湖北省油—稻轮作下作物施肥效果和养分吸收规律及土壤养分变化特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油-稻轮作是湖北省主要耕作制度之一。近年来,由于优质品种选育、改良、推广应用使得油菜和水稻产量不断提高,原有的施肥体系已经不能满足当前生产发展水平的需求,因此探讨当前生产力发展水平下作物高效施肥技术模式对于促进油菜和水稻持续增产、维持地力和改良土壤具有重要意义。本文以油菜-水稻轮作为研究对象,通过田间试验系统地研究了氮、磷、钾、硼、锌肥对于油菜和水稻产量和经济效益的影响及施氮对于作物养分积累分配、土壤肥力状况、农田养分平衡的影响,在此基础上对油菜和水稻的养分吸收规律及轮作中土壤养分变化特征进行了研究;通过田间和盆栽试验相结合的方式研究了氮、磷、锌及其配合施用对水稻产量和品质的影响,以此为基础探讨了水稻产量效应产生的生理机制。主要得出以下结果:
     1.试验区氮、磷、钾、硼、锌肥的产量效应
     本试验条件下,油菜季施用氮、磷、钾、硼肥显著的增加了油菜产量,施N 90-360 kg/hm2、P2O590 kg/hm2、K2O 120 kg/hm2、硼砂15 kg/hm2油菜籽分别增产875-2051 kg/hm2、788~1288 kg/hm2、250~612 kg/hm2、475~650 kg/hm2,而施用锌肥却降低了油菜籽产量,施ZnSO4·7H2O 30 kg/hm2,油菜籽减产51-347 kg/hm2;水稻季施用氮、磷、钾、锌肥明显增加了水稻产量,施N 90~360 kg/hm2、P2O5 45 kg/hm2、K2O 60 kg/hm2、ZnSO4·7H2O 45~90 kg/hm2、水稻分别增产1000~2251kg/hm2、1376 kg/hm2、1626 kg/hm2、376~1376 kg/hm2。
     2.油菜和水稻单位产量养分需求量
     本试验条件下,油-稻轮作中,油菜以每公顷施N 180 kg、P2O5 90 kg、K2O 120 kg、硼砂15kg,水稻以每公顷施N 180 kg、P2O5 45 kg、K2O 60 kg、ZnSO4·7H2O 45 kg产量最高,与农民习惯施肥相比,油菜和水稻每公顷分别平均增产413kg、1125kg。此时每生产100 kg油菜籽粒,养分需求量平均为:N 4.73 kg、P2O5 2.29 kg、K2O 12.68 kg、CaO 4.82 kg、MgO 0.87 kg、Fe 35.55 g、Mn 7.78 g、Cu 2.87 g、Zn 6.86 g;每生产100 kg稻谷,养分需求量平均为:N 1.17 kg、P2O5 0.77kg、K2O 3.85kg、CaO 0.42 kg、MgO 0.41 kg、Fe 19.48 g、Mn 68.57 g、Cu4.24g、Zn9.27g。
     3.油-稻轮作不同施氮量条件下油菜和水稻干物质及养分积累动态变化
     本研究结果表明,施氮处理的油菜氮、磷、钾含量在越冬期和蕾薹期呈波动上升趋势,蕾薹期以后其含量急剧下降至角果成熟期达到最小值。水稻氮、磷、钾含量在整个生育期内呈波动降低趋势。植株干物质及养分积累量随生育期的进行总体呈增加趋势。苗期油菜干物质及养分积累比较平缓,抽薹后积累迅速上升,氮、钾、钙、镁、铁、锰积累量花期至成熟期有降低趋势,而干物质及磷、铜、锌积累量则继续保持上升趋势。油菜干物质及氮、磷、钾积累主要集中在薹花期,该时期干物质量、氮、磷、钾积累量分别占各积累总量的41.17%~46.01%、42.19%~77.18%、48.22%~74.39%、60.15%~87.32%;施氮处理水稻干物质及养分积累量在苗期至抽穗期呈上升趋势,灌浆结实期氮、钙、镁、铁积累量有降低趋势,而干物质量、磷、钾、铜、锌积累量则继续保持上升趋势。水稻干物质及氮、磷积累主要集中在拔节抽穗期,该时期干物质、氮、磷积累量分别占各总量的50.99%~61.75%、53.73%~61.73%、50.40%~69.29%,而水稻钾积累主要集中在苗期和分蘖期,该时期钾积累量占总量的43.51%~55.51%。施氮处理的植株干物质及养分积累量在整个生育期内均显著高于不施氮处理。
     4.油-稻轮作下作物成熟后养分的分配状况
     油菜氮41%~76%,磷59.87%-73.05,水稻氮67.93%-76.07%、磷78.00%~93.31%主要分配在籽粒中,油菜钾49.49%-53.99%,水稻钾80.13%~84.47%主要分配在茎秆中,此外油菜镁、锰、锌及水稻铜积累量主要分配在籽粒中,油菜铁及水稻钙、镁、铁、锰、锌积累量主要分配在茎秆中,而油菜钙、铜积累量则主要分配在荚壳中。施氮增加了油菜和水稻各部分养分含量和积累量,对植物体内养分分配产生了一定影响。
     5.油-稻轮作下土壤养分变化特征及土壤养分平衡状况
     在油-稻轮作期中,无论施氮与否,土壤养分含量均表现为一个波动变化的过程,油菜季结束后,与基础土样相比,各处理土壤全氮、碱解氮含量分别增加16.96%~34.74%、17.53%~47.63%,速效钾含量降低17.57%~33.97%,此外土壤有效钙,有效镁,有效锌含量有所增加,而有效锰、有效铜含量有所降低。与不施氮相比,施氮增加了土壤全氮含量12.79%、碱解氮含量68.35%,降低速效钾含量7.57%,此外施氮还增加了土壤有效铁、有效锰含量,降低了有效铜、有效锌含量。水稻季结束后,与基础土样相比,施氮处理土壤全氮、碱解氮含量分别增加7.86%-17.54%、4.81%-16.84%,速效钾含量降低12.30%~24.60%,此外各处理有效铜、有效铁、有效锌含量有所增加,而有效锰有所降低。施氮增加了土壤碱解氮、全氮、有效铁、有效铜含量,但却降低了土壤速效钾、有效锰、有效锌含量。从整个油-稻轮作土壤养分平衡状况看,施氮处理农田土壤氮盈余,其盈余量随着施氮量增加而增加,施氮0~180 kg/hm2土壤磷素盈余,施氮270-360 kg/hm2土壤磷素出现亏缺,所有处理土壤钾素亏缺,其亏缺量随着施氮量增加而增加。总体而言,适量增施氮肥可使土壤氮素盈余,磷素基本平衡,但钾素亏缺。
