煤纳米孔结构及官能团对煤/PAN复合材料导电性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤基聚苯胺复合导电材料是利用煤的酸性官能团特征、孔结构特征和芳香层片特征,以煤为模板,用APS引发苯胺单体在煤中原位聚合而成的。其中煤的孔结构和官能团是影响煤/PAN导电性能的重要因素。论文在研究了煤的结构和性质的基础上,从三个方面研究了煤孔结构和官能团变化对煤/PAN导电性能的影响。
    选择HNO3、H2O2氧化及苯胺抽提的方法改变煤的孔结构;通过电导率、FTIR及孔结构分析表明,氧化和抽提使煤的孔结构变得发达,因而苯胺能更好地进入已溶胀煤的孔结构中,提高了煤基聚苯胺的电导率。
    采用两种方法研究了官能团变化对煤/PAN电导率的影响。一是通过原煤及氧化煤中的总酸性基的测定、FTIR分析及煤/PAN电导率变化研究,表明煤在氧化过程中,弱的醚键的水解及羧酸盐向羧酸的转化,增加了煤中的羧基和羟基含量。羧基和羟基含量的增加有利于提高煤与苯胺的作用,从而提高复合材料的电导率,其值最高可达4.72×10-1 S/cm。另一种方法是研究了两种在煤/PAN聚合中引入磺酸基的方法,通过电导率对比可知两种方法都有利于提高煤/PAN复合材料的电导率。这是因为质子酸的掺杂使聚苯胺分子内及分子间的电荷离域化增强,电导率大幅度提高。另一方面,磺酸基较大,掺杂到聚苯胺中,降低了聚苯胺分子间的相互作用力,聚苯胺分子以伸展链构象存在,更有利于其电荷离域化,从而使其具有更高的电导率。
    为了进一步研究煤的孔结构和官能团变化对复合材料电导率的影响,用煤的苯胺抽提物模拟一种有通孔结构,无灰煤作为模板合成煤基聚苯胺复合材料。根据制备高电导率煤/PAN复合材料对煤的要求,可以得到高电导率的复合材料。但复合物最大的电导率为6.46×10-4 S/cm。原因是溶剂抽提产物虽为一种性能优越的天然多孔性材料,但由于其表面的羧基、羰基和羟基等极性基团数量较少,电荷密度较低,活性位点较少,导致其表面“水化”能力较差,难以在水中均匀地分布,不能对聚合物进行良好的掺杂。
    综合以上几点分析,高电导率的煤/PAN是煤孔结构和官能团的协同效应。
Coal/PAN complexes were synthesized by aniline monomer in situ polymerization in coal template initiated by APS, taking advantages of the acidic functional group, pore structure and specific aromatic ring of coal structure. Pore structure and functional groups were the key factors that affect the conductivity of Coal/PAN complexes. Based on the investigation of coal structure and properties, the effect of pore structure and functional groups on the conductivity of Coal/PAN complexes was mainly investigated from three aspects in this dissertation.
    HNO3, H2O2 and aniline extraction were chosen to change the pore structure in coal. The analysis results of conductivity, FTIR, and pore structure indicated that the conductivity of Coal/PAN was improved by oxidation and extraction, which developed the pore structure in coal, and then facilitated the process of aniline entering the swelled coal pore.
    Two methods were applied to investigate the effect of the change of functional groups change in coal on the conductivity of Coal/PAN. First, from the analysis of the total acidic groups in row coal and oxidized coal, FTIR, and conductivity change, the hydrolytic decomposition of weak ether bands and the transformation of carboxylate to carboxylic acid during coal oxidation increased the total acidic groups (—OH and —COOH) in coal. The increase of —OH and —COOH groups was benefit to improve the action between coal and aniline, in turn, increased the conductivity of the complex with a maximum of 4.72×10-1 S/cm. Second, two methods of introducing sulfonic groups into coal were investigated. From conductivity comparison, both methods were proved to be benefit to improve the conductivity of Coal/PAN. Proton acids doping caused the inter-molecular and inner-molecular delocalization in PAN and improved the conductivity. On the other hand, the sulfonic groups were relatively large, the inter-molecular action of PAN was decreased with sulfonic groups doping in PAN. The extension state of PAN molecules conformational also enhanced the charge
    
    
    delocalization, and then increased the conductivity.
