从含锗烟尘浸出与萃取锗研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵州拥有丰富的伴生稀散金属锗和贵金属银的低品位氧化铅锌矿资源。该矿经烟化法富集得到品位为Zn 35%-45%、Pb 22%-28%、Ge350g/t-500g/t的含锗烟尘。本论文对该烟尘中锗、锌的浸出过程与萃取分离锌锗过程进行研究,以期为该烟尘的综合回收提供合理的工艺参数,为开发利用该类资源奠定基础。
     本论文扼要介绍了锗的资源概况、研究开发、生产技术、主要用途及发展动态。近年来,国内外对含锗物料的浸出工艺做了大量的研究,国内多家单位先后对各种含锗原料如煤、烟尘、矿渣的浸出技术与新工艺作了研究。
     本论文以贵州含锗烟尘为原料,对其浸出过程进行了理论分析和新工艺研究。以TOA为萃取剂、酒石酸为配合剂、TBP为调相剂对浸出液进行萃取分离锗、锌的工艺技术与萃取锗的机理研究。
     本论文为实验室研究,运用冶金物理化学方法对浸出与萃取过程进行研究。技术路线为:低品位含锗氧化铅锌矿→烟化法富集→锗烟尘浸出(实现锌锗与铅银分离)→浸出液萃取(实现锌锗分离),浸出渣作为提取铅银的原料,锌锗分离后的溶液分别提取锌和锗。实验采用硫酸作为浸出剂。
     运用优选法确定适宜浸出工艺条件为:搅拌强度:120r/min;浸出时间:3 h;浸出温度:90℃;液固比:8/1;始酸浓度:120g/L。
     对浸出过程进行热力学分析,得知含锗烟尘中主要组分的行为:锗、锌主要进入溶液;而铅银留在渣中。浸出实现了锗、锌与铅、银的有效分离、富集。二氧化硅、含锗烟尘中的铁、铜、镉、砷和少量氟化物、氯化物在浸出条件下能够溶解进入溶液。
     从浸出液中分离锌锗,工业上主要采用的方法是丹宁沉淀。本论文采用萃取方法,选用TOA为萃取剂,酒石酸C4H606为配合剂,TBP(C12H27O4P)为调相剂,磺化煤油为稀释剂进行萃取。选用NaOH为反萃剂,系统研究了从锗烟尘浸出液分离锗与锌的工艺技术条件。实验结果表明:本工艺流程短,选择性好,锗回收率高,所用试剂价廉易得。通过一级萃取和一级反萃取,锗萃取率大于97%、几乎不萃取锌,测算出了锌与锗的分离系数;再经一级反萃取,锗反萃取率大于95%,实现了锌锗高效分离及锗的富集。
     在弱酸条件下,锗主要以H2GeO3的形态存在。直接用胺类萃取剂[CH3(CH2)7]3N萃取锗时,锗萃取率非常低。向水相中添加配合剂酒石酸(C4H6O6)能与锗形成离解度较大的配合阴离子。配合阴离子半径越大、电荷数越低、水合程度越低,越易转入有机相,有助于提高锗的萃取率。
     有机相中萃取剂应先在酸性条件下转型为胺盐,才能完成萃取。水相中阴离子半径越大、电荷越低,越容易与有机相的胺盐阳离子结合,所以锗—锌能被高效分离。显然Ge(C4H4O6)32-比H2GeO3更易与胺盐中阳离子进行离子缔合而置换HSO4-。加入调相剂能消除萃取过程出现第三相,改善体系性质,并有助于对锗的萃取。
     选用强碱NaOH作为反萃取剂,研究了反萃取的工艺条件。研究结果表明:
     (1)选用萃取剂TOA30%~调相剂TBP5%~稀释剂65%作为有机相萃取体系,先用硫酸把萃取剂转为胺盐。水相中加入配合剂酒石酸把锗转为半径较大的配合阴离子,进行萃取。一级萃取工艺条件为:相比O/A=1/8;配合剂与水相中锗的质量比为12~16;常温。锗一级萃取率大于97%,几乎不萃取锌,实现了锌-锗高效分离
     (2)用30%的NaOH溶液作反萃剂,相比O/A=2;常温反萃,锗一级反萃率大于95%。
     本论文提出的一段浸出、中和、一段萃取、一段反萃处理锗烟尘的新工艺具有流程简短、锗回收率高、锌-锗分离完全、并能够富集铅银、萃取剂可损失少并可循环使用等特点。
     运用等摩尔法结合红外光谱分析确定了萃合物的组成,得出如下结论:(1)三辛胺(TOA)萃取锗属于阴离子交换机理;(2)调相剂TBP的作用除有效防止第三相生成外,还具有一定的协同萃取作用;(3)锗配合阴离子与萃取剂TOA的摩尔比为1:2,萃取产物是{[CH3(CH2)7]3NH}2·[Ge(C4H4O6)3](O)。
It is rich in natural resource of zinc oxide and lead oxide ore in Guizhou Province, which contains a little of germanium and silver. There are 210 thousand tons of available metals only in Zhazichang Mine. A fuming process is adopt for enriching of low-grade lead-zinc oxide ore to produce germanium oxide dust which contains Zn 35-45%、Pb 22-28%、Ge 350-500g/t.That is important raw material to recover germanium. An investigation of leaching process of germanium dust and separating germanium from zinc in the solution by extraction has been made for further making use of the resource
     A mass of research has been made on the technics of leaching process of germanium recent year oversea and at home. The research of kinetics of leaching germanium is correspond less. Some universities and smeltery have researched on the aspect of thermodynamics and kinetics to leaching process of coal, dust, slag and ore.
     The leaching process of germanium dust is studied in this work. According to the analysis chart of x-ray diffraction and chemical phase, it was found that Zinc and lead exist mostly in oxide minerals. Germanium exists mainly in germanium dioxide, less in germinate in the dust. Under acidic condition, the fraction of infusible germanium, which exists in tetragonal system, accounts for 9.88% of the total germanium. Thermodynamics analysis and kinetics research to leaching process of the dust are carried through. The technological condition to separate germanium from zinc in the lixivium by TOA and its mechanism are also carried through.
