K·D起爆药生产废水生物强化处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
K.D起爆药生产废水主要污染组分为低浓度铅离子、高浓度苦味酸(2,4,6-三硝基苯酚)以及高浓度硝酸盐氮,具有有机物浓度高、盐分高、可生化性差的特点。本课题研究即以实现K.D起爆药生产废水经济无害化治理为目标,探讨K.D起爆药生产废水的生物强化治理。
     进行了苦味酸特效降解菌的筛选,并将筛选得到的高效菌株(Rhodococcus sp.NJUST16)应用于曝气生物滤池反应器;采用缺氧/好氧一膜生物反应器(A/O-MBR)的反应器形式,对高浓度硝酸盐氮进行生物反硝化。采用化学沉淀一曝气生物滤池一缺氧/好氧膜生物反应器的全工艺流程,对K.D起爆药生产废水的治理进行小试规模的可行性研究,并进行了参数优化。
     筛选得到了一系列可以苦味酸为唯一碳源、氮源和能源的特效菌株,其中以NJUST16为代表菌株。通过16SrRNA基因序列测定结合生理生化试验以及形态观察,鉴定为Rhodococcus菌属。采用紫外、红外、质谱等分析手段结合COD、亚硝酸根离子测试,对NJUST16作用下苦味酸降解中间产物及降解机理进行了分析。结果表明,苦味酸在NJUST16的作用下发生了加氢还原、脱硝基、开环等一系列反应,最终实现了苦味酸的完全矿化。NJUST16在分批培养条件下的生长动力学符合底物抑制类的Haldane模型Haldane模型所模拟的苦味酸的降解动力学与实验值吻合较好。
     通过接种纯培养NJUST16菌体,构建高效菌—曝气生物滤池生物强化作用体系。反应器启动运行后,逐步提高反应器运行负荷。反应器体积负荷可高达2.53g TNP·L-1·d-1,在该负荷下,反应器出水COD和苦味酸浓度均可维持在较低的浓度。在反应器启动过程中,反应器内出现了中间产物亚硝酸根离子的硝化作用,该硝化作用对反应器内苦味酸的降解具有重要影响;过高的苦味酸体积负荷抑制了硝化活性,导致曝气生物滤池中苦味酸降解性能的下降。
     反应器不同高程处的COD浓度随进水COD浓度和进水流速的变化而变化,可用方程和描述;采用PCR-DGGE,对反应器内微生物群落分析,结果表明,经过一年左右的反应器运行,反应器内最初接种的Rhodococcus仍然为优势菌种。
     化学沉淀—曝气生物滤池—缺氧/好氧膜生物反应器的全工艺流程处理K·D起爆药生产废水是可行的。小试实验结果表明,在该最佳工况条件下,出水铅离子浓度、苦味酸浓度、COD、BOD、色度等指标均可达到《兵器工业水污染物排放标准火工药剂GB14470.2-2002》所要求的标准。此外,出水中硝态氮、亚硝态氮和细菌浓度均维持在较低的水平。
     采用以生物强化为核心的化学沉淀—曝气生物滤池—缺氧/好氧膜生物反应器工艺流程,可实现K·D起爆药生产废水的经济、高效、无害化治理。
The Wastewater from the factory producing K-D initial explosive contains low concentration of lead ion, high concentration of picric acid (2,4,6-trinitrophenol) and high concentration of nitrate-N. The wastewater is difficult to be treated because of the characteristic of high-salt, high organic concentration and poor biodegradability. In this study, a novel treatment process based on bioaugmentation was developed, in the aim of cost effective and innocuous treatment of K-D initial explosive wastewater.
     A picric acid-degrading bacterium, Rhodococcus sp.NJUST16, was isolated and applied into the biological aerated filter. A modified anoxic/oxic-membrane bioreactor (A/O-MBR) was adopted for the biological denitrification of high strength nitrate waste. The feasibility of the combined process, which was consisted of chemical precipitation, biological aerated filter and A/O-MBR, was tested for the remediation of K-D initial explosive wastewater at a technical-scale pilot plant, with the operational parameters optimized.