    For further investigation of the effect of pore structure and functional groups on the conductivity of Coal/PAN, an aniline extracted product was used as the template to simulate the effect of through pore in free-ash coal on the conductivity of the complex, producing a complex with a maximum conductivity of 6.46×10-4 S/cm. Though the extracted product was a kind of natural porous material with superior performance, in the surface, there were less -OH, -COOH, =C=O, low density electric charge and less active site than that in un-extracted coal, which resulted in a relatively weak "hydration" in the surface. Thus it was difficult to distribute the extracted products in water. And then the polymer doping process was unable to be well done.
    Synthesizing the above analysis , the cooperation effect of pore structure and functional groups that enhanced the conductivity of Coal/PAN complex.
引文
[1] MacDiarmid A G,Chiang J C,Halpern M,et al.Polym prepr,1984,25(2):248
    [2] Mohilner D M,A dam s R N,A rgersinger W J. J Am Chem Soc,1962,84:3618-3624
    [3] Acon J,A dam s R N, J Am Chem Soc,1968,90:6596-6601
    [4] 王利祥,王佛松. 导电聚苯胺的研究进展:合成链结构和凝聚态结构[J].应用化学,1990,7(5):1
    [5] 吴秋菊,薛志坚,漆宗能等. 具有伸展链构象聚苯胺/蒙脱土混杂纳米复合物的合成与表征. 高分子学报,1999,(5):551—556
    [6] 蒋殿录,翁永良,童汝亭. 聚苯胺/膨润土纳米复合材料全盛与表征. 物理化学学报,1999(1):69—72
    [7] 刘平桂,龚克成. 聚苯胺嵌入氧化石墨复合物的的合成及表征. 高分子学报,2000,(4):492—495
    [8]Ghun-Guey Wu,Jieh-Yih Chen.Chemical deposition of ordered conducting polyaniline film via molecular self-assembly.Chemistry of Materials,1997,9(2):399-402
    [9] Jie Huang,Meixiang Wan.In Situ Doping Polymerization of Polyaniline Microtubules in the Presence of β-Naphthalenesulfonic Acid. A.G.J Polym Sci Part A: Polym Chem, 1999,37:151-157
    [10] Jie Huang, Meixiang Wan.Polyaniline Doped with Different sulfonic Acids by in Situ Doping Polymerization. A.G.J Polym Sci Part A: Polym Chem, 1999,37:1277-1284
    [11] Huang W S,Humphrey B D,Macdiarmid A G.J Chem Soc FaradayI,1986,82:2835
    [12] Jozefowicz M E,Larersanne R.Phy Rev B,1989,39:958
    [13] Andreatha A,Cao Y,Chiang J C,et al.Synth Met,1988,26:383
    [14] Wenk G E,Synth Met,1986,7(5):1
    [15] Monkman A P,Bloor D,Stevens G C,et al.Synth Met,1989,29:E277
    [16] Nechtschein M,Santier C,Travers J P,et al.Synth Met,1987,18:311
    [17] 王利祥,王佛松.导电聚合物——聚苯胺的研究进展.应用化学,1991,7(6):1—8
    [18] Lundberg B,Salaneck W R,Lundstrom I.Synth Met,1987,21:143
    [19] Epstein A J,Ginder J M,Zuo F,et al.Synth Met,1987,18:303 
    [20]陆珉,吴益华,姜海夏.导电聚苯胺的特性及应用. 功能材料,1998,29(4):353-356 
    
    [21]穆绍林,阚锦晴,张爱光.苯胺在碱性溶液中的电化学聚合和聚合物的性质[J].电化学,1996(1):54—60
    [22]江明,府寿宽.高分子科学的近代论题[M].上海:复旦大学出版社,1998 ,216
