真空膜蒸馏—结晶耦合过程处理模拟高含铵盐废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,高含铵盐废水是许多化工行业较难处理的废水之一。本文采用间歇式真空膜蒸馏(VMD)—结晶耦合过程对高含铵盐溶液进行了处理研究。系统地讨论了真空膜蒸馏和结晶过程并对其模型分析,获得了良好的效果。论文主要结果如下:
     首先对铵盐溶液中氨氮形态分布进行了分析,考察了不同进水pH值对溶液中游离氨和VMD渗透出水氮含量的影响;结果表明当料液pH小于6时,溶液中的游离氨含量较低,渗透出水氮含量较低,膜蒸馏过程对铵根离子具有较好的截留作用。利用真空膜蒸馏分别对最低浓度为3wt.%的氯化铵和硫酸铵溶液进行研究;讨论了不同工艺参数下渗透通量以及渗透出水氮含量的变化。在实验条件的范围内,渗透通量最高可达48L.m-2.h1,氨氮截留率均大于99.95%,且当铵盐料液pH为3时,其渗透出水氮含量均在3mg/L以下。
     其次,在纯水体系下,利用不同进水温度和流量测得的渗透通量对本实验膜组件的传热方程进行拟合,并结合铵盐溶液的各个物性参数和传质经验式建立了铵盐体系下渗透通量预测模型,预测值与实验值吻合。利用预测模型估算了浓度极化系数(CPC)和温度极化系数(TPC),讨论了不同操作条件对其产生的影响。结果表明,进料温度对TPC的影响较小,而CPC则随其升高而升高;提高料液表面流量促进了TPC降低,而CPC则略微上升;大渗透侧的压强将造成TPC升高,CPC则降低;料液的铵盐浓度对TPC和CPC的影响均不明显。
     随后,通过真空膜蒸馏将起始pH值为3的两种铵盐溶液进行了浓缩处理,随着浓缩实验的进行,渗透通量起初呈缓慢下降趋势,然而当料液浓缩至一定浓度时,渗透通量发生骤降,实验终点时,进水料液过饱和因子均接近1;在氯化铵体系中,渗透出水的氮含量起先均保持在3.2mg/L~4.7mg/L之间,但随着通量骤减,氮含量也发生骤升,最终高达59.8mgL;在硫酸铵体系中,渗透出水氮含量则一直保持在3mgL以下;铵盐的阴离子性质对渗透出水氮含量有着一定的影响;不同操作条件对浓缩过程中的渗透出水回收率也有不同影响,当渗透压强较低时,渗透通量发生衰减较早,单批渗透液回收率也较低;提高进水温度能够增大单批渗透液回收率,但是渗透通量发生衰减也较早;增大膜表面流量既能够促进单批渗透液的回收率还能够减缓渗透通量的衰减点。
     再次,利用浓缩实验渗透通量变化值估算了浓缩过程中铵盐体系下各个传递阻力分布以及膜表面处过饱和因子。在浓缩实验初期,传递阻力以膜阻力和边界层阻力为主;当膜表面过饱和因子接近1时,污染层阻力迅速增大,成为了膜蒸馏的主要传递阻力;选择膜表面处过饱和因子接近1时,对应的溶液浓度作为临界点;考察临界点前后浓度对渗透通量的影响,当浓度超过临界点时,渗透通量随操作时间大幅下降,污染层阻力迅速上升,产生膜污染现象;氯化铵体系中渗透出水的氮含量也随运行时间增大;通过扫描电镜对被污染的膜进行了观察,结果表明,铵盐的阴离子性质对膜污染的形成有着显著的影响;在氯化铵体系下,受污染的膜表面和膜孔孔壁处均有颗粒沉积,而硫酸铵体系中,仅在膜表面处发现大量颗粒沉积,膜孔内几乎没有颗粒沉积;将两种受污染膜利用纯水清洗,硫酸铵体系下的膜渗透通量恢复率可达98.6%,而氯化铵体系下的渗透通量恢复率仅有53.6%;当料液浓度低于临界点时,渗透通量随运行时间下降缓慢,渗透出水氮含量也均低于5mg/L;当料液浓度小于临界点,并保证其浓度在后续结晶温度下溶液过饱和度大于1,可将此浓度范围作为真空膜蒸馏浓缩料液的最佳终点浓度,能够有效的避免真空膜蒸馏过程中的膜污染。
     利用结晶器对浓缩后的铵盐溶液进行了结晶实验,结果表明,冷却结晶能够有效地将氯化铵析出,但硫酸氨的浓缩液在333K下的过饱和因子低于0.89时,需要向溶液中加入适量晶种才能够将硫酸铵晶体析出。
     最后,结合膜蒸馏浓缩实验以及浓缩液结晶实验,提出真空膜蒸馏—结晶耦合工艺处理酸性条件下的铵盐废水;即将铵盐废水浓缩至最佳终点浓度后,通入结晶器,同时回收渗透出水和铵盐晶体,再将低温的上清液回流至真空膜蒸馏过程中。值得注意的是,上清液回流过程需经过热交换器,用于真空膜蒸馏渗透气体的冷凝,以提高膜蒸馏的热效率。
High ammonium salt wastewater is one of the most refractory wastewater in industry wastewater. In this paper, the batch mode of vacuum membrane distillation-crystallization process was carried out on the ammonium salt solutions. The results showed that high rejection rate of ammonium salt was achieved in vacuum membrane distillation process. The solutes of ammonium salt were recovered by coupling with crystallizer. The purpose of zero emission was achieved in theory. The detailed conclusions were as follows:
     Firstly, the effects of feed pH value on the concentrations of both free ammonia and permeate total nitrogen (TN) were investigated. When the feed pH value was below6, the concentrations of both free ammonia and permeate TN were kept at low level. Moreover,3wt.%NH4CI and (NH4)2SO4solutions were respectively treated by vacuum membrane distillation. The effects of operating conditions on permeate flux and permeate TN concentration were investigated. The results showed that the permeate flux reached up to48L·m-2·h-1and the ammonium salt rejection rate was above99.95%. The permeate TN concentration was below3mg/L, while feed pH value was3.