     A series of specially efficient bacteria capable of utilizing picric acid as the sole source of carbon, nitrogen and energy were isolated, with strain NJUST16 as the representative bacteria. The strain NJUST16 was identified as a member of Rhodococcus sp. based on 16S rRNA sequence, biochemistry experiment and morphological observation. The metabolites and mechanism of TNP degradation by NJUST16 was analyzed by FTIR, UV-vis spectrophotometry, MS/MS, combined with COD and nitrite tests. The results indicated that hydrogenation, elimination of nitro groups, cleavage of benzene ring occurred under the degradation by NJUST16, resulting into significant mineralization of TNP. For batch experiments, Haldane's model could be well fitted to the inhibitory growth kinetic data of Rhodococcus sp.NJUST16. TNP degradation kinetic data described by Haldane's model fitted well with experimental degradation profiles.
     The bioaugmentation system coupled specially efficient bacteria with biological aerated filter (BAF) was constructed through inoculating NJUST16 into BAF. After startup, the pollution load increased gradually. Finally, a maximum volumetric removal rate of 2.56 g TNP-L(-1)·d(-1) was reached, with low residual COD and TNP concentration. During the startup process, nitrite, which is one of the metabolites of TNP, was nitrified. Nitrite-oxidizing occurred spontaneously during TNP degradation in the BAF system, could have significant influence on TNP degradation. Overloading of TNP inhibited the nitrite-oxidizing activity, resulting in poor TNP degradation performance in the BAF system
     The COD concentration at different reactor height can be expressed as a function of influent COD concentration and hydraulic loading rate, In and , respectively. The microbial community was analyzed through PCR-DGGE The results indicated that one year after the startup process, the initially inoculated Rhodococcus did not loss their dominance after the system had stabilized.
     The combined process composed of chemical precipitation, biological aerated filter and anoxic/oxic-membrane bioreactor, was used to treat K-D initial explosive wastewater, showing it feasible in technique. The results of the technical-scale pilot plant indicated that under the optimal operational conditions, the lead ion, picric acid, COD, BOD and the color were removed effectively. The indexes of effluent were lower than the discharge standard for water pollutants from ordnance industry (GB 14470.2-2002). In addition, the concentrations of nitrate-N, nitrite-N and total bacterial counts in the effluent were rather low.
     In conclusion, the combined process consisted of chemical precipitation, biological aerated filter and anoxic/oxic-membrane bioreactor, which is based on the application of bioaugmentation, is promising for the economic, effective and innocuous remediation of K-D initial explosive wastewater.
引文
[1]Ghafari S, Hasan M, Aroua M K. Bio-electrochemical removal of nitrate from water and wastewater—a review. Bioresource Technology,2008,99(10):3965~3974
    [2]Montgomery M A, Elimelech M. Water and sanitation in developing countries:including health in the equation. Environmental Science & Technology,2007,41:17~24
    [3]Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Science and technology for water purification in the coming decades. Nature,2008, 452(20):301~31
