铜离子印迹磁性生物吸附材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含铜废水来源广、毒性大,严重危害自然环境和人体健康,因此对其进行处理尤为必要。本文以Cu(Ⅱ)为印迹离子,壳聚糖为印迹母体材料,青霉属菌丝体为核心,纳米Fe_3O_4为磁组分,经环氧氯丙烷交联和三聚磷酸钠的固化制备了铜离子印迹磁性生物吸附材料(Cu(Ⅱ)-IMB),并用于含铜废水的吸附处理。结果表明该新型吸附材料优点为:(1)成本低廉能够大量生产;(2)吸附材料表面保留的Cu(Ⅱ)印迹空穴使得对Cu(Ⅱ)的吸附容量大大提高;(3)具有磁性在外加磁场下能够迅速从吸附后的溶液中分离出来。
     对制备Cu(Ⅱ)-IMB的单因素影响吸附性能的实验进行了探讨,首次利用响应面法实验优化了制备工艺,最大限度的提高了吸附容量。结果表明,在合成过程中,环氧氯丙烷、纳米Fe_3O_4和印迹铜离子的量是影响吸附材料吸附性能的重要因素,三者间存在一定的交互作用,纳米Fe_3O_4、印迹铜离子的量对吸附性能影响是正面的,且最显著。最佳合成条件为:菌丝体2g,CS0.2g,30℃下均匀搅拌交联反应3.0h,6mL2.5%的三聚磷酸钠溶液固化8.0h,以CuSO_4中的铜离子为印迹模板。加入环氧氯丙烷2.99g,Fe_3O_4为0.505g,印迹铜离子质量为25.245mg。
     通过扫描电镜、能谱分析、等离子体光谱分析、红外光谱、X射线衍射仪、振动样品磁强计对Cu(Ⅱ)-IMB的物质结构进行鉴定。结果表明,Cu(Ⅱ)-IMB的形状不规则,表面疏松且有许多的空隙结构,有着丰富的利于对重金属离子吸附的基团。和纯菌丝体及非印迹磁性生物吸附材料(NIMB)相比,比表面积和孔容积大大提高。制备过程中Fe_3O_4被成功的包埋且晶型未改变,但分布不均匀。Cu(Ⅱ)-IMB仍然保持超顺磁性,其磁特性参数随Fe_3O_4的含量不同而变化。
     以Cr~(6+)、Zn~(2+)、Ni~(2+)为对比离子,对Cu(Ⅱ)-IMB在水溶液中对Cu~(2+)的吸附性能进行了研究,并与制备的其它三种生物吸附材料进行了比较,并对其磁沉降性能、机械强度等进行了测定。结果表明,pH是影响吸附容量的重要因素,其对Cu~(2+)、Zn~(2+)、Ni~(2+)吸附的最佳pH值在5.0左右,对Cr~(6+)的为4.0左右。Cu(Ⅱ)-IMB、NIMB、CMB和MB对水溶液中Cu~(2+)、Zn~(2+)、Ni~(2+)和Cr~(6+)的吸附符合二级吸附动力学,均为颗粒内扩散和膜扩散联合控制过程,符合Langmuir或Freundlich吸附等温式。Cu(Ⅱ)-IMB对Cu~(2+)的吸附速率最快,达吸附平衡时间最短为6.0h,二级吸附速率常为4.432x10~(-3)((g/mg)/min),比NIMB对Cu~(2+)的提高33%,颗粒内有效扩散系数最大,为0.97223(mg/g)/min~(1/2),对Cu~(2+)的吸附性能最强,并表现较高的吸附选择性,由Langrnuir吸附等温式求出的单层饱和吸附容量为68.02mg/g,对Zn~(2+)、Ni~(2+)、Cr~(6+)没有吸附选择性,吸附性能比NIMB好。印迹技术对吸附性能的提高贡献最大。Cu(Ⅱ)-IMB对Cu~(2+)吸附过程为吸热反应,容易自发进行,以物理吸附为主,为熵增加过程。在外加磁场下,具有良好的磁沉降性能,与非磁性吸附材料比较,沉降时间缩短93%,沉淀效率提高25%,合成过程使其机械强度、交联度和抗酸性有较大提高。
     研究了其在二元体系和多元体系下的吸附竞争效应。实验表明,共存离子导致Cu~(2+)吸附容量下降。二元体系实验证明,离子对吸附Cu~(2+)的干扰随初始浓度的增加而增大。以Cu(Ⅱ)-IMB和NIMB为吸附材料的溶液中,共存的离子的吸附竞争能力为:Zn~(2+)>Ni~(2+)>Cr~(6+)。有竞争离子存在时,Cu(Ⅱ)-IMB对Cu~(2+)仍具有较高的选择吸附性能,并符合Langmuir模型。在多元金属离子体系中,Cu(Ⅱ)-IMB的吸附能力仍大于NIMB,对Cu~(2+)具有专一的吸附选择性。Zn~(2+)和Ni~(2+)对Cu~(2+)的协同竞争作用大于Ni~(2+)和Cr~(6+)的。吸附机理分析表明,吸附的过程中-NH_2和-OH与金属离子结合形成共轭结构。吸附金属离子后Cu(Ⅱ)-IMB非晶结构和Fe_3O_4的晶型未被影响,仍然保持原来的磁性。吸附了金属离子的Cu(Ⅱ)-IMB用0.01M EDTA在25℃下,解吸20min,氢氧化钠再生1.0h后,能够重复使用5次以上。
     引入BP神经网络的理论与方法,创新性地建立了Cu(Ⅱ)-IMB吸附Cu~(2+)体系的影响因素的预测与控制模型,达到了良好的预测效果。为吸附实验的定量研究开创出一条有效的途径。本模型的建立可在计算机上进行某些设计与运行参数的选取。同时,能够实现对运行效果的预测,为工艺运行的在线控制提供了途径。