     Secondly, the empirical equation of heat transfer was fitted by experimental flux datas which were obtained at different feed temperatures and feed flow rates. A predictive model in term of permeate flux was built by combining physical parameters of ammonium salt solutions withthe empirical equation of mass transfer. The predicted values and experimental datas tended to agree. Furthermore, the concentration and temperature polarization coefficients (CPC and TPC) were estimated by the predictive model, and the effects of different operating conditions on the coefficients were investigated. Higher feed temperature leaded to greater CPC. Increasing feed flow rate promoted the decrease of TPC, but CPC was slightly increased. Higher TPC and lower CPC were obtained with the permeate pressure increasing. The influences of feed concentration on TPC and CPC were not obvious.
     Then, the ammonium salt solutions were concentrated by vacuum membrane distillation when feed pH value was3. The permeate flux decreased slowly at first. However, the permeate flux dropped rapidly at the end of concentration experiment. The feed supersaturation factor was closed to1. Moreover, in NH4C1system, the permeate TN concentration was kept in the range of3.2mg/L~4.7mg/L at first, butrapidly increased to 59.8mg/L at the end of concentration. Whereas, the permeate TN concentration was below3mg/L all the time with (NH4)2SO4system. The negative ions of ammonium salt have great influence on permeate TN concentration. The operating conditions also have effects on batch recovery. Lower permeate pressure resulted in earlier flux decline and lower batch recovery. Increasing feed temperature increased batch recovery, but leaded to flux decline early. Higher feed flow rate promoted the higher batch recovery and delayed the flux decline.
     The transfer resistances and supersaturation factor at membrane surface (SFm) were estimated by the experimental datas in concentration process. The membrane resistance and boundary layer resistance dominated at first, but the fouling layer resistance increased rapidly while the SFm closed to1. The corresponding feed concentration was taken as the critical point. Chosen the feed concentration below and beyond the critical point respectively, the behavior of permeate flux with operating time was investigated. The sharp decline of permeate flux indicated increase of fouling layer resistance, and the membrane fouling phenomenon with operating time were observed when the feed concentration was beyond the critical point. In addition, the permeate TN concentration also increased with operating time in NH4CI system. The deposition was found on both membrane surface and pore wall in NH4CI system from the SEM images of fouling membrane. However, large amount of (NH4)2SO4crystal deposits were observed on the membrane surface, but little fouling on the pore wall. The permeate flux recoveries were98.6%and53.6%respectively in NH4CI and (NH4)2SO4system after membrane cleaning. When the feed concentration was below the critical point, the permeate flux decreased slowly, and the permeate TN concentrations were below5mg/L.
     The crystallizer was carried out with the concentrated amminium salt solution. The results showed that the NH4CI crystals were precipitated from concentrated solution by cooling crystallization, whereas the (NH4)SO4crystal was obtained by adding the seed crystal. The optimized cooling method caused the larger NH4CI crystal size.
     Finally, the treatment of ammonium salt wastewater by coupling vacuum membrane distillation-crystallization was proposed. The membrane distillation was used to obtained the permeate water and desired concentration solutions and then crystals were precipitated by crystallizer. It was worth noting that the effluent with low temperature from crystallizer should be transported through the heat exchanger, in order to condense the permeate gas from membrane distillation process and increase the heat efficiency.