    [4]毛悌和.化工废水处理技术.第一版.北京:化学工业出版社,2003
    [5]佘宗莲.废水中硝基酚类化合物生物降解研究[D].青岛:中国海洋大学,2006
    [6]钱易,汤鸿霄,文湘华等.水体颗粒物和难降解有机物的特性与控制技术原理·下卷,难降解有机物.北京:中国环境科学出版社,2000
    [7]蒋荣光,刘自铴.起爆药.北京:兵器工业出版社,2005
    [8]Acharya J, Sahu J N, Mohanty C R, Meikap B C. Removal of lead(Ⅱ) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chemical Engineering Journal,2009,149(1-3):249~262
    [9]突发性污染事故中危险品档案库.http://www.ep.net.cn/msds/chinese.htm,2010-1-11登陆
    [10]Spain J C. Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 1995,49:523~555
    [11]Qiu X, Zhong Q, Li M, Bai W, Li B. Biodegradation of p-nitrophenol by methyl parathion-degrading Ochrobactrum sp. B2. International Biodeterioration & Biodegradation,2007,59:297~301
    [12]Liu X, Wang B, Jiang C, Zhao K, Harold L D, Liu S. Simultaneous biodegradation of nitrogen-containing aromatic compounds in a sequencing batch bioreactor. Journal of Environmental Sciences,2007,19:530~535
    [13]吴耀国,焦剑,赵大为,范晓东.炸药废水处理的高级氧化技术.含能材料,2003,11(3):166~170
    [14]Rajagopal C, Kapoor J C. Development of adsorptive removal process for treatment of explosives contaminated wastewater using activated carbon. Journal of Hazardous Materials,2001, B87:73~98
    [15]张国珍,宋小三.活性炭吸附TNT废水实验研究.甘肃科学学报,2007,19(3):150~153
    [16]Pan B, Chen X, Pan B, Zhang W, Zhang X, Zhang Q. Preparation of an aminated macroreticular resin adsorbent and its adsorption of p-nitrophenol from water. Journal of Hazardous Materials,2006, B137:1236~1240
    [17]毛连山,赵泉珍.硝基苯废水的治理.环境污染与防治,2000,22(6):22~25
    [18]范广裕,骆文仪.用磺化煤处理TNT废水的研究.北京理工大学学报,1997,17(4):523~527
    [19]郝艳霞,李健生,王连军,陆路德.膜萃取法在TNT废水处理中的应用.南京理工大学学报,2001,25(5):543~546
    [20]Luan J, Plaisier A. Study on treatment of wastewater containing nitrophenol compounds by liquid membrane process. Journal of Membrane Science,2004,229:235~239
    [21]Kulkarni M, Chaudhari A. Microbial remediation of nitro-aromatic compounds:An overview. Journal of Environmental Management,2007,85:496~512
    [22]Kavitha V, Palanivelu K. Degradation of nitrophenols by Fenton and photo-Fenton processes. Journal of Photochemistry and Photobiology A:Chemistry,2005,170:83~95
    [23]Lipczynska-Kochany E. Degradation of aqueous nitrophenols and nitrobenzene by means of the Fenton reaction. Chemosphere,1991,22(5-6):529~536
    [24]Al M F, Mo'ayyad S, Ahmad S, Mohammad A-S. Impact of Fenton and ozone on oxidation of wastewater containing nitroaromatic compounds. Journal of Environmental Sciences,2008,20:675~682
    [25]Guha AK. Multiphase ozonolysis of organics in wastewater by a novel membrane reactor. AICHE Journal,1995,41(8):1998~2012
    [26]鲁志远,李玉平,牟敬海,焦宏春,崔华辉,鲁宏文,沈仲.湿式氧化法处理TNT红水.火炸药学报,2007,30(3):48~51
    [27]Fu D, Chen J, Liang X. Wet air oxidation of nitrobenzene enhanced by phenol. Chemosphere,2005,59(6):905~908
    [28]Lee D S, Park S D. Decomposition of nitrobenzene in supercritical water. Journal of Hazardous Materials,1996,51(1-3):67~76
    [29]Arslan-Alaton I, Ferry J L. H4SiW12O40-catalyzed oxidation of nitrobenzene in supercritical water:kinetic and mechanistic aspects. Applied Catalysis B: Environmental,2002,38(4):283~293
    [30]Rajan J, Valli K, Perkins R E, Sariaslani F S, Barns S M, Reysenbach, A-L, Rehm S, Ehringer M, Pace N R. Mineralization of 2,4,6-trinitrophenol (picric acid):characterization and phylogenetic identification of microbial strain. Journal of Industrial Microbiology, 1996,16:319~324
