铁炭微电解—Fenton试剂法预处理高浓度工业废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题针对工业废水有机物含量高、色度高、毒性大、成分复杂、难降解等特点,进行了低成本、高效果处理方法的研究,达到了预期的效果。
     铁炭微电解法具有适用范围广,处理效果好,使用寿命长和成本低廉等优点,并且使用废铁屑为原料不需消耗电力资源,具有“以废治废”的意义,但缺点是对难降解有机物处理效果较差;而Fenton试剂法对难降解有机物处理效果好,但需使用Fe2+和H2O2,成本高。若将两种方法结合起来使用,微电解反应后产生的Fe2+供后续Fenton试剂法使用,可很大程度上降低成本,同时又可达到理想的处理效果,倍受人们的青睐。
     本文以医药中间体废水和二甲亚砜生产废水(包括精制碱性废水和合成废水)为研究对象,研究铁炭微电解法和Fenton试剂氧化法的原理、特点、影响因素以及在高浓度工业废水中的应用,考察了铁炭微电解反应中pH值、反应时间、炭铁质量比、铁粉投加量和Fenton反应中pH值、反应时间、H2O2投加量等因素对废水COD去除率的影响,从而确定最佳运行参数,并在此条件下,考察废水的生化性能。
     实验结果表明:铁炭微电解-Fenton试剂法联合使用,对医药中间体废水和二甲亚砜生产废水预处理均可行。
     (1)对医药中间体废水,出水COD的去除率为66.03%,色度由105降至18,可生化性由0.21提高到0.46,有利于后续的生物处理。实验确定最佳运行参数为:微电解进水pH为2.0,且整个过程保持恒定,C/Fe=1.5:1,铁粉投加量为1.5%,反应时间4h;Fenton反应进水pH为3.0-5.0,H2O2投加量为5mmol/L,采用滴加方式,反应时间2h。
     (2)对精制碱性废水,出水COD的去除率为64.59%,色度由80降至8,实验确定最佳运行参数为:微电解进水pH为2.0-3.0,C/Fe=1: 1,铁粉投加量为1.0%,反应时间4h; H2O2投加量为5mmol/L,采用滴加方式,反应时间1h。
     (3)对合成废水,出水COD的去除率达72.14%,由143145mg/L降到39876mg/L。实验确定最佳运行参数为:微电解进水pH为3.0,C/Fe=1: 1,铁粉投加量为1.0%,反应时间4h; H2O2投加量为8mmol/L,采用滴加方式,反应时间2h。
     由于合成废水中含有大量挥发性甲醇,可以采用先蒸馏再用铁炭微电解-Fenton试剂法处理,CODCr由原水的143145 mg/L降到5531mg/L,总去除率达96.14%,但设备投资大,能耗增加,工厂可根据实际情况选择合适方法。
     (4)对由精制碱性废水和合成废水按一定比例组成的混合废水处理,出水COD去除率达82.80%,明显好于单独处理的效果。综上所述,铁炭微电解-Fenton试剂法适用范围广,COD去除率高,处理成本低,工艺运行设备简单,占地面积小,操作方便,有很高的推广应用价值。
This article researched on the processing method of low cost and high effect, in view of the characters of industrial wastewater, such as high concentration organics, chroma, toxicity, complicated components, refractory degradation and so on. Finally achieved anticipated result.
     Iron-carbon micro-electrolysis has the advantages of wide application, good processing effect, long life and low cost, and using the waste iron fillings for raw materials without consumption of electric power resources, so it has the significance of making of waste circularly. But the shortcoming is to difficult to deal with refractory organics. However, Fenton reagent is effective to refractory organics, but it requires Fe2+ and H2O2, the cost is high. If the two methods used together, Fe2+ produced by micro-electrolysis is used for the following Fenton process, it may reduce the cost to a great extent and achieve the desired effect simultaneously, it caters people's favor.
     In this paper ,the object are medical intermediate wastewater and DMSO wastewater (including refined alkaline wastewater and synthetic wastewater). The principles, characters, influence factors as well as application in treating high concentration industrial wastewater of iron-carbon micro-electrolysis and Fenton reagent process were studied. Inspected pH value, reaction time, ratio of carbon and iron ,dosage of iron in micro-electrolysis and pH value, reaction time, dosage of H2O2 and other factors in Fenton process on the removal rate of COD, thus determined the optimal operating parameters, and under this condition, studied the biochemical performance.
     The results showed that:It was practicable to pretreat medical intermediate wastewater and DMSO wastewater by joint use of iron-carbon microelectrolysis - Fenton reagent process.