     6.田间试验下,氮磷锌配合施用对油-稻轮作下水稻产量和品质的影响
     本研究结果表明,氮、磷、锌任意两者或三者配合施用均增加了水稻产量,稻米中蛋白质和直链淀粉含量。在肥料3因素中,氮磷锌对于水稻产量、稻米中蛋白质和直链淀粉含量影响大小为:氮素>锌素>磷素。适量施用氮、磷肥及增施锌肥提高了水稻产量,改善了稻米品质,本试验地力条件下,每公顷施N 180~270 kg,P2O5 60 kg, ZnSO4.7H2O 120 kg,可以明显提高水稻产量及稻米中蛋白质和直链淀粉含量。
     7.盆栽试验下,氮磷锌配施对油-稻轮作下水稻生理生化指标的影响
     本研究结果表明,水稻根系活力(R2=0.7683**)、叶片硝酸还原酶活性(R2=0.8178**)、叶绿素含量(R2=0.7658**)、碳酸酐酶活性(R2=0.8685**)与水稻产量呈极显著正相关关系,而叶片SOD活性(R2=0.6935*)与水稻产量呈显著负相关关系。氮、锌、锌合理配施不仅提高了水稻CA活性、根系活力,而且从某种程度上促进了水稻早熟,使水稻形成较高的产量。
Rapeseed-rice rotation is one of the dominant cropping systems in the Hubei province. In recent years, as the breeding, the ameliorating and the applicating of quality varieties making the yields of rapeseed and rice increase, the original fertilization system could not meet the needs of the development of the current production level, therefore, the research of hign fertilization model of crops under the current level of productivity will be of great significance to increase the continued yield of rapeseed and rice, maintain soil fertility and ameliorat soil. This paper studied the effects of application of N, P, K, B, Zn fertilizer on the yield and economic profit of rapeseed and rice, and the effects of N application on the nutrient accumulation and distribution, soil fertility and nutrient balance in rapeseed-rice rotation by the way of field experiment. On this basis, we had studied the nutrient accumulation regularity of rapeseed and rice and the Changing Charateristics of soil nutrient. By the way of combination of field and pot experiments, the research investigated the effects of combined application of N, P, Zn on rice yield and quality, and the physiological mechanisms which were closely related to yield effect. The main results were as follows:
     1. Effects of N, P, K, B, Zn on crop yield in experiment area
     In this experiment, in rape growth reason, the application of N, P, K, B significantly increased rapeseed yield, when fertilizing N 90~360 kg/hm, P2O5 90 kg/hm2, K2O 120 kg /hm2, Borax 15 kg/hm2, rapeseed yield would increase as 875~2051 kg/hm2,788~1288 kg/hm2,250~612 kg/hm2,475~650 kg/hm2 respectively, while the application of Zn reduced rapeseed yield, when fertilizing ZnSO4·7H2O 30 kg/hm2, the rapeseed yield would decrease as 51~347 kg/hm2. In rice growth reason, the application of N, P, K, Zn significantly increased rice yield, when appling N 90~360 kg/hm2, P2O5 45 kg/hm2, K2O 60 kg/hm2, ZnSO4·7H2O 45~90 kg/hm2, rice yield would increase as 1000~2251 kg/hm2,1376 kg/hm2,1626 kg/hm2,376~1376 kg/hm2 respectively.