     This work is laboratory test. An investigation of leaching process of the dust and extracting process are carried by method of metallurgical physical chemistry. The research plan is:leaching of the dust(for separating zinc and germanium from lead and silver)——extracting of germanium by TOA(for separating germanium from zinc). Leached residue is raw material to extract lead and silver. The work studies the affect on leaching process of temperature, leaching time, stirring speed, solid to liquid ratio and acid concentration. And it also studies kinetics to leaching process of zinc oxide and germanium dioxide. Based on the experiments, the favorable conditions were reaction temperature of 363K, leaching time of 2.5h, stirring speed of 120r/min., solid to liquid ratio of 1/8, and acid concentration of 120g/L. Under these conditions, the leaching and recovery rate of germanium should be more than 87%. It should be improved by increasing the concentration of sulfuric acid and temperature. Meanwhile, Zinc was dissolved into liquor, and lead and silver stayed in the residue, which made them easily to be separated.
     optimum conditions of germanium extractions have been investigated from the leaching solutions of germanium dust by using a kind of extractant TOA, complexing agent C4H6O6and improving reagent C12H27O4P, in addition to kerosene as diluent and NaOH as stripping agent. The results show that this process has the following advantages:simplicity in flowsheet, good selectivity, high recovery and availability of the reagents. Through one step extraction and one step back wash extraction, germanium extraction rate is more than 97%. In the process it is hardly extraction of zinc. Separating coefficient to germanium and zinc is estimated. Stripping rate is more than 95%. It is convenient for the sake of recovering zinc and germanium.
     Germanium exists in state of H2GeO3 in the weak acid. Because of its small dissociation constant k1=1×10-9, k2=3.98×10-23, So there are low concentration of HGeO3- and GeO32-.germanium extracts into organic pHase in ion state. If it is extracted by TOA, germanium extraction rate is very low. When appending complexing agent C4H6O6, it can form anion with germanium which possess big dissociation degree. The reaction is as follow:
     3C4H6O6+H2GeO3=Ge(C4H4O6)32-+2H++3H2O
     Extractant TOA is first changed into amine salt. The reaction is as follow:
     [CH3(CH2)7]3N(O)+H2SO 4(A)=[CH3(CH 2)7]3NH 2SO 4(O)
     The extraction reaction is as follow:
     2[CH3(CH2)7]3NH2SO4+H2Ge(C4H4O6)3 ={[CH3(CH2)7]3NH}2·[Ge(C4H4O6)3](O)+2H2SO4(A)
     The stripping reaction is as follow:
     2{[CH3(CH2)7]3NH}·[Ge(C4H406)3](O)+2NaOH = Na2[Ge(C4H4O6)3](A)+2H2O(A)+2[CH3(CH2)7]3N(O)
     The optimum extraction conditions are TOA 30%, improving reagent 5%, diluent 65%. O/A=1/8, mass ratio of complexing agent to germanium 12-16, and at normal temperature,3-5 min.