Copper-containing wastewater is abroad and harmful to human being health and natural environment, so it is necessary to treat it. In this paper, a Cu(Ⅱ) ion imprinted magnetic biosorbent (Cu(Ⅱ)-IMB) was synthesized by using Cu~(2+) as imprinted ion, chitosan (CS) as imprinted matrix, fungal mycelium as core, nano-Fe_3O_4 as magnetic component. It was crosslinked by epichlorhydrin (ECH) and fixed by tripolyphoshate sodium, using in copper-containing wastewater treatment. Results showed that the main advantages of this new adsorbent were: (1) it is low cost that can be synthesized in large quantity with waste fungal mycelium from industry. (2) The adsorption capacity is improved by imprinting technique for the target molecule due to molecular geometry. (3) The easy separation of magnetic biosorbent from treated solution can be achieved by a magnetic field.
     The influencing reaction conditions during preparation of Cu(Ⅱ)-IMB were firstly optimized by response surface method (RSM) in order to get its best adsorption capacity. Results showed that the key factors to affect the adsorption capacity were the dosage of ECH, nano-Fe_3O_4 and imprinted Cu~(2+)during the prepared process, and they had alternating relations. The affections of nano-Fe_3O_4 and imprinted Cu~(2+) on adsorption were right and most marked. The optimum prepared conditions were: mycelium 2g,CS0.2g, mixing equably at 30℃for 3.0h, fixing by 6mL 2.5% tripolyphoshate sodium for 8.0h. Cu~(2+) of CuSO_4 as imprinted template. The adding dosages were 2.99g ECH, 0.505g Fe_3O_4 and 25.245mg imprinted Cu~(2+).
     SEM, EDX, ICP, FT-IR, XRD and VSM were used to study the structure identification. Results showed that the shape of Cu(Ⅱ)-IMB was irregular, the surface was loosen and had lots of interspaced structure. There were plenty of groups favorable for heavy metal adsorption. The specific area and the pore volume improved greatly compared with pure mycelium and non-imprinted magnetic biosorbent (NIMB). Fe_3O_4 was embedding in the biosorbent successfully during preparation but the crystal was not changed, and disturbed asymmetrically.Cu(Ⅱ)-IMB kept supermagntic and magnetic character parameters were different with varied Fe_3O_4 dosages.