     2. The average nutrient requirements of production of rapeseed and rice per 100kg
     In this experiment, the rapeseed yield with fertilizing N 180 kg, P2O5 90 kg, K2O 120 kg, Borax 15 kg per hectare and the rice yield with N 180 kg, P2O5 90 kg, K2O 120 kg, ZnSO4·7H2O 45 kg per hectare were the highest among all treatments in rapeseed-rice rotation, compared with the FFP fertilizing treatments, the rapeseed and rice yield averagely increased 413 kg/hm2,1125 kg/hm2 respectively. At this time, the average nutrient requirement of production of rapeseed per 100 kg:N 4.73 kg, P2O5 2.29 kg, K2O 12.68 kg, CaO 4.82 kg, MgO 0.87 kg, Fe 35.55 g, Mn 7.78 g, Cu 2.87 g, Zn 6.86 g; rice per 100 kg:N 1.17 kg, P2O5 0.77 kg, K2O 3.85 kg, CaO 0.42 kg, MgO 0.41 kg, Fe 19.48 g, Mn 68.57 g, Cu 4.24 g, Zn 9.27 g.
     3. The dynamic changes of dry matter and nutrient accumulation under different N fertilization in rapeseed-rice rotation system
     The result showed that the concentration of rapeseed N, P, K with N application appeared rising trend from overwintering to bud period, then showed sharply decreased trend after bud period until the end of maturing period in which the content of N, P, K reach minimum value. The concentration of rice N, P, K showed fluctuant descend trend in the whole rice growing period. The accumulation amount of dry matter and nutrient increased with the crop growing. The rapeseed dry matter and nutrient in seeding stage accumulated quite gently, which accumulated rising rapidly after bolting, the accumulation amount of N, K, Ca, Mg, Fe, Mn presented downward trend after fiower period, while the dry matter and P, Cu, Zn showed rising trend until the end of maturing period. The accumulation of rapeseed dry matter and N, P, K mainly concentrated in peduncle growing- flowering preiod, in which the accumulation amount of dry matter, N, P and K accounted for 41.17%~46.01%,42.19%~77.18%,48.22%~74.39%,60. 15%~87.32% of total accumulation amount respectively. The dry matter and nutrient accumulation amount of rice presented rising trend from seeding stage to heading stage, in the grouting strong period, the N, Ca, Mg, Fe accumulation amount had downward trend, while dry matter, P, K, Cu, Zn accumulation amount kept rising trend until the end of maturing period. The accumulation of rice dry matter and N, P mainly concentrated in jointing-heading preiod, in which the accumulation amount of dry matter, N, P accounted for 50.99%~61.75%,53.73%~61.73%,50.40%~69.29% of total accumulation amount respectively, while K concentrated in seeding stage and tillering stage, in which the K accumulation amount accounted for 43.51%~55.51% of total. In the whole growth period, the accumulation amounts of dry matter and nutrient with N application were more than the control.
     4. The distribution of crop nutrient after maturity under situation of rapeseed-rice rotation
     N 41%~76% and P 59.87%~73.05% of rapeseed, N 67.93%~76.07%, P 78. 00%~93.31% of rice mainly distributed in the seed, K 49.49%~53.99% of rapeseed and K 80.13%~84.47% of rice mainly distributed in the stems, in addition, the accumulation amounts of rapeseed Mg, Mn, Zn and Cu of rice mainly distributed in the seed, Fe accumulation of rapeseed and Ca, Mg, Fe, Mn, Zn of rice mainly distributed in the stem, while Ca, Mg accumulation of rice mainly distributed in the pod. The results in maturity showed N application enhanced the content and accumulation of every part of rapeseed and rice and influenced the distribution of nutrients.