     The optimum back extraction conditions are NaOH concentration 30%, O/A=2, and at normal temperature,3-5 min.
     The extraction compound is determined by infrared spectrum analysis and equal molar method. As a result some conclusions can be gotten. (1) TOA extracting germanium belongs to anion exchange mechanism. (2) The action of TBP is for preventing to form the third pHase in extraction process. and it is still in favor of extracting germanium. (3) The molar ratio of germanium complexing anion and extractant is 1:2. The extraction compound is
     {[CH3(CH2)7]3NH}2·[Ge(C4H4O6)3](O).
引文
[1].贵州省地质矿产局,贵州西部铅锌矿床及储量,西南冶金地质,1981(9):90
    [2]梁杰,王华,低品位氧化铅锌矿的烟化法富集工艺,有色金属,2005(4):5-7
    [3]王吉坤等,现代锗冶金[M],北京:冶金工业出版社:2005
    [4]United State Department of the interior, Bureau of miner, mineral facts and problems,1965:379-385
    [5]PHilip F, Kane, Graydon B. Larrobee, Characterization of Semiconductor material,1970:27-36.
    [6]John M. Lucas, Mineral facts and problems,1980:1-9
    [7]E.E. Haller and F.S. Goulding in:Handbook on Semiconductor, C. Hilsum ed. 1980, Vol.4
    [8]雷霆,张玉林,王少龙,锗的提取方法[M].北京:冶金工业出版社.2007
    [9]姚耀春,王平.难选氧化锌氨浸的动力学研究[J],云南冶金,2001,30(3),22~24
    [1 0]朱云,胡汉,苏云生,杨保民.难选氧化锌氨浸动力学[J],过程工程学报2002,2(1):81~85
    [11]谢访友,王洪明,马民理,张林生,王纪,刘胖友.从煤灰中高效浸出铀、锗的研究[J],铀冶金,1997,16(4):275~279
    [12]朱云,胡汉,苏云生,微生物从煤中浸出锗的基础的热力学[J],云南冶金,2002,31(3):106~108,113
    [13].朱云,郭淑仙,胡汉,微生物从煤中浸出锗的动力学[J],有色金属,2001,53(4): 22~24
    [14]吴绪礼,锗及其冶金[M].北京:冶金工业出版社,1988.
    [15].周令治,稀散金属冶金[M].北京:冶金工业出版社,1988
    [16].周令治,邹家炎,稀散金属手册[M].长沙:中南工业大学出版社,1993
    [17]《稀有金属手册》编委会编著,稀有金属手册[M],京:冶金工业出版社:1992
    [18].刘宝芬,国内外锗浓缩物提取工艺的现状[J].锗提取冶金专辑,北京:湿法冶金编辑部,1986:18~25.
    [19].伍锡军.国内外锗和铟的回收工艺的发展[J].稀有金属,1995,(3):218~223.
    [20]中国冶金百科全书编委会,有色金属(冶金卷)·稀散金属分编,北京:冶金工业出版社,1993
    [21].周令治,田润苍,邹家炎,全萃法从锌浸出渣中回收铟锗镓的研究[J].稀有金属,1981,(6):7-14
    [22]包福毅,方军,朱大和等,从硫化矿高酸浸出的硫酸锌溶液中萃取提锗全流程研究[J],中国工程科学,2001,3(12):58-67
    [23].包福毅,溶剂萃取与金属离子的分离提纯,有色金属科技进步与展望[M],冶金出版社,1999
    [24]陈世明,李学全,黄华堂等,从硫酸锌溶液中萃取提锗[J],云南冶金,2002,31(3):101-105
    [25]Megan P. Acid leaching extraction of Ga and Ge [J].JMet,1987,39(6):40-45.