     Taking Cr~(6+)、Zn~(2+)、Ni~(2+) as comparing ions, the adsorption characters of Cu~(2+)on Cu(Ⅱ)-IMB was studied and compared with the other prepared adsorbents. The mechanism strength, anti-acidity ability and magnetic settlement character were also measured. The results of adsorption character study showed that pH is the key factor that affects adsorption capacity. The optimum pH was 5.0 of Cu(Ⅱ)-IMB for Cu~(2+), Zn~(2+), Ni~(2+) adsorption and 4.0 for Cr~(6+) adsorption. The adsorption of Cu~(2+), Zn~(2+), Ni~(2+) and Cr~(6+)on Cu(Ⅱ)-IMB, NIMB, CMB and MB in solution fit the second order kinetic model. The adsorption processes were controlled by both film and pore diffusion. The adsorption equilibrium data can be described in terms of the Langmuir or Freundlich isotherm. The adsorption speed of Cu~(2+) on the Cu(Ⅱ)-IMB was the fast and the adsorption equilibrium time was short for 6.0h. The adsorption speed of Cu~(2+) onto the Cu(Ⅱ)-IMB was the fast and was 33% higher than that of NIMB with K_2 was 4.432×10~(-3)((g/mg)/min).The diffuse coefficient was biggest of 0.97223 (mg/g)/min~(1/2).Cu(Ⅱ)-IMB had strong adsorption capacity and high adsorption selectivity for Cu~(2+), single saturated adsorption capacity calculated from Langmuir equption was 68.02mg/g , but had no adsorption selectivity for Zn~(2+), Ni~(2+) and Cr~(6+), and its adsorption characters were better than that of NIMB.
     Thermodynamics study showed that the adsorption was endothermic reaction and spontaneous thermodynamically favorable. It was mainly governed by physisorption and the degrees of freedom increased during the adsorption. Cu(##)-IMB showed good magnetic settlement character under additional magnetic field. The settlement time shortened of 94% and settlement efficiency improved of 15% compared to non-magnetic adsorbent. The adsorption capacity, mechanism strength,joined degree and anti-acidity ability was high after the synthesis process.
     Adsorption competition affection was conducted in binary or multi-mixture solution system. The experiments showed that binary adsorption system experiments proved that disturbing ability for Cu~(2+) increased with the increasinginitial concentration of differentions. The order of compete adsorption capacity of heavy metals in solution on Cu(Ⅱ)-IMB and NIMB in turns was Zn~(2+)>Ni~(2+)> Cr~(6+).Cu(Ⅱ)-IMB still had high adsorption selectivity for Cu~(2+) and also fit Langmuir model although there were competing ions. In multi-ions solution, the adsorption capacity of Cu(Ⅱ)-IMB was higher than NIMB and had sole adsorption character. Cooperated competing effect on Cu~(2+)of Zn~(2+) and Ni~(2+) was greater than that of Ni~(2+) and Cr~(2+). Adsorption mechanism analyses showed that -NH, -OH and heavy metals formed conjugated structure. Non-crystal structure of Cu(Ⅱ)-IMB and crystal model of Fe_3O_4 were not effected and it still kept the original magnetism. The desorption conditions was desorption by 0.1M EDTA for 20 minute and regenerated for 1.0h by NaOH. The results showed that Cu(Ⅱ)-IMB could be reused for more five times.
     A forecasting and controlling model of operational parameters was established innovatively based on BP nerve cell theory of Cu~(2+)adsorption effect factors. Simulated results by the simulation model analysis were basically consistent with experimental value. This means to start an effective way for fixed quantify study of adsorption experiment. This indicated that some designs, choice of operational parameters, prediction of run effect could be finished on computer by the simulation model. This provided an effective way for on-line control in adsorption process.