     5. The changing characteristics and balance of soil nutrients in rapeseed-rice rotation
     In the whole rapeseed-rice rotation, whether appling nitrogen or not, the contents of soil nutrient showed a fluctuating change process. After rapeseed season, compared with the foundation soil, the contents of total nitrogen(TN) and alkali-hydro nitrogen(AN) increased 16.96%~34.74%,17.53%~47.63% respectively, the available potassium (Ak) content decreased 17.57%~33.97%, in addition, the contents of soil available Ca, Mg, Zn increased, while the available Mn, Cu decreased. Compared with the control, N application increased the content of soil TN 12.79%, AN 68.35%, reduced AK 7.57%, which also increased the contents of available Fe, Mn, but reduced the contents of available Cu, Zn. After rice season, compared with foundation soil, the contents of soil TN, AN with N application increased 7.86%~17.54%,4.81%~16.84% respectively, AK reduced 12.30%~24.60%, moreover, the contents of available Cu, Fe, Zn of all treatments increased, while available Mn reduced. N application increased the contents of soil AN, TN and available Mn, available Fe, available Cu, but reduced the contents of soil available K, available Mn, available Zn.
     From the balance of soil nutrients in the whole rapeseed-rice rotation perspectives, the farmland soil N elements with N application were in the surplus state, which the surplus quantities increased with the increases of N fertilizer application. The soil P elements with fertilizing N 0~180 kg/hm2 were in the surplus state, but with fertilizing N 270~360 kg/hm2 were in the deficit state, The soil K elements of all treatments were in the deficit state, which the deficit quantities were increasing with the increases of N fertilizer application. In all, reasonably increasing nitrogen application could make the soil N surplus, P basic balance, K deficiency.
     6. Effects of combined application of N, P, Zn on rice yield and quality under field trial in rapeseed-rice rotation
     The result indicated that combining application of any two or three of N, P, Zn could increase the yield, the contents of protein and amylose in some extent. Among the three fertilizers of N, P, Zn, the effects on the yield, the contents of protein and amylase could be in the order of N>Zn>P. Appling N, P feitilizers properly and improving the zinc fertilizer increased rice yield and improved grain quality. In this experiment, fertilizing N 180~270 kg, P2O5 60 kg, ZnSO4·7H2O 120 kg per hectare can significantly improve rice yield, increase the contents of rice protein and amylase.
     7. In post experiment, effects of combined application of N, P, Zn on rice physiological and biochemical index in rapeseed-rice rotation
     The results indicated NR activity (R2=0.8178**), CA activity (R2=0.8685**), the content of chlorophyⅡ(R2=0.7658**) of rice leaves, the root acyivity (R2=0.7683**) and the rice yields of different treatments showed a well significantly positive correlation, but the SOD activity (R2=0.6935*) showed a significantly negative correlation. Combining application of N, P, Z fertilizer properly not only improve the rice CA activity, root activity, but also promote rice to mature early to some extent, which make rice product higher yield.