     (1) To medical intermediate wastewater, the removal rate of COD in effluent is 66.03%, the chroma falled from 105 to 18,the biodegradability rised from 0.21 to 0.46, so it was convenient for the following biological treatment. The optimal operating parameters are: micro-electrolysis’s pH value is 2.0 and maintains constant, quality ratio of carbon versus iron is 1.5, the dosage of iron is 1.5%, reaction time is 4h;Fenton’s pH value is 3.0-5.0,the dosage of H2O2 is 5mmol/L, by dropping way, reaction time is 2h.
     (2)To refined alkaline wastewater, the removal rate of COD in effluent is 64.59%, the chroma falled from 80 to 8, The optimal operating parameters are: micro-electrolysis’s pH value is 2.0-3.0 , quality ratio of carbon versus iron is 1.0, the dosage of iron is 1.0%, reaction time is 4h;the dosage of H2O2 is 5mmol/L, by dropping way, reaction time is 1h.
     (3)To synthetic wastewater, the removal rate of COD in effluent is 72.14%, CODCr dropped from 143,145mg/L to 39876mg/L.The optimal operating parameters are: micro-electrolysis’s pH value is 3.0, quality ratio of carbon versus iron is 1.0, the dosage of iron is 1.0%, reaction time is 4h;the dosage of H2O2 is 8mmol/L, by dropping way, reaction time is 2h.
     As a large number of volatile methanol included in synthetic wastewater, distillation can be used before microelectrolysis-Fenton reagent treatment, CODCr from 143,145 mg/L dropped to 5531 mg/L, the total removal rate reached 96.14%, but investment in equipment is high and energy consumption increases, the factory may choose a suitable method according to the actual situation.
     (4) To mixed wastewater composed of refined alkaline wastewater and synthetic wastewater by a certain percentage, the removal rate of COD in effluent is 82.80%, better than treated alone obviously. In summary, iron-carbon microelectrolysis-Fenton reagent process is characteristic of wide application,high COD removal rate,low running cost,simple equipment,small occupation of land,easy operation,so it has high application value.
引文
[1]化工百科全书(13),化学工业出版社,1997
    [2]Vaidy.A.A.Datye,K.V.Environmental pollution during chemical processing of syntheric fibres,1982(14):3-10
    [3]何孟狄.物化-生化工艺处理苯胺基乙氰废水[D].重庆大学,2002
    [4]赵月龙,祁佩时.高浓度难降解有机废水处理技术综述[J].四川环境,2006,08(25):98-103
    [5]李辉.铁炭微电解-Fenton氧化联合处理染料废水的研究[D].哈尔滨工业大学,2006:6-7
    [6]樊毓新,周增炎.染料废水的处理方法现状与发展前景[J].工程与技术,2002,9:22-24
    [7]彭书传,魏风玉.H2O2-Fe2+法处理β-萘磺酸钠生产废水的研究[J].工业水处理,1998,18(1):23-25
    [8]汪学军,徐莉.染料工业废水处理研究进展[J].化学工业与工程技术,2003,24(4):39-41
    [9]Choi Y S.et al.Color removal from dye wastewater using vermiculite[J]. Environ.Technol, 1996,17(11):1169-1180
    [10]Janitaz,J.et al.Nanofitration of dye wasterwater[J].F&SFilter.sep,1999,13 (1):9-16
    [11]King C J.Handbook of separation process technology[M]. NewYork:John Wiley&Sons,1987
