J. Z.; Bewlay, S.; Liu, H. K., An investigation of polypyrrole-LiFePO4 composite cathode materials for lithium-ion batteries. Electrochimica Acta 2005,50 (24),4649-4654.
    [48]S.K.Liu, Q.F.Dong, M.S.Zheng, M.G.Jin, Y.D.Zhan, Z.G.Lin, S.G.Sun, Structure and performance of LiFePO4/CaB6 composites. Chem. J. Chin. Univ.-Chin.2007,28 (2),302-306.
    [49]B.Kang, G.Ceder, Battery materials for ultrafast charging and discharging. Nature 2009,458 (7235),190-193.
    [50]H.Liu, G.X.Wang, D.Wexler, J.Z.Wang, H.K.Liu. Electrochemical performance of LiFePO4 cathode material coated with ZrO2 nanolayer. Electrochemistry Communications 2008,10(1),165-169.
    [51]C.W.Kim, J.S.Park, K.S.Lee. Effect of Fe2P on the electron conductivity and electrochemical performance of LiFePO4 synthesized by mechanical alloying using Fe3+ raw material. J. Power. Sources,2006,163(1):144-150
    [52]Atsuo Yamada, Mamoru Hosoya, Sai-Cheng Chuang, et al. [J] Journal of Power Sources.2003,119-121:232—238.
    [53]Chung S Y,Bloking J T,Chiang Y M,et al.Microscale Measurements of the Electrical Conductivity of Doped ELectrochem.and Solid State Lett.2003,6(12):A278-A281
    [54]胡环宇,仇卫华,李发喜.Mg掺杂对LiFePO4材料电化学性能的影响.电源技术,2004,30(1):18-20
    [55]阮艳莉,唐致远.Mg掺杂对LiFePO4结构及电化学性能的影响.中国有色金属学报,2005,15(9):1416-1420
    [56]倪江锋,周恒辉,陈继涛,等.金属氧化物掺杂改善LiFePO4电化学性能.无机化学学报,2005,21(4):472-476
    [57]宋士涛,邓小川,孙建之,等.锂离子电池正极材料Li(MnxFe1-x)PO4的合成及电化学性能的研究.功能材料.2005,12(36):1941-1943
    [58]应皆荣,李维,姜长印,等.高密度球形磷酸铁锂及磷酸锰铁锂的制备方法.CN:1632970 A,2005
    [59]文衍宣,郑绵平,童张法等.锂离子蓄电池LiVxFe1-xPO4正极材料的制备和性能.电源技术.2005,29(11):713-715
    [60]王晓琼,李新海,王志兴LiFePO4掺镍的改性研究.电池,2005,35(5):371-373
    [61]倪江锋,周恒辉,陈继涛,等.铬离子掺杂对LiFePO4电化学性能的影响.物理化学学报,2004,20(6):2001,97-98
    [62]X.Z.Liao, Y.S.He, Z.F.Ma, X.M.Zhang, L.Wang. Effects of fluorine-substitution on the electrochemical behavior of LiFePO4/C cathode materials. Journal of power source,2007,2(174),720-725
    [63]Takahashi M, Tobishima S, Takei K, Sakurai Y. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J]. SOLID STATE IONICS, 2002,148(3-4):283-289
    [64]Morgan D, Van der Ven A, Ceder G. Li conductivity in LixMPO4 (M=Mn, Fe, Co, Ni) olivine materials,2004,7(2), A30-A32
    [65]Islam MS, Driscoll DJ, Fisher CAJ, Slater PR. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 oli vine-type battery material[J]. Chem. Mater.2005,17(20),5085-5092.
    [66]S. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada. Nature Materials,2008,7(9):707-711
    [67]Gaberscek, M.; Dominko, R.; Jamnik, J., Is small particle size more important than carbon coating? An example study on LiFePO4 cathodes. Electrochemistry Communications 2007,9 (12),2778-2783.
    [68]Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.; Carlach, P.; Hamelet, S.; Tarascon, J. M.; Masquelier, C., Room-temperature single-phase Li insertion/extraction in nanoscale LixFePO4. Nat. Mater.2008,7 (9),741-747.
    [69]Wang, B. F.; Qiu, Y. L.; Ni, S. Y., Ultrafine LiFePO4 cathode materials synthesized by chemical reduction and lithiation method in alcohol solution. Solid State Ionics 2007,178 (11-12),843-847.
    [70]Zhang, S. P.; Ni, J. F.; Zhou, H. H.; Zhang, Z. J., Controllable synthesis of regular LiFePO4 particles via solvothermal reaction. Acta Phys.-Chim. Sin.2007,23 (6), 830-834.
    [71]Dominko, R.; Bele, M.; Goupil, J. M.; Gaberscek, M.; Hanzel, D.; Arcon, I.; Jamnik, J., Wired porous cathode materials:A novel concept for synthesis of LiFePO4. Chemistry of Materials 2007,19 (12),2960-2969.
    [72]Yang, L.; Jiao, L. F.; Miao, Y. L.; Yuan, H. T., Improvement of electrochemical properties of LiFePO4/C cathode materials by chlorine doping. Journal of Solid State Electrochemistry 2009,13 (10),1541-1544.