引文
[1]许国强,曾光明,殷志伟,等.氨氮废水处理技术现状及发展[J].湖南有色金属.2002,2
    [2]EPA U. Process design manual of nitrogen control[M]. EP A. 1993
    [3]Effler S W, Brooks C M, Auer M T, et al. Free ammonia and toxicity criteria in a polluted urban lake[J]. Research Journal of the Water Pollution Control Federation. 1990,771-779
    [4]Li C Y, Li W G, Wang G Z, et al. The Preparation and the Research of Copper-Chelex Chitosan for Removal Ammonia-Nitrogen from the Drinking Water[J]. Advanced Materials Research. 2010,113:1166-1169
    [5]汪大翠,环境科学,徐新华,等.工业废水中专项污染物处理手册[M].化学工业出版社,2000
    [6]胡允良,张振成,翟巍,等.制药废水的氨氮吹脱试验[J].工业水处理.1999,19(4):19-21
    [7]刘小澜,王继徽,黄稳水,等.化学沉淀法去除焦化废水中的氨氮[J].化工环保.2004,24(1):46-48
    [8]张岩,吕峰,张守健,等.化学沉淀——A/O工艺处理合成氨废水[J].中国给水排水.2004,20(3):77-79
    [9]杨健,吴一繁.气水比对废水吹脱除氮效果的影响[J].四川环境.2000,19(1):33-36
    [10]Peavy H S, Rowe D R, Tchobanoglous G. Environmental engineering[J]. McGraw-Hill New York, 1985
    [11]丁思慧.用物化法对高浓度氨氮废水的前期处理[J].安徽化工.2000,26(4):42-43
    [12]王宗平,陶涛,袁居新,等.垃圾渗滤液预处理——氨吹脱[J].给水排水.2001,27(6):15-19
    [13]Budzianowski W, Koziol A. Stripping of ammonia from aqueous solutions in the presence of carbon dioxide:effect of negative enhancement of mass transfer[J]. Chemical Engineering Research and Design. 2005,83(2):196-204
    [14]Reynolds T D, Richards P A. Unit operations and processes in environmental engineering[J]. PWS series in engineering. 1996
    [15]Ozturk Ⅰ, Altinbas M, Koyuncu Ⅰ, et al. Advanced physico-chemical treatment experiences on young municipal landfill leachates[J]. Waste Management. 2003,23(5): 441-446
    [16]李武,陈石,孟了.城市垃圾渗滤液中氨氮脱除的试验研究[J].工业安全与环保. 2002,28(2):24-28
    [17]Klett R J. Treat Sour Water for Profit[J]. Hydrocarbon Processing, October. 1972,
    [18]宋卫锋,骆定法,王孝武,等.折点氯化法处理高NH3-N含钴废水试验与工程实践[J].环境工程.2006,24(5):12-13
    [19]Horan N J. Biological wastewater treatment systems: theory and operation[M]. John Wiley & Sons Ltd.,1989
    [20]高廷耀,顾国维,周琪著[M].水污染控制工程.高等教育出版社,1989
    [21]张仁志,褚华宁,韩恩山,等.氨氮废水处理技术的发展[J].中国环境管理干部学院学报.2005,15(3):91-94
    [22]黄海明,肖贤明,晏波.折点氯化处理低浓度氨氮废水[J].水处理技术.2008,34(8):63-65
    [23]Organization W H. Ammonia, Published under the joint sponsorship of the United Nations Environment Programme (Environmental Health Criteria 54) [J]. World Health Organizations Publications Center USA, Albany, NY. 1986
    [24]Stratful Ⅰ, Scrimshaw M, Lester J. Conditions influencing the precipitation of magnesium ammonium phosphate[J]. Water Research. 2001,35(17): 4191-4199
    [25]谢炜平.废水中氨氮的去除与利用[J].环境导报.1999,1:14-15
    [26]钱易,唐孝炎著.环境保护与可持续发展[M].高等教育出版社,2000
    [27]Li X, Zhao Q, Hao X. Ammonium removal from landfill leachate by chemical precipitation. Waste Management[J].1999, 19(6):409-415
    [28]赵庆良,李湘中.化学沉淀法去除垃圾渗滤液中的氨氮[J].环境科学.1999,20(5):89-92
    [29]Lee S, Weon S, Lee C, et al. Removal of nitrogen and phosphate from wastewater by addition of bittern[J]. Chemosphere. 2003, 51(4): 265-271
    [30]蒋京东,徐远,马三剑,等.鸟粪石结晶沉淀法处理氨氮废水[J].水处理技术.2008,34(2):45-49
    [31]刘宇,王松.利用化学沉淀法降低焦化废水氨氮浓度的预处理工艺研究[J].环境科学与管理.2008,33(6):90-94
    [32]Sugiyama S, Yokoyama M, Ishizuka H, et al. Removal of aqueous ammonium with magnesium phosphates obtained from the ammonium-elimination of magnesium ammonium phosphate[J]. Journal of colloid and interface science. 2005,292(1): 133-138
    [33]赵婷,周康根,王昊,等.磷酸铵镁化学沉淀法在处理氨氮废水中的研究进展[J].安全与环境工程.2007,14(1):61-64
    [34]He S, Zhang Y, Yang M, et al. Repeated use of MAP decomposition residues for the removal of high ammonium concentration from landfill leachate[J]. Chemosphere. 2007,66(11):2233-2238
    [35]El-Hady H A, Grunwald A, Vlckova K, et al. Clinoptilolite in drinking water treatment for ammonia removal[J]. Acta Polytechnica Vol. 2001,41(1)
    [36]徐亚同著.废水中氮磷的处理[M].华东师范大学出版社,1996
    [37]Klieve J, Semmens M. An evaluation of pretreated natural zeolites for ammonium removal[J]. Water Research. 1980,14(2):161-168
    [38]谢英惠,袁俊生,纪志永.钙型斜发沸石铵离子交换平衡的研究[J].城市环境与城市生态.2003,16(5):62-64
    [39]刘国文.有色金属冶炼氨氮废水处理方法研究[J].湖南有色金属.2004,20(3):37-40
    [40]Lahav O, Green M. Ammonium removal using ion exchange and biological regeneration[J]. Water Research. 1998, 32(7):2019-2028
    [41]Celik M, Ozdemir B, Turan M, et al. Removal of ammonia by natural clay minerals using fixed and fluidised bed column reactors[J]. Particle Removal from Reservoirs and other Surface Waters. 2001,1(1):81-88
    [42]潘嘉芬,卢杰.天然斜发沸石吸附高浓度氨氮废水试验研究[J].中国矿业.2008,17(2):87-89
    [43]袁俊生,郎宇琪,张林栋,等.沸石法工业污水氨氮治理技术研究[J].环境污染治理技术与设备.2002,3(12):60-63
    [44]Ancuta A, Kauspediene D, Gefeniene A, et al. Effect of hydroxyl and nitrate ions on the sorption of ammonium ions by sulphonic cation exchangers[J]. Desalination. 2005, 175(3):259-268