    [12]冯旭东.萃取技术在难降解有机废水处理中的应用[J].北京工商大学学报(自然科学版),2003,21(4):7-9
    [13]李仲民,张法.超滤法处理糖蜜酒精废液的研究[J].广西大学学报,2001, (3):171-173
    [14]王淑琴,李坤.反渗透处理土霉素结晶母液研究[J].城市环境与城市生态,1999,12(1):25-26
    [15]梅滨,王晓兰.磁分离技术在我国废水处理中的研究进展[J].四川环境, 2003,22(3):4-7
    [16]郑必胜,郭祀元等.磁场处理强化水溶液蒸发效能的研究[J].华南理工大学学报(自科版),1995,23(7):20-25
    [17]郑必胜,郭祀远等.高梯度磁分离器分离效率的研究[J].华南理工大学学报(自科版),1999,27(9):65-69
    [18]郑必胜,郭祀远等.高梯度磁分离的特征及应用[J].华南理工大学学报(自科版),1999,27(3):41-45
    [19]郑必胜,郭祀远等.高梯度磁分离器中填料的研究[J].华南理工大学学报(自科版) ,1998,26(10):34-39
    [20]郑必胜,张智平.磁分离技术处理食品发酵工业废水[J].食品与发酵工业,1999,25(1):74-77
    [21]吴根平,韩引.水解酸化一好氧处理含酚废水的研究[J].高桥石化,2003,18 (1):1-5
    [22]仇雁翎,赵建夫等.焦化废水中有机物在A1-A2-0系统各段的降解与转化[J].上海环境科学,2002,21(4):216-219,223
    [23]王浙明,韩新伟.厌氧一AO接触氧化工艺处理丝厂高浓度有机废水[J].工业水处理,2002(1):52-53
    [24]徐敏.微电解一中和混凝工艺对高浓度高色度难降解有机废水的预处理[J].给水排水技术动态,1998,(2):46-48
    [25]吴慧芳,孔火良,王世和等.微电解与Fenton试剂预处理农药废水的实验研究[J].环境污染治理技术与设备,2003,4(2):18-21
    [26]宵羽堂,王继徽.二硝基氯苯废水预处理技术研究[J].化工环保,1997,17 (3):264-286
    [27]王罗春,闻人勤,丁恒如.Fenton试剂处理难降解有机废水及其应用[J].环境保护科学,2001,27(1):11-14
    [28]周培国,付大放.微电解工艺研究进展[J].环境污染治理技术与设备,2001,2(4):18-24
    [29]詹艳,熊忠,林衍等.铁炭内电解法对苎麻废水的预处理研究[J].工业水处理,2003,23(1):28-31
    [30]孟刚,郑泽根,周小兵等.铁炭微电解-亚铁还原氧化法处理花箐废水的研究[J].感光科学与光化学,2002,20(4):303-312
    [31]Chin-Pao Huang,Huang-Wen Wang,Pei-Chun Chin.Nitrate reduction by metallic iron[J].Wat.Res.,1998,32(8):2257-2264
    [32]张波,何以亮.铁炭微电解-混凝沉淀预处理化工有机废水[J].兰州铁道学院学报,2001,10(3):95-98
    [33]张焕贞,李淑芳.铁屑还原-混凝法处理石油精制碱液酸化废水试验研究[J].中国第四届水处理大会论文集,2002:100-105
    [34]王永广,杨剑峰.微电解技术在工业废水中的研究与运用[J].环境污染治理技术与设备,2001,2(4):18-24
    [35]马丽霞,赵仁兴.铁炭内电解法在废水中的运用研究进展[J].河北工业科技,2002,3(4):50-53
    [36]柴晓利等.内电解混凝沉淀-厌氧-好氧工艺处理医药废水[J].环境科学与技术,2000,(3):33-34
    [37]姚杏明等.微电解催化氧化处理对硝基苯胺系列废水[J].环境工程,2001,19(3):26-27
    [38]肖利平等.微电解-厌氧酸化-SBR串联工艺处理制药废水试验研究[J].工业水处理,2000,20(11):25-27
    [39]王永广,张键.微电解-好氧组合工艺处理中药废水的研究[J].扬州大学学报(自然科学版),2001,(4):79-82
    [40]张天胜,陆海燕等.铁屑内电解法处理含酚废水[J].环境保护,1997,(08): 17-20
    [41]粟天宇,冯晓系等.铁炭法处理含氯有机废水的研究[J].上海环境科学,2003.22(9):649-654
    [42]Sopa,Tuntoolvest.Anaerobic Decolorization of Reactive Dyebath Effluents by a Two-stage UASB System with Tapioca as a Co-substrate[J].Water Res.,2000, 34 (8) :2223-2232
    [43]张平凡,王一平,郭翠梨等.H2O2-Fe2+氧化法处理对氨基酚工业废水的研究[J].化学工业与工程,1999,16(6):330-334.
    [44]陈传好,谢波,任源等.Fenton试剂处理废水中各影响因子的作用机制[J].环境科学,2000,21(5):93-96
    [45]Masami Fukushima.The fate of aniline after a photo-Fenton reaction in an aqueous system containing iron,humic acid,and hydrogen peroxide[J]. Environ. Sci.Technol,2000,34(10):2006-2013
    [46]Anber M.Reactivity of aromatic compounds towards hydroxyl radicals[J]. Journal of Physical Chemistry,1966,70(8):2660-2662
    [47]Anber M,Meyerstein D,Neta P.Reactivity of aliphatic compounds towards hydroxyl radicals[J].Journal of Chemistry Society,1966,13(8):742-747
    [48]乌锡康,金青萍.有机水污染治理技术[M].上海:华东化工学院出版社, 1989:344-362.