    [31]Heiss G, Hofmann K W, Trachtmann N, Walters D M, Rouviere P, Kanckmuss H-J. npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation. Microbiology,2002,148:799~806
    [32]Hofmann K W, Knackmuss H-J, Heiss G. Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation. Applied and Environmental Microbiology, 2004,70(5):2854~2860
    [33]Aziz M A, Ng W J, Zhou X J. Acidogenic-aerobic treatment of a wastewater containing nitrobenzene. Bioresource Technology,1994,48(1):37~42
    [34]郭新超.水解酸化—好氧膜生物工艺处理弹药销毁废水的试验研究[D].西安:西安建筑科技大学,2001
    [35]Bhatti Z I, Toda H, Furukawa K.p-Nitrophenol degradation by activated sludge attached on nonwovens. Water Research,2002,36:1135~1142
    [36]Grimberg S J, Rury M J, Jimenez K M, Zander A K. Trinitrophenol treatment in a hollow fiber membrane biofilm reactor. Water Science and Technology,2000,41: 235~238
    [37]Chamarro E, Marco A, Esplugas S. Use of Fenton reagent to improve organic chemical biodegradability. Water Research,2001,35(4):1047~1051
    [38]黄晓东,徐寿昌.用芬顿试剂预氧化提高硝基苯废水的可生化性.江汉石油学院学报,1994,16(3):74~78
    [39]Behrend C, Heesche-Wanger K. Formation of Hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Applied and Environmental Microbiology,1999,65: 1372~1377
    [40]Lenke H, Knackmuss H-J. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Applied and Environmental Microbiology,1992,58: 2933~2937
    [41]Rieger P-G, Sinnwell V, PreuB A, Francke W, Knackmuss H-J, Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. Journal of Bacteriology,1999,181(4):1189~1195
    [42]Nipper M, Carr R S, Biedenbach J M, Hooten R L, Miller K. Fate and effects of picric acid and 2,6-DNT in marine environments:toxicity of degradation products. Marine Pollution Bulletin,2005,50 (11):1205~1217
    [43]赵庆祥,孙贤波.废水生物处理技术的研究动向.苏州科技学院学报,2003,16(2):4-8.17
    [44]Melgoza R M, Buitron G. Degradation of p-nitrophenol in a batch biofilter under sequential anaerobic/aerobic environments. Water Science and Technology,2001,44(4): 151~157
    [45]Erikson D. Studies on some lake-mud strains of micromonospora. Journal of Bacteriology,1941,41(3):277~300
    [46]Gundersen K and Jensen H L. A soil bacterium decomposing organic nitro-compounds. Acta Agricultur? Scandinavica,1956,6:100~114
    [47]Wyman J F, Guard H E, Won W D, Quay J H. Conversion of 2,4,6-trinitrophenol to a mutagen by Pseudomonas aeruginosa. Applied and Environmental Microbiology,1979, 37(2):222~226
    [48]Nga D P, Altenbuchner J, Heiss G S. NpdR, a repressor involved in 2,4,6-trinitrophenol degradation in Rhodococcus opacus HL PM-1. Journal of Bacteriology,2004,186(1): 98~103
    [49]Ebert S, Rieger P-G, Knackmuss H-J. Function of coenzyme F420 in aerobic catabolism of 2,4,6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1 A. Journal of Bacteriology,1999,181(9):2669~2674
    [50]Ebert S, Fischer P, Knackmuss H-J. Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation,2001,12: 367~376
    [51]Weidhaas J L, Schroeder E D, Chang D P. An aerobic sequencing batch reactor for 2,4,6-trinitrophenol (picric acid) biodegradation. Biotechnology and Bioengineering,2007, 97(6):1408~1414
    [52]王淑红,马邕文,万金泉,王艳.不同基质共代谢降解2,4,6-三硝基苯酚的研究.环境工程学报,2009,3(3):479~484
    [53]滕少香,盛国平,刘贤伟,王曙光,俞汉青.芳香族硝基化合物的微生物降解.化学进展,2009,21(2-3):534~539
    [54]Ramos J L, Gonzalez-Perez M M, Caballero A, Dillewijn P. Bioremediation of polynitrated aromatic compounds:plants and microbes put up a fight. Current Opinion in Biotechnology,2005,16(3):275~281