    [26]John C Judd, Megan P, Wardell. Extration of Gallium and Germanium From Domestic Resources[J]. Light Metals,1988,(5):857.
    [27]Harbuck D. Increasing germanium extraction from hydrometallurgical zinc residues[J]. Mineral & Metallurgical process,1993,10(1):1-4.
    [28]Torma A E. Method of extrating gallium and germanium[J]. Miner Process Extr Metall,1991, (3):235.
    [29]Hwa Young. Process for recovery of gallium from zinc residues[J]. Trans C, 1994,104(1):76.
    [30]王海北,林江顺,王春等,新型镓锗萃取剂G315的应用研究[J],广东有色金属学报,2005,15(1):8-11
    [31].李世平,关于N235-酒石酸体系萃取分离锗锌的研究,稀有金属,1996年9月
    [32]. Schepper A de, Hydrometallurgy,1976, (1):291
    [33]Cote G. et al., Hydrometallurgy,1980(5):149
    [34].李学全,硫酸锌溶液萃取分离锗镓的研究[C),全国第二届湿法冶金学术会议论文集(下册),湖南长沙,1991
    [35]Li Xuequan, Separation of germanium and gallium from sulfate solution by solvent extraction,(ICHM'92)
    [36]Tian Qinzhi, The extraction properties of some new extractions for copper and germanium, (ICHM'92)
    [37].田琴芝,陈绍强,张观清,新型铜、锗萃取剂的性能研究[C],全国第二届湿法冶金学术会议论文集(下册),湖南长沙,1991.
    [38]刘宝芬,国内外锗浓缩物提取工艺的现状[J].锗提取冶金专辑,北京:湿法冶金编辑部,1986:18~25.
    [39]周令治,邹家炎,稀散金属手册[M].长沙:中南工业大学出版社,1993
    [40]Li.N.N.Seperating hydrocarbons with liquid membranes,U.S.Patent 3,410,794.1968
    [41].陈树钟,张秀娟.液膜法提取锗的研究[J].稀有金属,1991,(2):107-110
    [42].陈佩环,液膜法提取锗的研究[J],株冶科技,1992,(3):181~184
    [43]凌克奇,刘一宁.长链烷基羟肟酸离心萃取锗的试验[J].重有色冶炼,1994,(2):5~8
    [44]. A. De Schepper and A. Van Peteghem, Liquid-Liquid Extraction of Germanium From Aqueous Solution Using Hydroxy-oximes [P].U.S.Pat,No.3883634.1975. 5.13.
    [45]. D. D. Harbuck, J.W. Morrison and C. F. Davidson. Optimization of Gallium and Germanium Extraction from Hydrometallurgical Zinc Residues [J]. Light met.1989:983-989
    [46]. He Li Jiang and Arpad E. Torma, Extraction of Gallium and Germanium from a supergenic ore [J]. Light metals,1989:971-981
    [47].谢访友等,从株洲冶炼厂氧化锌浸出液中萃取分离锗锌的研究,有色金属(冶炼)1997(3):33-36
    [48].李清湘,高砷含锗烟尘的处理工艺,有色金属,1992(2):
    [49].梁云生,许林,易宪武.萃取法从硫酸溶液中提取锗的探讨[J].稀有金属,1985,9(1):42
    [50].邱光文.含锗锗烟尘综合回收锗锌工艺[J].云南冶金,2000,29(3):17~21
    [51].蔡江松,杨永斌,张亚平等,从锌浸渣中回收镓和锗的研究及实践[J],矿产保护与利用,2002,5,34~37
    [52].肖华利,用H试剂从氧化锌酸浸液中回收锗的试验研究,稀有金属与硬质合金,1998.6
    [53].谢访友等,用萃取法从锌浸出液中回收锗,铀矿冶,2000.5
    [54].颜美凤,韶冶锗综合回收技术的发展,有色冶炼,2002.6
    [55].何静,鲁君乐,刘中清等.热酸浸出——铁矾法炼锌工艺中富集锗研究[J].广东有色金属学报.2002,12,稀散金属专辑.