引文
1. 鲍士旦.土壤农化分析.中国农业出版社,2000
    2. 蔡昆争,骆世明.施肥对水稻生长发育和产量形成的影响.作物研究,1997,11(4):5-7
    3. 蔡晓布.磷锌肥配合施用对青棵产量与品质的影响.植物营养与肥料学报,2000,6(1):117-120
    4. 陈防,万开元,陈树森,等.中国南方钾素研究进展与展望.见:周建民,Magen H主编,土壤钾素动态与钾肥管理.南京:河南大学出版社,2008,99-104
    5. 陈刚,年夫照,徐芳森,等.硼、钼营养对甘蓝型油菜产量和品质影响的研究.植物营养与肥料学报,2005,11(2):243-247
    6. 陈铭,尹崇仁.施用锌锰肥对冬小麦体内营养元素浓度的效应.中国农业科学,1992,25(4):60-69
    7. 陈能,罗玉坤.优质食用稻米品质的理化指标与食味的相关性研究.中国水稻科学,1997,11(2):70-76
    8. 陈社员,官春云,王国槐.双低油菜新品种湘油15号的选育.湖南农业大学学报(自然科学版),2003,9(2):45-48
    9. 董明辉,桑大志,王朋,等.不同施氮水平下水稻穗上不同部位籽粒的蒸煮与营养品质变化.中国水稻科学,2006,20(4):389-395
    10.俄胜哲,袁继超,丁志勇,等.氮、磷、钾肥对稻米铁、锌、铜、锰、镁、钙含量和产量的影响.中国水稻科学,2005,19(5):434-440
    11.范明生,江荣风,张福锁,等.水稻轮作系统作物养分管理策略.应用生态学报,2008,19(2):424-432
    12.范巧佳,牛应泽,倪苏,等.几个油菜品种氮磷钾吸收积累特性的初步研究.四川农业大学学报,1997,15(2):205-210,228
    13.冯娟,黄华,杨文钰.不同密度、施氮量对机械撒播油菜产量及其构成的影响.作物杂志,2006,(2):26-28
    14.付连刚,杨力,刘春生,等.氮钾铁肥的不同配比对油菜生长及品质的影响研究.山东农业大学学报(自然科学版),2005,36(2):181-185
    15.傅廷栋.中国油菜生产和品种改良的现状与前景.安徽农学报,2000,6(1):2-9
    16.高超,张桃林,孙波,等.1980年以来我国农业氮素管理的现状与问题.南京大学学报(自然科学),2002,38(5):716-721
    17.高建芹,浦惠明.杂交油菜宁杂1号干物质积累与氮磷钾吸收规律.江西农业科学,2001,7(5):29-31
    18.高俊杰,于新英.施锌对油菜生长产量和品质的影响.北方园艺,1998,(5):16-17
    19.郭庆元,李志玉,涂学文.我国南方红黄壤地区优质油菜营养特性与施肥效应研究Ⅰ.不同油菜品种的氮磷营养特性.中国油料作物学报,2000,22(4):43-47
    20.郭再华,贺立源,徐才国.磷水平对不同磷效应水稻生长及磷、锌养分吸收的影响.中国水稻科学,2005,19(4):335-360
    21.郝虎林,杨肖娥,冯英,等.供磷水平对铁、锰、铜、锌在稻株中分布和糙米品质的影响.植物营养与肥料学报,2009,15(6):1350-1356
    22.何宇纳,翟凤英,王志宏,等.中国居民膳食能量、蛋白质、脂肪的来源结构及变化.营养学报,2005,27(5):358-361
    23.胡明芳,文启凯,田长彦.作物锌素营养研究进展综述.土壤肥料,1997,(3):31-31
    24.黄冲平,丁鼎良.水旱轮作对作物产量和土壤理化性状的影响.浙江农业学报,1995,7(6):448-450
    25.黄文川,李录久,李文高.小麦氮锌配施效应及增产机理研究.核农学报,2000,14(4):225-229
    26.贾彦博,杨肖娥,王为木.不同供钾水平下水稻钾素吸收利用与产量的基因型差异.水土保持学报,2002,8(2):137-143
    27.江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响.中国农业科学,2004,37(4):490-496
    28.姜佰文,王春宏,罗圣国.施氮时期对寒地不同品种水稻产量和品质的影响.东北农业大学学报,2005,36(1):8-10
    29.金继运,黄绍文,何平.水稻钾素和植株钾素营养研究进展.植物营养研究与展望.北京:中国农业大学出版社,2000,138-157
    30.李得孝,郭月霞,员海燕,等.玉米叶绿素含量测定方法研究.中国农学通报,2005,21(1):153-155
    31.李慧英,朱永官.不同磷锌施肥量对大麦产量及其吸收的影响.中国生态农业学报,2002,10(4):51-53.