    [45]彭佳乐.新型铜基离子交换树脂处理氨氮废水的研究[D].长沙:中南大学,2009
    [46]Vredenbregt L H, Nielsen K, Potma A A, et al. Fluid bed biological nitrification and denitrification in high salinity wastewater[J]. Water Science and Technology. 1997, 36(1):93-100
    [47]Viessman W, Hammer M J, Perez E M. Water supply and pollution control[M]. Pearson Prentice Hall, 2009
    [48]Henze M. Wastewater treatment: biological and chemical processes[M]. Springer, 2002
    [49]周少奇,周吉林.生物脱氮新技术研究进展.环境污染治理技术与设备[J].2000,1(6):11-19
    [50]王建芳,涂宝华,陈荣平,等.生物脱氮除磷新工艺的研究进展[J].环境污染治理技术与设备.2003,4(9):70-73
    [51]王海燕,刘海涛,田华菡,等.全自养生物脱氮新工艺研究进展[J].环境污染治理技术与设备.2006,7(4):1-6
    [52]Hellinga C, Schellen A, Mulder J, et al. The SHARON process:an innovative method for nitrogen removal from ammonium-rich waste water[J]. Water Science and Technology. 1998, 37(9):135-142
    [53]张杰,付昆明,曹相生,等.序批式生物膜CANON工艺的运行与温度的影响[J].中国环境科学.2009,29(8):850-855
    [54]Kuai L, Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system. Applied and Environmental Microbiology[J].1998, 64(11):4500-4506
    [55]冯叶成,王建龙,钱易.生物脱氮新工艺研究进展[J].微生物学通报.2001,28(4):88-91
    [56]Gain E, Laborie S, Viers P, et al. Ammonium nitrate wastewater treatment by coupled membrane electrolysis and electrodialysis[J]. Journal of Applied Electrochemistry. 2002,32(9):969-975
    [57]Lopez A M, Hestekin J A. Separation of Organic Acids from Water using Ionic Liquid Assisted Electrodialysis[J]. Separation and Purification Technology. 2013
    [58]Lee H-J, Oh S-J,Moon S-H. Recovery of ammonium sulfate from fermentation waste by electrodialysis[J]. Water Research. 2003,37(5):1091-1099
    [59]杨晓奕,蒋展鹏,潘咸峰.膜法处理高浓度氨氮废水的研究[J].水处理技术.2003,29(2):85-88
    [60]Cahn R P, Li N N, Minday R M. Removal of ammonium sulfide from wastewater by liquid membrane process[J]. Environmental Science & Technology. 1978, 12(9): 1051-1056
    [61]Lee C J, Chan C C. Extraction of ammonia from a dilute aqueous solution by emulsion liquid membranes. 1. Experimental studies in a batch system[J]. Industrial & engineering chemistry research. 1990, 29(1):96-100
    [62]Taghdiri M, Mashhadizadeh M H, Falahati M, et al. Transport of Cu2+ion across a bulk liquid membrane containing a synthesized Schiff base as carrier [J]. Physics and Chemistry of Liquids. 2013:1-10
    [63]李可彬,金士道.液膜法去除废水中的氨氮污染[J].膜科学与技术.1996,16(3):40-45
    [64]Alkhudhiri A, Darwish N, Hilal N. Membrane distillation: A comprehensive review[J]. Desalination. 2012, 287: 2-18
    [65]Gryta M, Markowska-Szczupak A, Bastrzyk J, et al. The study of membrane distillation used for separation of fermenting glycerol solutions[J]. Journal of membrane science. 2012
    [66]Ding Z, Liu L, Li Z, et al. Experimental study of ammonia removal from water by membrane distillation (MD):The comparison of three configurations[J]. Journal of membrane science.2006,286(1-2):93-103
    [67]El-Bourawi M S, Khayet M, Ma R, et al. Application of vacuum membrane distillation for ammonia removal[J]. Journal of membrane science.2007,301(1-2):200-209
    [68]Xie Z, Duong T, Hoang M, et al. Ammonia removal by sweep gas membrane distillation[J]. Water Research. 2009,43(6):1693-1699
    [69]Lawson K W, Lloyd D R. Membrane distillation[J]. Journal of membrane science.1997, 124(1):1-25
    [70]Khayet M, Godino P, Mengual J I. Theory and experiments on sweeping gas membrane distillation[J]. Journal of membrane science.2000,165(2):261-272
    [71]Phattaranawik J, Jiraratananon R, Fane A. Heat transport and membrane distillation coefficients in direct contact membrane distillation[J]. Journal of membrane science. 2003,212(1):177-193
    [72]Phattaranawik J, Jiraratananon R. Direct contact membrane distillation: effect of mass transfer on heat transfer[J]. Journal of membrane science.2001,188(1):137-143
    [73]Khayet M, Godino M, Mengual J. Thermal boundary layers in sweeping gas membrane distillation processes[J]. AIChE journal.2002, 48(7):1488-1497
    [74]Findley M. Vaporization through porous membranes[J]. Industrial & Engineering Chemistry Process Design and Development. 1967, 6(2):226-230
    [75]Schofield R, Fane A, Fell C. Heat and mass transfer in membrane distillation[J]. Journal of membrane science.1987,33(3):299-313
    [76]Khayet M, Godino M, Mengual J. Study of asymmetric polarization in direct contact membrane distillation[J]. Separation science and technology. 2005,39(1):125-147