    [56].郑顺德,陈世民,林光铭等,从锌渣浸渣中综合回收铟锗铅银的试验研究[J].有色冶炼.2001,(2):34-38
    [57].刘中清,唐谟堂,范启明,热酸浸出——铁钒法炼锌工艺中锗的富集[J].矿冶工程,2000,20(1):44~46
    [58].李样生,李瑞,Ge在异经肪酸(煤油)/硫酸体系中的萃取平衡[J],南昌大学学报(理科版),2005.27(3):
    [59].肖靖泉,朱国才,锌冶炼烟尘中锗的富集及锌的回收[J],金属矿山,2004(5): 60-64
    [60].邓卫,刘侦德,阳海燕等.凡口铅锌矿锗和镓资源与回收[J].有色金属,2002,54(1):54-57
    [61]汤淑芳,周春山,蒋新宇,锗的氧肟酸HGS98萃取分离研究[J].稀有金属,2000,24(4): 248-250
    [62]王福泉,杨文斌,烷基膦酸类萃取剂与喹啉类萃取剂N601协萃锗(Ⅳ)的研究[J],化学研究与应用,1997,9(5):455-458
    [63]王纪等,用萃取法从锌浸出液中回收锗[J],有色金属,2000,52(2):77~79
    [64]肖利华,夏永生,溶剂萃取锗过程中的乳化及其消除[J],有色冶炼,1999,28(4)18~19
    [65]许绍权,李素清,锗的各种回收方法[J],国外科技,1990,(12):8-10
    [66]黄机炎,锗工业进展概述[J],有色金属技术经济研究,1992,(1):25~27
    [67]Kohlenbergbau, Leitung Deutsche. A Process for the Recovery of Germanium from Tarresidues.GB705542,1954
    [68]Lebleu Albert, Fossipaul. Process for the Recovery and Purificaton of Germanium from Zincores. US4090871,1978
    [69]Bohrer Michael Philip, Lu Po-Yen. Process for the Direct production of germanium tetrachloride from hydrated germinate-containing SOLIDS Using Gaseous Hydrogen Chloride.US 6337057,2002
    [70]Cote.G., Bauer.D. Liquid-Liquid Extraction of Germanium With oxine Derivation [J]. Hydrometallurgy,1980,(5):149-160
    [71]梁杰,王华,低品位氧化铅锌矿的烟化法富集工艺[J],有色金属,2005(4):5-7,
    [72].李洪桂编著,湿法冶金学[M],长沙:中南大学出版社,2002
    [73]印永嘉,大学化学手册[M],济南:山东科学技术出版社,1995
    [74]梅光贵,湿法炼锌学[M],长沙:中南大学出版社,2001
    [75].华一新,冶金过程动力学导论[M],北京:冶金工业出版社:2004
    [76]杨显万,邱定蕃著,湿法冶金[M],北京:冶金工业出版社:2001
    [77].徐光宪,王文清,吴瑾光等,萃取化学原理,上海:上海科技出版社,1984
    [78].汪家鼎,陈家镛编著,溶剂萃取手册[M],北京:化工出版社:2003
    [79].杨佼庸,刘大星,萃取[M],北京:冶金工业出版社:1988
    [80].朱屯编著,萃取与离子交换,北京:冶金工业出版社:2005
    [81]. K.Osseo.Asare, Microemulsion and Third PHase Formation [A]. Proceedings ISEC,2002[C]
    [82]. Ronald.D.Neuman etl. Interfacial PHenomena Hydrmetallurgical Solvent Extraction System[A]. Proceedings ISEC,2002[C]
    [83]The. C.Lo. Malcolm H.I.Baird,Carl Hanson. Handbook of Solvent Extraction[M].New York:JOHN WILEY&SONS,1983
    [84].张启修编著,冶金分离科学与工程[M],北京:科学出版社:2004
    [85].余建民编著,贵金属萃取化学[M],北京:化工出版社:2005
    [86]J.Szymanowskl. Interfacial PHenomena Extraction Systems[A]. Proceedings ISEC,1990[C]
    [87]. 有色金属工业分析丛书编辑委员会,锗烟尘及其浸出渣的化学物相分析,矿物化学物相分析[M],北京:冶金工业出版社,1992
    [88].陈青川等.锗的分析近况[J].稀有金属.1995,1(1):55~61
    [89].有色金属工业分析丛书编辑委员会,锗分析,难熔金属和稀散金属分析[M].北京:冶金工业出版社.1992
    [90].锗北京矿冶研究总院分析室编,的测定,矿石及有色金属分析手册[M].北京:冶金工业出版社:1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700