    32.李娜,杨涛.我国油菜籽产业发展现状及趋势展望.农业展望,2009,(2):19-21
    33.李玉鹏.氮磷钾肥施用对水稻产量形成与养分吸收的影响[硕士毕业论文].北京:中国农业科学院研究生院,2007
    34.李志玉,胡琼,廖星,等.优质油菜中油杂8号施用氮磷硼肥的产量和品质效应. 中国油料作物学报,2005,27(4):59-63
    35.李志玉,廖星,涂学文,等.氮、磷、钾、硼配合对油菜品种产量、品质的影响.湖北农业科学,2003,(6):33-37
    36.廉鸿志,张璐,宇万太,等.大剂量磷肥对作物微量元素营养的影响.土壤通报,1993,24(1):27-29
    37.廖星,刘昌智,王江莜,等.油菜杂交种和常规种干物质积累及营养吸收的比较.中国油料,1995,17(3):50-53
    38.刘传雪,潘国君,张淑华,等.磷营养对粳稻根部性状的影响.中国农学通报,2005,21(9):178-183
    39.刘冬碧,陈防,鲁剑巍,等.施钾对油菜干物质积累和钾、钙、镁吸收的影响.土壤肥料,2001,(4):24-28
    40.刘后利.实用油菜栽培学.上海:上海科学技术出版社,1987:128-143,236-237
    41.刘金山,鲁剑巍,胡承孝,等.湖北省油菜-水稻轮作区土壤养分吸附特征研究.土壤科学与农业可持续发展,2010:62-67
    42.刘协广,龙志伟.水肥耦合对水稻干物质积累和产量形成的影响.中国农技推广,2010,26(2):37-39
    43.刘巽浩.耕作学.中国农业出版社,1996:156-171
    44.刘志荣,杨滢智.氮、磷、钾不同施肥量对油菜产量的影响.耕作与栽培,2006,(4):36-37
    45.柳金来,宋继娟,周柏明,等.氮肥施用量与水稻品质的关系.土壤肥料,2005,(1):17-19
    46.鲁剑巍,陈防,等.磷肥用量对油菜产量、养分吸收及经济效益的影响.中国油料作物学报,2005(1):73-76
    47.鲁剑巍,陈防,刘冬碧,等.施钾水平对油菜生物量积累和籽粒产量的影响.湖北农业科学,2001,(4):49-51
    48.鲁剑巍,陈防,余常兵,等.油菜施钾效果及土壤速效钾临界值初步判断.中国油料作物学报,2003,25(4):107-112
    49.鲁剑巍,陈防,张竹青,等.磷肥用量对油菜产量、养分吸收及经济效益的影响.中国油料作物学报,2005,27(1):73-76
    50.鲁剑巍.油菜对钾的反应及钾肥有效施用配套技术的研究.1999
    51.鲁明星,邹娟,鲁剑巍,等.湖北省油菜磷肥施用效果与土壤速效磷分级标准研究.中国油料作物学报,2006,28(4):448-452
    52.吕晓男,陆允甫,毛东明.浙中红壤有效硼水平及油菜硼素营养.土壤肥料,2000,(1):30-31,34
    53.马毅杰,陈家坊.水稻土物质变化与生态环境.科学出版社,北京.1999:1-8.
    54.年夫照,石磊,徐芳森,等.硼对油菜产量和品质效应的研究进展.山地农业生物学报,2005,24(1):79-83
    55.宁大伟.湖北省油菜-水稻轮作制度下施肥效果及经济效益的研究[硕士毕业论文].武汉,华中农业大学图书馆,2010
    56.裴又良.超级杂交稻两优培九的营养特性研究.杂交水稻,2005,20(3):68-70
    57.彭世彰,李荣超,朱成立.节水灌溉的水稻干物质增长模型研究.水利学报,2002(11):99-102
    58.沈康,沈振国,等.油菜硼素营养与结实性的研究.作物学报,1993,19(6):539-545
    59.沈学平,刘冀浩.多熟种植.北京:农业出版社,1983
    60.沈振国,张秀省,等.硼素营养对油菜花粉萌发的影响.中国农业科学,1994,27(1):51-56
    61.石孝均,毛知耘,周则芳.钙质紫色土水稻氮磷锌配肥模式研究.西北农业大学学报,1990,12(6):550-552
    62.宋海星,官春云,刘强,等.施氮对“双低”油菜吸氮特性及氮素生理效率的影响.水土保持学报,2006,20(4):107-109
    63.汤章城.现代植物生理学实验指南.北京科学出版社.2004
    64.田士明,王梅芳,张韶华.锌、锰肥对玉米吸收氮、磷、钾及干物质积累的影响.土壤肥料,1999(1):44-45
    65.王法宏,冯波,王旭清.国内外免耕技术应用概况.山东农业科学,2003,(6):49-53
    66.王汉中.中国油料产业发展的现状、问题与对策.中国油料作物学报,2005,27(4):100-105
    67.王萍.平衡施肥的重要性及其推广.农业科技通讯,2002,(1):27-27
    68.王巧兰,吴礼树,赵竹青,等.氮水平对水稻植株氮素损失的影响.植物营养与肥料学报,2010,16(1):14-19
    69.王人民,杨肖娥.不同锌离子活度对水稻养分吸收的影响及其基因型差异.作物学报,2001,27(5):565-574.