    [77]Martinez-Diez L,Vazquez-Gonzalez M. Effects of polarization on mass transport through hydrophobic porous membranes[J]. Industrial & engineering chemistry research. 1998,37(10):4128-4135
    [78]Martinez-Diez L,Vazquez-Gonzalez M I. Temperature and concentration polarization in membrane distillation of aqueous salt solutions[J]. Journal of membrane science. 1999,156(2):265-273
    [79]Schofield R, Fane A, Fell C, et al. Factors affecting flux in membrane distillation[J]. Desalination. 1990,77(279-294
    [80]Zhu C, Liu G, Cheung C, et al. Ultrasonic stimulation on enhancement of air gap membrane distillation[J]. Journal of membrane science.1999,161(1):85-93
    [81]Zhu C,Liu G. Modeling of ultrasonic enhancement on membrane distillation[J]. Journal of membrane science.2000,176(1):31-41
    [82]Cath T Y, Adams V D,Childress A E. Experimental study of desalination using direct contact membrane distillation:a new approach to flux enhancement[J]. Journal of membrane science.2004,228(1):5-16
    [83]Phattaranawik J, Jiraratananon R,Fane A. Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation[J]. Journal of membrane science. 2003,215(1):75-85
    [84]Khayet M,Matsuura T. Pervaporation and vacuum membrane distillation processes: modeling and experiments[J]. AIChE journal.2004, 50(8):1697-1712
    [85]Khayet M, Khulbe K,Matsuura T. Characterization of membranes for membrane distillation by atomic force microscopy and estimation of their water vapor transfer coefficients in vacuum membrane distillation process[J]. Journal of membrane science. 2004,238(1):199-211
    [86]Martinez L, Florido-Diaz F, Hernandez A, et al. Characterisation of three hydrophobic porous membranes used in membrane distillation: modelling and evaluation of their water vapour permeabilities [J]. Journal of membrane science.2002,203(1):15-27
    [87]Lagana F, Barbieri G, Drioli E. Direct contact membrane distillation: modelling and concentration experiments[J]. Journal of membrane science.2000,166(1):1-11
    [88]Khayet M,Matsuura T. Application of surface modifying macromolecules for the preparation of membranes for membrane distillation[J]. Desalination. 2003,158(1): 51-56
    [89]Fujii Y, Kigoshi S, Iwatani H, et al. Selectivity and characteristics of direct contact membrane distillation type experiment. I. Permeability and selectivity through dried hydrophobic fine porous membranes[J]. Journal of membrane science.1992, 72(1): 53-72
    [90]Tomaszewska M. Preparation and properties of flat-sheet membranes from poly (vinylidene fluoride) for membrane distillation[J]. Desalination. 1996, 104(1):1-11
    [91]Feng C, Shi B, Li G, et al. Preparation and properties of microporous membrane from poly (vinylidene fluoride-co-tetrafluoroethylene) (F2.4) for membrane distillation[J]. Journal of membrane science. 2004,237(1):15-24
    [92]Li J M, Xu Z K, Liu Z M, et al. Microporous polypropylene and polyethylene hollow fiber membranes. Part 3. Experimental studies on membrane distillation for desalination[J]. Desalination. 2003,155(2):153-156
    [93]Khayet M, Mengual J,Matsuura T. Porous hydrophobic/hydrophilic composite membranes:application in desalination using direct contact membrane distillation[J]. Journal of membrane science.2005,252(1):101-113
    [94]Wu Y, Kong Y, Lin X, et al. Surface-modified hydrophilic membranes in membrane distillation[J]. Journal of membrane science.1992,72(2):189-196
    [95]Zakrzewska-Trznadel G, Harasimowicz M, Chmielewski A G. Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation[J]. Journal of membrane science.1999,163(2):257-264
    [96]Khayet M, Godino M,Mengual J. Possibility of nuclear desalination through various membrane distillation configurations:a comparative study[J]. International journal of nuclear desalination. 2003,1(1):30-46
    [97]Zakrzewska-Trznadel G, Harasimowicz M, Chmielewski A G. Membrane processes in nuclear technology-application for liquid radioactive waste treatment[J]. Separation and Purification Technology. 2001,22:617-625
    [98]Khayet M, Mengual J,Zakrzewska-Trznadel G. Direct contact membrane distillation for nuclear desalination, Part II:experiments with radioactive solutions[J]. International journal of nuclear desalination. 2006, 2(1):56-73
    [99]Khayet M, Mengual J, Zakrzewska-Trznadel G. Direct contact membrane distillation for nuclear desalination. Part I:Review of membranes used in membrane distillation and methods for their characterisation[J]. International journal of nuclear desalination. 2005,1(4):435-449