引文
[1] 李江,甄宝勤.吸附法处理重金属废水的研究进展.应用化工.2005.34(10):591-594页
    [2] 蒋清民.工业废水处理技术进展.河南化工.2003,12(1):8-10页
    [3] 张建梅.重金属废水处理技术研究进展.西安联合大学学报.2003,6(2):55-59页
    [4] 张双全.国内外活性炭市场及新产品开发.中国煤炭.1997,23(2):26-29页
    [5] 常俊玲,刘洪波,唐冬汉等.中孔活性炭材料的研究进展.材料导报.2002,16(3):49-52页
    [6] 陈哲,杨旭明,王琪.SPS/(AM-DMDAAC)分子复合型驱油剂的研究.高分子材料科学与工程.1998,12(4):128-130页
    [7] Wu F C,Tseng R L,Juang R S.Kinetics of color removal by adsorption from water using activated clay.Envir Technol,2001,22(6):721-729P
    [8] 李宏魁,李延虎.生物材料对重金属离子的吸附作用.河南科技.2004,8(2):23-26页
    [9] 韩润平,石杰,李建军.生物材料对重金属离子的吸附富集作用.化学通报.2000,10(7):24-26页
    [10] 李树酞,何淑敏,郑宇等.活性氧化铝吸附法饮用水除砷研究.卫生研究.1990,19(3):13-16页
    [11] Yadava K P, Tyagi B S. Effect of temperature on the removal of lead(Ⅱ) by adsorption on China clay and wollastonite. Chem Biotechnol, 1991 ,51(3): 47-60P
    [12] LEE S M, DAVIS A P. Removal of Cu(Ⅱ)and Cd(Ⅱ)from aqueous solution by seafood processing waste sludge. Water Res, 2001, 35 (5): 534-54P
    [13] 程博闻,康卫民.纤维素吸附材料.人造纤维.2003,33(6):17-20页
    [14] 罗正贵,闻荻江离子吸附分离材料的研究进展.苏州大学学报(工科 版).2004,24(1):54-57页
    [15] 王焰新.去除废水中重金属的低成本吸附剂:生物质和地质材料的环境利用.地学前沿.2001,8(2):301-305页
    [16] 任建敏,吴四维.天然吸附材料在废水重金属离子处理中的应用.重庆工商大学学报(自然科学版).2005,22(6):537-540页
    [17] Kedari C S,Das S K. Biosorption of long lived radionuclides using immobilized cells of Saccharomyces Cerevisiae. Microbio and Biotchnol J,2001,17(3):789-793P
    [18] N Adams,Homes,L Addour,et al.Batch Zinc biosorption by a bacterial nonliving Streptomyces Rimosus biomass. Wat Res,1999,33 (6):1347-1354P
    [19] Jose T. Matheickal,Qiming Yu,et al. Biosorption of cadmium from aqueous solution sbypre-treated biomass of marine alga durvillaea potatorum. Wat Res,1999,33 (2): 335-342#####
    [20] 刘文群.真菌对微量元素铁、锌、硒生物富集作用的研究.环境与开发.2000,15(3):3-4页
    [21] 柴平海,张文清.金鑫荣.甲壳素/壳聚糖开发和研究的新动向.化学通报.1999(7):8-11页
    [22] 甄宝勤,葛红光.壳聚糖在水处理中的应用.福建环境.1997,14(6):13-16页
    [23] 刘萍,曾光明,黄瑾辉.吸附法处理重金属废水的研究进展.2005,34(10):592-598页
    [24] Bai R Sudha,Abraham T Emilia. Studies on enhancement of Cr(Ⅵ) biosorption by chemically modified biomass of Rhizopus Ni gricans. Wat Res,2002,36 (5):1224-1236P
    [25] 政耀通,阂航.固定化细胞技术及应用于废水处理的最新进展.重庆环境科学.1993,10(6):37-41页
    [26] 齐水冰,罗建中,乔庆霞.固定化微生物技术处理废水.上海环境科学.2002,21(3):29-32页
    [27] Bayramoglu G,Bekatas S.Biosorption of heavy metal ions on
    immobilized white-rot fungus trametes versiocolor. J Hazard Mater B,2003,101(9): 285-300P
    [28] 田建民.生物吸附法在含重金属废水处理中的应用.太原理工大学学报.2000,31(1):74-77页
    [29] Shinti M. Evaluation of immobilized biomass beads for removing heavy metals from wastewater. Wat Environ Sciec,1995,67 (6): 943-952P