    [23] Chun-Guey Wu, Yuh-Chang Liu, Shui-Sheng Hsu. Assembly of Conducting Polymer/Metal Oxidde Multilayer in One Step. Synthetic Metals 102 (1999) 1268-1269
    [24] Zhiming Zhang, Meixiang Wan. Nanostructures Of Polyaniline Composites Containing Nano-magnet. Synthetic Metals 132 (2003) 205-212
    [25] Raji K. Paul, C.K.S. Pillai. Melt/solution processable conducting polyaniline with novel sulfonic acid dopants and its thermoplastic blends. Synthetic Metals 114 2000 27–35
    [26] Hong-Quan Xie, Yong-Mei Ma, Jun-Shi Guo. Conductive polyaniline–SBS composites from in situ emulsion polymerization. Polymer 40 (1998) 261–265
    [27] 汪晓芹,廖晓兰,周安宁等.聚苯胺及其复合材料研究现状.应用化工,2001,2:4—8
    [28] Simon U, Franke M E.Microporous and Mesoporous Ma-terials, 2000, 41( 1/3) :1— 36
    [29] Zhou Y K, Huang J, Shen C M, et al.Materials Scienceand Engineering A, 2002, 335( 1/2) :260— 267
    [30] Gao F, Lu Q Y, Liu X Y, et al.Nano Lett., 2001, 1( 12) :743— 748
    [31] Ravaine S, Fanucci G E, Seip C T, et al.Langmuir,1998, 14:708— 713
    [32] 邢双喜 ,褚莹 ,隋晓萌等. 以反胶束为模板合成导电聚苯胺. 东北师大学报自然科学版.2003,6:56—60
    [33] Penner RM ,Martin CR .Controling the morphology of electronically conductive polymers[J].JElectrochem Soc,1986,133( 10) :2206—220
    [34] 李侃社,邵水源,闫兰英等.聚苯胺/石墨导电复合材料的制备与表征.高分子材料科学与工程,2002,9:93—95
    [35] Given P.H.Fuel.1960,39:147
    [36] Wiser W.H.Conference Proceedings D.O.E.Symposium Series, W.Virginia University,1997
    [37] 谢克昌.煤的结构与反应性.北京.科学出版社,2002
    [38] Shinn J.H. Fuel.1984,63:1184
    [39] 陈茺,许学敏,高晋生.氢键在煤大分子溶胀行为中的应用.燃料化学学报,1997,25(6):524—527
    [40]汪晓芹.煤基聚苯胺的合成、性能、聚合机理及其应用的研究:[硕士学位论文].西安:西安科技学院,2001
    [41] 张百战.煤/聚苯胺复合材料导电性的研究:[学士学位论文].西安:西安矿业学院,1999
    
    [42] 廖晓兰.磺化煤复合导电材料的制备研究:[硕士学位论文].西安:西安科技学院,2001
    [43] 马良.不同煤岩组分/聚苯胺导电材料的合成和性能研究:[硕士学位论文].西安:西安科技学院,2002
    [44] 刘振学,魏贤勇,刘泽常.煤的氧化反应研究进展.煤炭转化,2000,(4):7—10
    [45] 陈茺,高晋生,颜涌捷.煤有机质在化学脱灰过程中的变化.华东理工大学学报,1997,(6)281—284
    [46] 王飞,张代钧,杨明莉等.煤的溶剂抽提规律极其产物性能的研究进展.煤炭转化,2003,(1)8—11
    [47] 倪献智.磺化煤制备的基础研究.煤炭转化,1997,(1)66—70
    [48] 徐革联,邵景景,熊楚安等.鸡西煤制磺化煤的研究.矿业研究与开发.2000(2),49—51
    [49] 马利,汤琪.导电高分子材料聚苯胺的研究进展.重庆大学学报.2002(2),124—127
    [50] 黄美荣,李新贵.导电聚苯胺的大分子功能磺酸掺杂.石油化工.2003(9),820—825
    [51] 於黄中,陈明光,黄河.不同类型的酸掺杂对聚苯胺结构和电导率的影响.华南理工大学学报.3003(5)21—24
    [52] 程君.煤基聚苯胺的界面相互作用及聚合机理研究:[硕士学位论文].西安:西安科技大学,2003
    [53] 白浚仁,刘凤歧.煤质分析.北京.煤炭工业出版社,1982,185—186
    [54] Van Krevelen D W.Fuel,1965,44:229
    [55] Haenel M.W.Fuel.1992,71(11) :1211
    [56] Spouse K M.Modeling Pulverized Coal in Entrained.AICHE J.1980,126(6):964—975
    [57] 虞继舜.煤化学.北京.冶金工业出版社,2000
    [58] 张广洋,谭学术,解学福等.煤的导电性与煤大分子结构关系的实验研究.煤炭转化.1994(5):10—13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700