    [100]Koschikowski J, Wieghaus M,Rommel M. Solar thermal-driven desalination plants based on membrane distillation[J]. Desalination. 2003,156(1):295-304
    [101]Abdallah S B, Frikha N,Gabsi S. Simulation of solar vacuum membrane distillation unit[J]. Desalination. 2013,324(87-92
    [102]Qtaishat M R,Banat F. Desalination by solar powered membrane distillation systems[J]. Desalination. 2013,308(186-197
    [103]Banat F, Jumah R,Garaibeh M. Exploitation of solar energy collected by solar stills for desalination by membrane distillation[J]. Renewable Energy. 2002,25(2):293-305
    [104]Schneider K, Holz W, Wollbeck R, et al. Membranes and modules for transmembrane distillation[J]. Journal of membrane science.1988,39(1):25-42
    [105]Khayet M, Matsuura T, Mengual J, et al. Design of novel direct contact membrane distillation membranes[J]. Desalination. 2006,192(1):105-111
    [106]Khayet M, Matsuura T,Mengual J. Porous hydrophobic/hydrophilic composite membranes:Estimation of the hydrophobic-layer thickness[J]. Journal of membrane science.2005,266(1):68-79
    [107]Ding Z, Ma R,Fane A. A new model for mass transfer in direct contact membrane distillation[J]. Desalination.2003,151(3):217-227
    [108]Zhongwei D, Liying L,Runyu M. Study on the effect of flow maldistribution on the performance of the hollow fiber modules used in membrane distillation[J]. Journal of membrane science.2003,215(1):11-23
    [109]Zheng J, Xu Y,Xu Z. Flow distribution in a randomly packed hollow fiber membrane module[J]. Journal of membrane science.2003,211(2):263-269
    [110]Mason E A,Malinauskas A. Gas transport in porous media: the dusty-gas model[M]. Elsevier Amsterdam, 1983
    [111]Khayet M, Godino M, Mengual J. Theoretical and experimental studies on desalination using the sweeping gas membrane distillation method[J]. Desalination. 2003,157(1): 297-305
    [112]Sudoh M, Takuwa K, Iizuka H, et al. Effects of thermal and concentration boundary layers on vapor permeation in membrane distillation of aqueous lithium bromide solution[J]. Journal of membrane science.1997,131(1):1-7
    [113]Duan S, Ito A,Ohkawa A. Removal of trichloroethylene from water by aeration, pervaporation and membrane distillation[J]. Journal of chemical engineering of Japan. 2001,34(8):1069-1073
    [114]Banat F A,Simandl J. Removal of benzene traces from contaminated water by vacuum membrane distillation[J]. Chemical Engineering Science.1996, 51(8):1257-1265
    [115]Banat F, Al-Shannag M. Recovery of dilute acetone-butanol-ethanol (ABE) solvents from aqueous solutions via membrane distillation[J]. Bioprocess Engineering. 2000, 23(6):643-649
    [116]Criscuoli A, Zhong J, Figoli A, et al. Treatment of dye solutions by vacuum membrane distillation[J]. Water Research.2008,42(20):5031-5037
    [117]Couffin N, Cabassud C, Lahoussine-Turcaud V. A new process to remove halogenated VOCs for drinking water production: vacuum membrane distillation[J]. Desalination. 1998,117(1):233-245
    [118]Qu D, Wang J, Hou D, et al. Experimental study of arsenic removal by direct contact membrane distillation[J]. Journal of hazardous materials.2009,163(2):874-879
    [119]Tomaszewska M. Concentration of the extraction fluid from sulfuric acid treatment of phosphogypsum by membrane distillation[J]. Journal of membrane science.1993, 78(3):277-282
    [120]Tang J,Zhou K. Hydrochloric acid recovery from rare earth chloride solutions by vacuum membrane distillation [J]. Rare Metals.2006,25(3):287-292
    [121]Wu Y, Kong Y, Liu J, et al. An experimental study on membrane distillation-crystallization for treating waste water in taurine production[J]. Desalination. 1991,80(2):235-242
    [122]Curcio E, Criscuoli A, Drioli E. Membrane crystallizers[J]. Industrial & engineering chemistry research. 2001,40(12):2679-2684
    [123]Tun C M, Fane A G, Matheickal J T, et al. Membrane distillation crystallization of concentrated salts-flux and crystal formation[J]. Journal of membrane science.2005, 257(1):144-155
    [124]Drioli E, Criscuoli A,Curcio E. Integrated membrane operations for seawater desalination[J]. Desalination. 2002,147(1):77-81
    [125]Criscuoli A, Drioli E. Energetic and exergetic analysis of an integrated membrane desalination system[J]. Desalination. 1999, 124(1):243-249
    [126]Karakulski K, Gryta M,Morawski A. Membrane processes used for potable water quality improvement[J]. Desalination. 2002, 145(1):315-319
    [127]Wang Z, Zheng F,Wang S. Experimental study of membrane distillation with brine circulated in the cold side[J]. Journal of membrane science. 2001,183(2):171-179