    [30] Holan,Ozer Dursun. Comparative study of the biosorption of Cr(Ⅵ) ions onto S.Cerevisiae:Determination of biosorption Heats. J Hazard Mater B,2003,100(1): 219-229P
    [31] 王岚,王龙耀.生物吸附剂及其应用研究进展。天津化工.2006,20(5):5-8页
    [32] BaiR Sudha,Abraham T Emilia. Studies on enhancement of Cr~(6+) biosorption by chemically modified biomass of Rhizopus nigricans. Wat Res,2002,36 (5):1224-1236P
    [33] AkarTamer,Tunalia Sibel.Biosorption performance of Botrytis cinerea fungal by-products for removal of Cd~(2+) and Cu~(2+) ions from aqueous solution. Mater Engineer,2005,18(1):1099-1109P
    [34] Greene Betal.Interaction of Gold(Ⅰ) and Gold (Ⅱ)complexes with Algat Biomass. Environ Sic Tcchnol,1986,20(4):627-629P
    [35] Mark Spinti. Metal a patch reactor mass transfer kinetic mold for immobilized biomass biosorption. Biotech Bioeng,1998,20 (3): 545-550P
    [36] Chang shu Jo. Law R. Charm C. Biosorption of lead,copper and cadmium by hiomass pseudomorras aeruninosa PU21. Wat Res,1997,31(7):1651-1658P
    [37] 张利等.发酵黑根霉对铅离子吸附机理的研究.离子交换与吸附.1996,12(4):317-319页
    [38] 赵力等.明胶包埋黑根霉菌丝体对水中铅离子吸附性能的研究.离子交换与吸附.1996,12(5):4187-422页
    [39] 朱一民,周东琴,魏德洲.啤酒酵母菌对汞离子的生物吸附.东北大学学报(自然科学版).2004,25(1):89-91页
    [40] 刘月英,杜天生,陈平.啤酒酵母废菌体吸附重金属离子的物理化学特性.高等学校化学学报,2004,24(12):2248-2251页
    [41] 陈林,邱廷省,陈明.生物吸附剂去除水中六价铬的实验研究.皮革科学与工程,2003,13(4):48-51页
    [42] Rorrer G I,Hsiem T Y.Synthesis of porous magnetic chitosan beads for removal cadmium ions from wastewater. Ind Eng Chem Prod Dev,1993,32(4):2170-2178P
    [43] 程发,李厚萍,魏玉萍等.交联N,O-羧甲基壳聚糖的制备及对Cu(Ⅱ)的鳌合性能研究.天津大学学报.2002,35(3):361-366页
    [44] 黄淑惠.真菌孢子和棉籽壳吸附金的研究.黄金科学技术.1994,2(1):40-44页
    [45] KhooK-M,TingY-P.Biosorption of gold by immobilized fungal biomass.Biochem Engin J,2001,8 (1): 51-59P
    [46] Godlewska-lkiew icz Beata. Biosorption of platinum and palladium for their separation/preconcentration prior to graphite furnace atomic absorption spectrometric determination. Spectrochinica Acta PartB:Atomic Spectroscopy,2003,58 (8) :1531-1540P
    [47] 陈勇生,门妹,孙启俊等.酚类化合物的生物吸附特征与其结构关系.中国环境科学.1998,18(3):248-251页
    [48] Wu Juan,Yu Han-Qing. Biosorption of phenol and chlorophenols from aqueous solutions by fungal mycelia. Process Biochem,2006,41 (1):44-49P
    [49] Ning Z,Kennedy K J.Biosorption of 2,4-dichlorophenol by live and chemically inactivated anaerobic granules. Wat Res,1996,30 (2):2093-2044P
    [50] Brierley J A,Brierley C L. Present and future commercial applications of biohydrometallurgy. Hydrometallurgy,2001,59(3):233-239P
    [51] 周少奇.现代环境生物技术.北京:科学出版社,2003:199-227页