    70.王亚艺.水稻-油菜轮作中钾肥效应及作物-土壤体系钾素动态变化研究[硕士毕业论文].武汉,华中农业大学图书馆,2010
    71.王耀晶,张玉龙,刘鸣达,等.磷锌配施对水稻产量影响的研究.土壤通报,2005,36(3):443-444
    72.王子芳,高明,秦建成,等.稻田长期水旱轮作对土壤肥力的影响研究.西南农 业大学学报,2003,25(6):514-517,521.
    73.魏文慧,孙万仓,郭秀娟,等.氮磷钾肥对西北寒旱区冬油菜越冬率、产量及经济性状的影响.西北农业学报,2009,18(2):122-125,130
    74.魏义长,白油路,杨俐苹,等.测土推荐施锌对水稻产量结构及土壤有效养分的影响.中国水稻科学,2007,21(2):197-202
    75.吾建祥,施南芳.长期不同施肥对水稻养分吸收和肥料利用率的影响.湖北农业科学,2002,(4):54-55,64
    76.吴晓晨,李忠佩,张桃林.长期不同施肥措施下红壤稻田的养分循环与平衡.土壤,2009,41(3):377-383
    77.武杰,李宝珍,等.不同施肥水平对甘蓝型黄籽油菜含油率的效应研究.中国油料作物学报,2004,26(4):59-62
    78.肖玉,谢高地,鲁春霞.稻田生态系统氮素转化经济价值研究.应用生态学报,2005,16(9):1745-1750
    79.谢建昌,周健民,R. Hardter.钾与中国农业.南京:河海大学出版社,2000,1-16,26-36,107-125,156-167,126-148,179-184
    80.谢正荣,沈小妹,叶风山,等.氮肥运筹对武运梗7号产量与品质的影响研究.中国稻米,2006,(2):40-43.
    81.熊毅.耕作制对土壤肥力的影响.土壤学报,1980,17(2):101-119
    82.徐能海,李剑夫,张德才.湖北省农田钾素循环、平街与管理对策.见:周建民,范钦桢,谢建昌,R. Hardier.农田养分平衡与管理.南京:河海大学出版社,2000,180-185
    83.徐琪,扬林章,董元华.中国稻田生态系统.中国农业出版社,北京.1998:1-4.
    84.薛建明,杨玉爱,叶正钱.硼对不同油菜品种生长发育及产量和品质的影响.浙江农业大学学报,1995,21(1):66-70.
    85.杨春沅,任业军,朱金凤.“稻—油”两熟栽培的效益及技术要点.作物研究,2002,(3):144-145
    86.杨清,刘新保,褚夭铎,等.小麦氮、磷与锌配合施用的研究.中国农业科学,1995,28(1):15-24
    87.杨玉爱,谢振翅.“中国油料籽作物硼、锌营养调控”研究项目成果简介.土壤学报,1995,32(4):449-453
    88.叶新新.油菜和水稻的养分吸收、累积与产量关系的研究[硕士毕业论文].合肥:安徽农业大学图书馆,2008
    89.张大琼,徐洪志.油菜施用硼锌肥增产效果好.农业科技通讯,2003,(8):27-27.
    90.张静兰.氮素营养对水稻生产、产量和氮代谢的影响.植物学报,1964,(3): 75-81
    91.张文学,李殿荣.高产田油菜氮磷钾施肥模式初探.土壤肥料,2000,(5):36-38
    92.张岩,马士学,王青菊,等.磷肥对水稻产量及构成因素的影响.现代化农业,2008,(9):14-15
    93.张志良,瞿伟普.植物生理学实验指导.北京:高等教育出版社,2003.