    [128]Cath T Y, Adams D,Childress A E. Membrane contactor processes for wastewater reclamation in space: II. Combined direct osmosis, osmotic distillation, and membrane distillation for treatment of metabolic wastewater[J]. Journal of membrane science. 2005,257(1):111-119
    [129]Phattaranawik J, Fane A G, Pasquier A C S, et al. Experimental study and design of a submerged membrane distillation bioreactor[J]. Chemical Engineering & Technology. 2009,32(1):38-44
    [130]Mozia S, Tomaszewska M, Morawski A W. Removal of azo-dye Acid Red 18 in two hybrid membrane systems employing a photodegradation process[J]. Desalination. 2006,198(1):183-190
    [131]Mozia S, Morawski A W. Hybridization of photocatalysis and membrane distillation for purification of wastewater[J]. Catalysis today. 2006, 118(1):181-188
    [132]Mozia S, Morawski A W, Toyoda M, et al. Effectiveness of photodecomposition of an azo dye on a novel anatase-phase TiO2 and two commercial photocatalysts in a photocatalytic membrane reactor (PMR)[J]. Separation and Purification Technology. 2008, 63(2):386-391
    [133]Chernyshov M N, Meindersma G W, de Haan A B. Modelling temperature and salt concentration distribution in membrane distillation feed channel[J]. Desalination. 2003, 157(1):315-324
    [134]Gryta M, Tomaszewska M, Grzechulska J, et al. Membrane distillation of NaC1 solution containing natural organic matter[J]. Journal of membrane science. 2001, 181(2):279-287
    [135]Gryta M. Concentration of saline wastewater from the production of heparin[J]. Desalination. 2000,129(1):35-44
    [136]Gryta M. The assessment of microorganism growth in the membrane distillation system[J]. Desalination. 2002, 142(1):79-88
    [137]Dincer A, Kargi F. Performance of rotating biological disc system treating saline wastewater[J]. Process Biochemistry. 2001,36(8):901-906
    [138]Martinez-Diez L, Florido-Diaz F. Desalination of brines by membrane distillation[J]. Desalination. 2001,137(1):267-273
    [139]Garcia-Payo M, Rivier C, Marison Ⅰ, et al. Separation of binary mixtures by thermostatic sweeping gas membrane distillation: Ⅱ. Experimental results with aqueous formic acid solutions[J]. Journal of membrane science.2002,198(2):197-210
    [140]Alklaibi A, Lior N. Membrane-distillation desalination: status and potential[J]. Desalination. 2005,171(2):111-131
    [141]Yan S, Zhang T, Zhang W. The Coupling Study for Solar Heating System and Membrane Distillation System[J]. Physics Procedia. 2012, 24:473-480
    [142]Pano A, Middlebrooks E J. Ammonia nitrogen removal in facultative wastewater stabilization ponds[J]. Journal (Water Pollution Control Federation).1982,344-351
    [143]姚允斌,化学教授,解涛,等.物理化学手册[M].上海科学技术出版社,1985
    [144]Banat F, Al-Rub F A, Bani-Melhem K. Desalination by vacuum membrane distillation: sensitivity analysis[J]. Separation and Purification Technology. 2003,33(1):75-87
    [145]Bandini S, Gostoli C, Sarti G. Separation efficiency in vacuum membrane distillation[J]. Journal of membrane science.1992,73(2):217-229
    [146]Pangarkar B L, Sane M, Parjane S B, et al. The heat and mass transfer phenomena in vacuum membrane distillation for desalination[J]. International Journal of Chemical and Biological Engineering. 2010, 3(1):33-38
    [147]Horvath A L. Handbook of aqueous electrolyte solutions:physical properties, estimation and correlation methods[M]. Ellis Horwood Chichester, 1985
    [148]Washburn E W, West C J. International critical tables of numerical data, physics, chemistry and technology[M]. National Academies, 1929
    [149]Tang J J, Zhou K G, Zhang Q X, et al. Study on the removal of MIBK from aqueous solution by vacuum membrane distillation[J]. Journal of Central South University of Technology. 2000, 7(4):178-181
    [150]Sarti G, Gostoli C, Bandini S. Extraction of organic components from aqueous streams by vacuum membrane distillation[J]. Journal of membrane science.1993,80(1):21-33
    [151]El-Bourawi M, Ding Z, Ma R, et al. A framework for better understanding membrane distillation separation process[J]. Journal of membrane science.2006, 285(1):4-29
    [152]Bandini S, Saavedra A, Sarti G C. Vacuum membrane distillation: experiments and modeling[J]. AIChE journal.1997, 43(2):398-408
    [153]Mericq J P, Laborie S, Cabassud C. Vacuum membrane distillation for an integrated seawater desalination process[J]. Desalination and water treatment. 2009, 9(1-3): 287-296
    [154]Cabassud C, Wirth D. Membrane distillation for water desalination: how to chose an appropriate membrane?[J]. Desalination. 2003,157(1):307-314