    [52] 顾红,王先逵,祝琳华,宋鹏云.磁流体技术及发展方向综述.昆明理工大学学报.2002,27(1):55-57页
    [53] 张立德,牟季美.纳米材料和纳米结构.北京:科学出版社.2001:98-121页
    [54] 冯琳,宋延林,万梅香.磁性氧化铁纳米粒子的研究进展.科学通报.2001,46(16):18-21页
    [55] 赵朝辉,姚素薇,张卫国.纳米Fe_3O_4磁性颗粒的制备及应用现状.化工进展.2005,24(8):866-867页
    [56] 崔升,沈晓冬,林本兰.四氧化三铁纳米粉的制备方法及应用.无机盐工业.2005,37(2):5-6页
    [57] Taylor J I,Hurst C D,Davies M J. Application of magnetite and silica-magnetite composites to the isolation of genomic DNA. J Chromatogr A,2000,8 (9): 159-162P
    [58] 刘晶学.用Fe粉末处理上下水.北京:科学出版社,1992:15-23页
    [59] Colomb C. et al.Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites. Geochim Cosmochim Acta,1994(58): 1261-1269P
    [60] Jinadsas K. B. P. N. Adsorption of fluoride on goethite surface implications on dental epidemiology. Envir Geology,1993 (21):251-255P
    [61] 陆光立,赵芮.磁粉污泥法处理生活污水的试验研究.化工进展.2003,23(5):234-238页
    [62] Prasad G. Removal of arsenic(Ⅴ) from aqueous systems by adsorption onto some geological materials. Adv Environ Sci Technol,1994,26 (6):133-154P
    [63] Singh D B,Prasad G,Rupainwar D. Adsorption technique for the treatment of As(Ⅴ)-rich eluents. Colloids Surf A: Physic chem Eng Aspects,1996,111(2) :49-56P
    [64] 关晓辉,赵洁.纳米Fe_3O_4的制备及其辅助吸附重金属离子的特性.环境化学.2005,24(4):409-412页
    [65] 柴波,江学武.磁性油包水(W/O)型微乳液的制备及性能研究.东北大学学报(自然科学版).2004,25(7):657-662页
    [66] 陈瑞福,周朝晖.磁化Fe_3O_4吸附溶液中铬(Ⅵ)的研究.水处理技术.1995,21(3):171-174页
    [67] 李军,石勇,周炜.纳米Fe_3O_4在处理含铬(Ⅵ)废水中的应用.环境科学与技术.2005,28(4):145-147页
    [68] 喻德忠,蔡汝秀,潘祖亭.纳米级氧化铁的合成及其对六价铬的吸附性能研究.武汉大学学报.2002,48(2):136-138页
    [69] 孙水裕,王明芳.磁种凝聚-磁分离技术处理含Ni~(2+)电镀废水.现代化工.2001,12(9):23-26页
    [70] 马淞江,胡芳.磁性磺化煤处理有机染料的研究.工业水处理.2002,12(3):45-49页
    [71] 姜炜.纳米磁性粒子和磁性复合粒子的制备及其应用研究.南京理工大学博士学位论文.2005:130-142页
    [72] 马秀玲.磁性壳聚糖微球固定辣根过氧化物酶的研究.福建师范大学硕士学位论文.2002:45-59页
    [73] K. Mosbach,O.Ramstrom.The emerging technique of molecular imprinting and its future impact on biotechnology. Biotechnol,1996 (14):163-170P
    [74] Sellergren Borje,Lepisto Matti,Mosbach Klaus. Highly enantio selective and substrate-selective polymers obtained by molecular imprinting utilizing on covalent interactions. American Chem Soci J,1988,110 (17):5833-5960P
    [75] Kabanov J,Nishide Y. Selective adsorption of metal ions on pely(4-vinylpyridine) resigns in which the ligand chain is immobilized by cross-link. J Am Chem Sec,1989,11(1):3442-3445P
    [76] Ridvan Say,Ebru Birlik,Arzu Ersoz,Filiz Yilmaz,Tevfik Gedikbey.Preconcentration of copper on ion-selective imprinted polymer microbeads.Anal Chem Acta,2003,48 (4): 251-258P
    [77] Uezu K,Nakamura H,Kanno J.Metal ion-imprinted polymer prepared by the combination of surface template polymerization with Po stir radiation by gamma-rays. Macromolecules,1997,30 (13): 3888-3891P