    [73]Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva Ⅳ, Firsov A A. Electric field effect in atomically thin carbon films [J]. Science.2004,306(5296):666-669
    [74]Chae H.K., SiberioPerez D.Y., Kim J.,A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature,2004,427(6974):523-527.
    [75]Sclladler L.S.,Giammris S.C.,Ajayan P.M.Load transfer in carbon nanotube poxy composites[J].Appl.Phys.Lett.,1998,73:3842
    [76]McAllister M.J.,Li J.-L.,Adamson D.H.,et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J].Chem Mater,2007,19: 4396.
    [77]Paci J.T., Belytschko T., Schatz G.C., Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide [J]. J. Phys. Chem. C,2007, 111(49):18099.
    [78]Zhang Y.B., Tan Y W,Kim P,et al. Experimental observation of the quantum Hall effect and Berry's phase in grapheme [J]. Nature,2005,438(7065):201-204
    [79]Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium-ion batteries[J]. Nano Letters,2008,8(8):2277-2282.
    [80]Paek S.M.,Yoo E.,Honma I.,Enhanced Cyclic Performance and Lithium Storage Capacity of SnO4/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure[JJ.Nano Lett.,2009,9:72-75.
    [81]Zhou, G. M.; Wang, D. W.; Li, F.; Zhang, L. L.; Li, N.; Wu, Z. S.; Wen, L.; Lu, G. Q.; Cheng, H. M., Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries[J]. Chemistry of Materials 2010,22 (18),5306-5313.
    [82]S. B. Yang, X. L. FengX, L. J. Zhi, Q.Cao, J. Maier, K. Mullen. Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage [J]. Advanced Materials,2010,22:838-842.
    [83]W. Hummers, R. Offeman. Preparation of graphitic oxide [J]. J. Am. Chem. Soc. 1958,31,1481-99.
    [84]S.Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen ST, R. S. Ruoff. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon,2007,45(7):1558-1565
    [85]Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, et al. Solution properties of graphite and graphene[J]. J. Am. Chem. Soc.,2006,128:7720-7721.
    [86]Heyong He, Thomas Riedl,Anton Lerf, et al. Solid-state NMR studies of the structure of graphite oxide [J]. J. Phys. Chem.,1996,100(51):19954-19958.
    [87]吴昭俏,郑育英,黄慧民.机械力活化固相化学反应法制备纳米粉体的机理研究,中国粉体技术,2007,3:26-31
    [88]S. J. Guo, Theory of powder sintering [M]. Beijing:Metallurgical Industry Press.2007:11-19.
    [89]Chen, Z. H.; Dahn, J. R., Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density [J]. J. Electrochem. Soc. 2002,149(9), Al184-A1189
    [90]Franger, S.; Bourbon, C.; Le Cras, F., Optimized lithium iron phosphate for high-rate electrochemical applications[J]. J. Electrochem. Soc.2004,151 (7), A1024-A1027.
    [91]M.C.Tucker, M.M.Doeff, T.J.Richardson, R.Finones, E.J.Caima, J.A.Reimer, Hyperfine fields at the Li site in LiFePO4-type olivine materials for lithium rechargeable batteries:A Li-7 MAS NMR and SQUID study [J]. J. Am. Chem. Soc., 2002,124,3832.
    [92]Y.S.Hu, Y.G.Guo, R.Dominko, M.Gaberscek, J.Jamnik, J.Maier. Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect[J]. Advanced Materials 2007,19 (15),1963-1966.
    [93]赖春艳,赵家昌,解品莹,用两种碳源制备高性能LiFePO4/C正极材料[J],功能材料与器件学报,2006,12(6):484-488
    [94]Y.Yang, X.Z.Liao, Z.F.Ma, B.F.Wang, L.He, Y.S.He. Superior high-rate cycling performance of LiFePO4/C-PPy composite at 55 degrees C. Electrochemistry Communications 2009,11 (6),1277-1280.
    [95]Teng, F.; Santhanagopalan, S.; Lemmens, R.; Geng, X. B.; Patel, P.; Meng, D. D., In situ growth of LiFePO4 nanorod arrays under hydrothermal condition. Solid State Sci.2010,12(5),952-955.
    [96]Saravanan, K.; Reddy, M. V.; Balaya, P.; Gong, H.; Chowdari, B. V. R.; Vittal, J. J., Storage performance of LiFePO4 nanoplates. J. Mater. Chem.2009,19 (5), 605-610.
    [97]J.L.Wu, X.P.Shen, L.Jiang, K.Wang, K.M.Chen. Solvothermal synthesis and characterization of sandwich-like graphene/ZnO nanocomposites[J]. Appl. Surf. Sci. 2010,256, (9),2826-2830.
    [98]Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Acs Nano 2008,2 (3),463-470.
    [99]Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K. A.; Celik, O.; Mostrogiovanni, D.; Granozzi, G.; Garfunkel, E.; Chhowalla, M. Adv. Funct. Mate. 2009,19(16),2577-2583.
    [100]Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys.2009,81,109-162.
    [101]A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, V. B. Shenoy. Nat. Chem.2010,2, (7),581-587.
    [102]Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes [J]. Nat Mater,2002,1 (2),123-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700