    [155]Wirth D, Cabassud C. Water desalination using membrane distillation: comparison between inside/out and outside/in permeation[J]. Desalination. 2002, 147(1):139-145
    [156]Salavera D, Chaudhari S K, Esteve X, et al. Vapor-liquid equilibria of ammonia+ water+ potassium hydroxide and ammonia+ water+ sodium hydroxide solutions at temperatures from (293.15 to 353.15) K[J]. Journal of Chemical & Engineering Data. 2005,50(2):471-476
    [157]Agashichev S, Sivakov A. Modeling and calculation of temperature-concentration polarisation in the membrane distillation process (MD)[J]. Desalination. 1993,93(1): 245-258
    [158]Alklaibi A,Lior N. Transport analysis of air-gap membrane distillation[J]. Journal of membrane science.2005,255(1):239-253
    [159]Bouguecha S, Chouikh R, Dhahbi M. Numerical study of the coupled heat and mass transfer in membrane distillation[J]. Desalination. 2003,152(1):245-252
    [160]Chernyshov M N, Meindersma G W, de Haan A B. Modelling temperature and salt concentration distribution in membrane distillation feed channel[J]. Desalination. 2003, 157(1-3):315-324
    [161]Rodriguez-Maroto J, Martinez L. Bulk and measured temperatures in direct contact membrane distillation[J]. Journal of membrane science.2005,250(1):141-149
    [162]Kemperman A, Rolevink H, Bargeman D, et al. Stabilization of supported liquid membranes by interfacial polymerization top layers[J]. Journal of membrane science. 1998,138(1):43-55
    [163]Banat F A, Al-rubf A A, Jumah R, et al. Modeling of desalination using tubular direct contact membrane distillation modules[J]. Separation science and technology. 1999, 34(11):2191-2206
    [164]Campderros M, Acosta A, Marchese J. Selective separation of copper with LIX 864 in a hollow fiber module[J]. Talanta. 1998,47(1):19-24
    [165]Way J D, Noble R D. Competitive facilitated transport of acid gases in perfluorosulfonic acid membranes[J]. Journal of membrane science.1989, 46(2): 309-324
    [166]Tomaszewska M, Gryta M, Morawski A. Study on the concentration of acids by membrane distillation[J]. Journal of membrane science.1995,102:113-122
    [167]Mengual J, Khayet M, Godino M. Heat and mass transfer in vacuum membrane distillation[J]. International journal of heat and mass transfer. 2004,47(4):865-875
    [168]Thomsen K, Rasmussen P. Modeling of vapor-liquid-solid equilibrium in gas-aqueous electrolyte systems[J]. Chemical Engineering Science. 1999, 54(12): 1787-1802
    [169]Thomsen K, Rasmussen P, Gani R. Correlation and prediction of thermal properties and phase behaviour for a class of aqueous electrolyte systems[J]. Chemical Engineering Science. 1996,51(14):3675-3683
    [170]王闻天,刘述尧.强电解质混合物水溶液粘度的计算[J].化工设计.1989,3:009
    [171]Bennett C O, Myers J E. Momentum, heat, and mass transfer[M]. McGraw-Hill New York, 1982
    [172]Edwie F, Chung T S. Development of simultaneous membrane distillation-crystallization (SMDC) technology for treatment of saturated brine[J]. Chemical Engineering Science. 2013
    [173]Guan G, Wang R, Wicaksana F, et al. Analysis of Membrane Distillation Crystallization System for High Salinity Brine Treatment with Zero Discharge Using Aspen Flowsheet Simulation[J]. Industrial & engineering chemistry research. 2012, 51(41):13405-13413
    [174]Creusen R, van Medevoort J, Roelands M, et al. Integrated membrane distillation-crystallization: Process design and cost estimations for seawater treatment and fluxes of single salt solutions[J]. Desalination. 2013
    [175]Gryta M. Concentration of NaCl solution by membrane distillation integrated with crystallization[J]. Separation science and technology. 2002, 37(15): 3535-3558
    [176]Ji X, Curcio E, Al Obaidani S, et al. Membrane distillation-crystallization of seawater reverse osmosis brines[J]. Separation and Purification Technology. 2010, 71(1):76-82
    [177]Srisurichan S, Jiraratananon R, Fane A. Mass transfer mechanisms and transport resistances in direct contact membrane distillation process[J]. Journal of membrane science. 2006,277(1):186-194
    [178]Alklaibi A, Lior N. Heat and mass transfer resistance analysis of membrane distillation[J]. Journal of membrane science. 2006,282(1):362-369
    [179]Ding Z, Liu L, Yu J, et al. Concentrating the extract of traditional Chinese medicine by direct contact membrane distillation[J]. Journal of membrane science. 2008, 310(1): 539-549
    [180]许文.高等化工热力学[M].天津大学出版社,2004
    [181]陈钟秀,顾飞燕,等.化工热力学[M].化学工业出版社教材出版中心,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700