    [78] 裴广玲,成国祥.金属离子印迹聚合物微球的制备研究进展.热固性树脂.2002,17(4):26-29页
    [79] Toorisaka E.Uezu K.Goto M.et al.A molecularly imprinted polymer that shows enzymatic activity.Biochem Eng J,2003,14(5):85-91P
    [80] 黄晓佳,袁光浦.模板交联壳聚糖对过渡金属离子吸附性能研究.离子交换与吸附.2000,16(3):252-254页
    [81] 孙胜玲,马宁,王爱勤.铜模板交联壳聚糖对金属离子的吸附性能研究.离子交换与吸附.2004,20(3):193-198页
    [82] 张名楠,杨超月,徐金瑞.pb~(2+)模板交联巯基壳聚糖分子印迹聚合物的合成及性能研究,海南师范学院学报.2006,19(3):251-254页
    [83] 阳奇,邓新华,郑娜.菌丝体表面分子印迹壳聚糖吸附剂对Cr~(3+)的吸附性能研究.环境污染与防治.2006,28(1):34-38页
    [84] 朱建华.分子印迹技术去除水中污染物的研究.哈尔滨工业大学硕士学位论文.2006:32-36页
    [85] 谭天伟,苏海佳.菌丝体表面分子印迹壳聚糖树脂的制备及其吸附性能.化工学报.2004,55(6):958-962页
    [86] Su HJ, Wang ZX, Tan TW, Preparation of a surface molecular-imprinted adsorbent for Ni~(2+) based on Penicillium chrysogenum. J Chem Technol Biotechnol, 2005, 80 (9): 439-44P
    [87] Su HJ, Zhao Y, Li J, Tan TW, Biosorption of Ni~(2+) by the surface molecular imprinting adsorbent. Process Biochem, 2006,41 (8): 1422-1426P
    [88] 苏海佳,王智星,谭天伟.新型菌丝体包覆吸附剂的制备及对Ni~(2+)离子吸附性能的研究.现代化工.2003,23(3):34-38页
    [89] 张建梅,韩志萍,王亚军.重金属废水的治理和回收综述.湖州师范学院学报.2002,24(3):48-51页
    [90] 甄宝勤,葛红光.壳聚糖在水处理中的应用.福建环境.1997,14(6):13-16页
    [91] 陈魁.试验设计与分析.北京:清华大学出版社,1996:94-180页
    [92] 郝学财,余晓斌,刘志钰.响应面方法在优化微生物培养基中的应用.食品与开发.2006,26(1):38-40页
    [93] 王文贤.利用响应面法优化鲜鸡肉挤压食品工艺条件的研究.四川大学硕士论文.2003:38-45页
    [94] APHA,Standard methods for the examination of water and wastewater.20th ed. American Public Health Association (APHA),Washington DC,New York,1998: 2361-2365P
    [95] Ebru Birlik,Arzu Ersoz,Erol Ac,ykkalp etc.Cr(Ⅲ)-imprinted polymeric beads: sorption and preconcentration studies. J Hazard Mater B,2007,12(5):110-116P
    [96] 孙海燕.壳聚糖的改性及其在废水处理中的应用.南京理工大学硕士学位论文.2006:42-44P
    [97] 左演声.材料现代分析方法.北京:北京工业大学出版社,2000:115-138页
    [98] 冯艳秋,宋晓辉,刘爽.ICP-AES测定硅溶胶中Na元素的分析方法研究.光谱实验室.2006,24(1):52-54页
    [99] 周学秋,朱雨杰,刘旭.现代傅立叶变换近红外光谱仪器技术及其应用.仪器评价.2002,4(2):12-14页
    [100] 胡林彦,张庆军,沈毅.X射线衍射分析的实验方法及其应用.河北理工学院学报.2004,26(3):83-86页
    [101] 王芳,许小红.振动样品磁强计在磁记录介质中的应用.信息记录材料.2005,6(2):31-35页
    [102] 余永宁,毛卫民.材料的结构.北京:冶金工业出版社,2001:214-221页
    [103] L.K. Cabatingan,R.C. Agapay,J. L. Rakels. Potential of biosorption for the recovery of chromate in industrial wastewaters. Ind Eng Chem Res,2001,40(5):2302-2309P
    [104] Fritz W,Schuender E U. Simultaneous adsorption equilibria of organic solution in dilute aqueous solution on activated carbon. Chem Eng Sci,1974,29(5): 1279-1288P
    [105] Yates D E,Levine S,Healy T W. Site-binding model of the electrical double layer at the oxide/water interface. J Chem Soc Faraday Trans,1974,70(6): 1807-1818P