    [49]M.L.Kremer.Complex Visas Free Radical Mechanism for the Catalytic Decomposition of H2O2 by Fe2+[J].Int.J.Chem Kinet,1985,17:1299-1314
    [50]D.A.Wink,R.W.Nimbus,M.F.Deserters,et al.A Kinetic of Investigation of Intermediates Formed during the Fenton Reagent Mediated Degradation of N-nitrosodimethyl Amine:Evidence for an Oxidative Pathway not Involving Hydroxyl Radical[J].Chem.Rev Toxicol,1991,(4):510-512
    [51]M.L.Kremer,G.Stein.The Catalytic Decomposition of Hydrogen Peroxide by Ferric Percholorate[J].Trans Faraday Soc,1959,55:959-973
    [52]W.G.Barb,J.H.Baxendale.Reaction of Ferrous and Ferric Ions with Hydrogen Peroxide[J].Faraday Soc,1951,47:462-500
    [53]D.H.Ahn,W.S.Chang,T.L.Yoon.Dyestuff Wastewater Treatment Using Chemical Oxidation[J].Physical Adsorption and Fixed Bed Biofilm Process,1999, 34:429-439
    [54]C.Walling,S.I.Kato.The Oxidation of Alcohols by Fenton’s Reagent:the Effect of Copper ion[J].J.Chem.Soc,1971,93:4275-4281
    [55]S.H.Bossmann,E.Olivero.New Evidence against Hydroxyl Radicals as Reactive Intermediates in the Thermal and Enhanced Fenton Reaction[J].J. Phys. Chem,1998,102(28):5542-5550
    [56]I.Arslan,I.A.Balciglu,D.W.Bahnemann.Advanced Chemical Oxidation of Reactive Dyes in Simulated Dyehouse Effluents by Ferrioxalate-Fenton/UV-A and TiO2/UV Process[J].Dyes and pigments,2000,47:207-218
    [57]张玲玲,李亚峰,孙明等.Fenton氧化法处理废水的机理及应用[J].辽宁化工,2004,33(12):734-737
    [58]李金莲,金永峰,钱慧娟等.Fenton试剂在水处理中的应用研究[J].化工科技市场,2006,29(6):28-33
    [59]张德莉,黄应平,罗光富等.Fenton及Photo-Fenton反应研究进展[J].环境化学,2006,25(2):121-127
    [60]万俊锋,李光明.Fenton试剂在污水处理上的发展与展望[J].江苏环境科技,2005,18(3):36-39
    [61]张键,王子波,朱宜平等.Fenton试剂-微电解预处理硝基苯类废水试验[J].扬州大学学报(自然科学版),2006,9(2):74-78
    [62]王春敏,步启军,王维军.Fenton法处理焦化废水的试验研究[J].辽宁化工,2006,35(3):147-149
    [63]佘宗莲,由芸.厌氧一好氧序列间歇式反应器处理生物制药废水的研究[J].环境科学研究,1998,11(l):49-52
    [64]马文鑫,陈卫中等.制药废水预处理技术探索[J].环境污染与防治,2001,23(2):87-89
    [65]贾学庆,郑奋等.化学气浮法处理庆大霉素废液研究[J].化工环保,1986,6(1):17-19
    [66]潘志祥.土霉素、麦迪霉素废水的化学气浮处理[J].工业水处理,1991,11(1) :24-26
    [67]谭智,汪大翠,张伟烈.深井曝气工艺处理高浓度制药废水[J].环境污染与防治,1993, 15(6):6-8
    [68]黄稳水等.磷酸铵镁法预处理高浓度氨氮废水的研究[J].工业水处理,2003,23(10):34-36
    [69]Kenichi,E.,I.KaoruI,T.Kyoji.Ammonia Removal from Wastewaters [M]. apan Patent , Kokai7704649 , Appl ,19751 538
    [70]Rinaudo ,C. , F. Abbona ,R. Boistelle. Heterogeneous nucleation and epitaxy of newberyite and yuric acid crystals [J].Cryst.Growth,1984,66(3):607-615
    [71]Zhang,S.,C.Yao,X.Feng,et al.Repeated use of MgNH4 PO4·6H2O residues forammonium removal by acid dipping[J].Desalination,2004,170:27-32
    [72]赵婷,周康根,王昊等.磷酸铵镁化学沉淀法在处理氨氮废水中的研究进展[J].安全与环境工程,2007,14(1):61-64
    [73]沙娜.铁炭微电解-Fenton试剂-混凝组合工艺预处理糠醛废水[D].吉林大学,2007:29-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700