    94.章秀福,王丹英,方福平,等.中国粮食安全和水稻生产.农业现代化研究,2005,26(2):85-88
    95.郑炳松.现代植物生理生化研究技术.北京:气象出版社,2006
    96.中华人民共和国国家统计局.中国统计年鉴.北京:中国统计出版社,2009
    97.周伟.不同施锌方法对小麦含锌量及产量影响的研究.生态农业研究,1995,3(1):34-38
    98.朱洪勋,张翔,孙春坷.油菜吸收微量元素的特点及硼锌的施用方法.中国油料,1996,18(2):59-61
    99.朱朋波,徐大勇,方兆伟,等.水稻生长后期不同施氮量对稻米产量及品质的影响.江苏农业科学,2007(2):208-210
    100.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6
    101.邹超亚.南方耕作制度.北京:中国农业出版社,1996,31-37
    102.邹娟,鲁剑巍,陈防,等.氮磷钾硼肥施用对长江流域油菜产量及经济效益的影响.作物学报,2009,35(1):229-234
    103.邹娟,鲁剑巍,廖志文,等.湖北省油菜施硼效果及土壤有效硼临界值研究.中国农业科学,2008,41(3):752-759
    104.邹娟,鲁剑巍,刘锐林,等.4个双低甘蓝型油菜品种干物质积累.中国油料作物学报,2008,27(2):229-234
    105.邹厥,刘启鑫.油菜氮素营养特性研究.西南农学院学报,1981,(1):31-42
    106.邹长明,秦道株,陈福兴,等.水稻氮肥施用技术Ⅰ.氮肥施用的适宜时期与用量.湖南农业大学学报:自然科学版,2000,26(6):467-470
    107. Brennan R F, Bolland M D A. Effect of fertiliser phosphorus and nitrogen on the concentrations of oil and protein in grain and the grain yield of canola (Brassica napus L.) grown in south-western Australia. Australian Journal of Experimental Agriculture,2007,47(8):984-991
    108. Brennan R F, Bolland M D A. Infuence of potassium and nitrogen fertiliser on yield, oil and protein concentration of canola (Brassica napus L.) grain harvested in south-western Australia. Australian Journal of Experimental Agriculture,2007,47(8): 976-983
    109. Cassman K G, Peng S, Olk D C, et al. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems. Field Crops Research,1998,56:7-39
    110. Datta S K, Patrick W H. Nitrogen economy of flooded rice soils. Developments in Plant and Soil Sciences,1986, (26):186
    111. FAO. Statistical databases, Food and Agriculture Organization (FAO) of the United Nations, Rome, http://www.fao.org,2004
    112. Zhu Z L, Wen Q X, Freney J R, et al. Fate and management of fertilizer nitrogen in agroecosystems. Nitrogen in Soils of China. The Netherlands:Kluwer Academic Publishers,1997(74):239-279
    113. Rathke G W, Behrens T, Diepenbrock W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L):Areview. Agriculture Ecosystems and Environment,2006, (117):80-108
    114. Sieling K, Brase T, Svib V. Residual effects of different N fertilizer treatments on growth, N uptake and yield of oilseed rape, wheat and barley. European Journal of Agronomy,2006, (25):40-48
    115. Patrick, W H Jr. Nitrogen transformation in submerged soils. In:Stevenson F J (ed). Nitrogen in Agricultural Soils. Agronomy,1982,22:449-465
    116. Ponnamperuma F. N. The chemistry of submerged soils. Advanced agronomy,1972. 24:29-96
    117. Sanyal K, De Datta S K. Chemisty of P transformation in soil. Advances in Soil Sciences.1991,16:112-120
    118. Timsina J, Connor D J. Productivity and management of rice-wheat cropping systems:issues and challenges. Field Crops Research,2001,69:93-132
    119. TU J X, Zhang D X, Zhang Y F. Discussion on some standards of variety registration and breeding goals of Brassica napus in China. Chinese Journal of Oil Crop Science 2007,29(3):350-352
    120. Vallee B L, Falchuk K h. The biochemical basis of zinc physiology. Physiological Reviews,1993,73:79-118
    121. Welch R M, Graham R D. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany,2004,55(396): 353-364
    122. Wopereis P M M, Watanabe H, Moreira J, Wopereis M C S. Effect of late nitrogen application on rice yield, grain quality andprofitability in the Senegal river valley. European Journal of Agronomy,2002,17(3):191-198
    123. Xu F S, Wang Y H, Ying W H, Meng J L. Inheritance of boron nutrition efficiency in Brassica napus. Journal of Plant Nutrition,2002,25(4):901-912
    124. Wu Y Y, Wu X M, Li P P, Zhao Y G, Li X T, and Zhao X Z. Comparison of photosynthetic activity of Orychophragmus violaceus and oil-seed rape. Photo-synthetica,2005,43 (2):299-302.
    125. Yadav R L, Dwivedi B S, Pandey P S. Rice-wheat cropping systems:assessment of sustainability under green manuring and chemical fertilizer inputs. Field Crops Research,2000:65(1),15-30
    126. Zhu Y G, Smith S E, Smith F A. Zinc (Zn)-phosphorus (P) interactions in two cultivars of spring wheat (Triticum aestivum L.) differing in P uptake efficiency. Annals of Botany,2001,88(5):941-945
    127. Zhu Z L. Efficient management of nitrogen fertilizer for flooded rice in relation to nitrogen transformations in flooded soils. Pedosophere,1992,2(2):97-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700