    [106] Y.S.Ho,G.Mckay. The sorption of lead (Ⅱ) ions on peat. Wat Res,1999,33 (2): 578-584P
    [107] V.C.Taty-Costodes,H.Fauduet,C. Porte,A. Delacroix. Removal of Cd (Ⅱ) and Pb(Ⅱ) ions from aqueous solutions by adsorption onto sawdust of Pinus sylvestris,J Hazard Mater B,2003,10 (5): 121-142P
    [108] Aksu Z. Biosorption of reactive dyes by dried activated sludge equilibrium and kinetic modeling. Biochem Eng J,2001 (7) :79-84P
    [109] 陈春云,庄源益.染料在干污泥上的吸附平衡和动力学.安全与环境学报.2003,3(3):46-50页
    [110] Mohammad Ajmal,Rifaqat Ali Khan Rao,Rais Ahmad. Adsorption studies on citrus reticulata (fruit peel of orange): removal and recover of Ni(@@@@@)from electroplating wastewater. J Hazard Mater B,2000,79 (6):117-131P
    [111] N.Ortix,M.A.F.Pires,J.C.Bressiani. Use of steel converter slag as nickel adsorberto wastewater treatment. Was Manage,2001 (21): 631-635P
    [112] Atul K.Mittal and S.K.Gupta. Biosorption of cationic dyes by dead macrofungusfomitopsis carnea: batch studies. Wat Sci Tech,1996,34 (10):81-87P
    [113] Esma Tutem,Resat Apak,Cagatay F.Unal. Adsorptive Removal of chlorphenols from water by bituminous shale. Wat Res,1998,32 (8):2315-2324P
    [114] Langmuir I. The constitution and fundamental properties of solids and liquids. J Am Chem Sec,1916 (38): 2221-2295P
    [115] Freundlich H M F. Uber die adsorption in lasungen. Z Phys Chem,1906 (57): 385-470P
    [116] K.Periasamy,C.Namasivayam. Wastewater using an agricultural waste:removal of nickel from aqueous solution peanut hulls. Was Manag,1995,15(1): 63-68P
    [117] Charmas R,Piasecki W,Rudzinski W. Four layer complexation model for ion adsorption at electrolyte/oxide interface: Theoretical foundations. Langmuir,1995,11(8):3199-3210P
    [118] 刘志芳.胺基化壳聚糖的制备及其吸附性能研究.华东师范大学硕士学位论文.2005:63-64页
    [119] Ebru Birlik,Arzu Ersoz,Erol Ac,ykkalp etc. Cr(Ⅲ)-imprinted polymeric beads: sorption and preconcentration studies. J Hazard Mater B,2007,12 (5): 110-116P
    [120] S.Meenakshi,Natrayasamy,Viswanathan. Identification of selective ion-exchange resin for fluoride sorption. J Colloid Interface Sci,2007,30(8):438-450P
    [121] 袁曾任.人工神经网络及其应用.北京:清华大学出版社,1999:48-95页
    [122] 张际先,宓霞.神经网络及其在工程中的应用.北京:机械工业出版社,1996:3-12页
    [123] 李岚,英锐男,陈晓平.BP网络的一种优质高效学习算法.江苏理工大学学报.1999,20(1):71-74页
    [124] 王永骥,涂健.神经元网络控制.北京:机械工业出版社,1998:50-58页
    [125] 向国全,董道珍.BP模型中的激励函数和改进的网络训练法.计算机研究与发展.1997,34(2):113-117页
    [126] 邓志远,孙增圻,刘建伟.BP网络的PID型二阶段快速学习算法.自动化学报.1995,21(1):67-71页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700