    [55]Heiss G, Knackmuss H-J. Bioelimination of trinitroaromatic compounds:immobilization versus mineralization. Current Opinion in Microbiology,2002,5(3):282~287
    [56]Jimenez K, Grimberg S J, Zander A K. Membrane enhanced reactor for treatment of high strength wastewater containing nitrophenolic compounds. Proceedings of Water Environment Federation 71st Annual Conference and Exposition, Orlando, FL, October 3-7,1998
    [57]Rittmann B E, Stilwell D, Ohashi A. The transient-state, multiple-species biofilm model for biofiltration processes. Water Research,2002,36(9):2342~2356
    [58]Nicolella C, Loosdrecht M, Heijnen S J. Particle-based biofilm reactor technology. Trends in Biotechnology,2000,18(7):312~320
    [59]Edgehill R U. Degradation of pentachlorophenol (PCP) by Arthrobacter strain ATCC 33790 in biofilm culture. Water Research,1996,30(2):357~363
    [60]Perron N, Welander U. Degradation of phenol and cresols at low temperatures using a suspended-carrier biofilm process. Chemosphere,2004,55(1):45~50
    [61]Jeong Y-S, Chung J-S. Biodegradation of thiocyanate in biofilm reactor using fluidized-carriers. Process Biochemistry,2006,41(3):701~707
    [62]Li Q, Wang H, He N, Wang Y, Sun D, Lu Y. High efficiency of batch operated biofilm hydrolytic-aerobic recycling process in degradation of 2,4-dichlorophenol. Journal of Hazardous Materials,2008,152(2):536~544
    [63]Kim J H, Oh K K, Lee S T, Kim S W, Hong S I. Biodegradation of phenol and chlorophenols with defined mixed culture in shake flasks and packed bed reactor. Process Biochemistry,2002,37:1367~1373
    [1]Yang C-F, Lee C-M, Wang C-C. Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica. Chemosphere, 2006,62 (5):709~714
    [2]Behrend C, Heesche-Wanger K. Formation of Hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Applied and Environmental Microbiology,1999,65: 1372~1377
    [3]Rieger P-G, Sinnwell V, PreuB A, Francke W, Knackmuss H-J, Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. Journal of Bacteriology,1999,181(4): 1189~1195
    [4]Weidhaas J L, Schroeder E D, Chang D P. An aerobic sequencing batch reactor for 2,4,6-trinitrophenol (picric acid) biodegradation. Biotechnology and Bioengineering, 2007,97(6):1408~1414
    [5]Delong E F. Phylogenetic strains:ribosomal RNA-base for the identification single cells. Science,1982,243(4896):1360~1363
    [6]Rajan J, Valli K, Perkins R E, Sariaslani F S, Barns S M, Reysenbach, A-L, Rehm S, Ehringer M, Pace N R. Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strain. Journal of Industrial Microbiology,1996,16:319~324
    [7]Grimberg S J, Rury M J, Jimenez K M, Zander A K. Trinitrophenol treatment in a hollow fiber membrane biofilm reactor. Water Science and Technology,2000,41:235~238
    [8]Lenke H, Knackmuss H-J. Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Applied and Environmental Microbiology,1992,58: 2933~2937
    [9]Heiss G, Hofmann K W, Trachtmann N, Walters D M, Rouviere P, Kanckmuss H-J. npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation. Microbiology,2002,148:799~806
    [10]Weidhaas J L, Schroeder E D, Chang D P. An aerobic sequencing batch reactor for 2,4,6-trinitrophenol (picric acid) biodegradation. Biotechnology and Bioengineering, 2007,97(6):1408~1414
    [11]华苟根,郭坚华.红球菌属的分类及应用研究进展.微生物学通报,2003,30(4):107~111
    [12]齐云.氯苯甲酸降解菌的分离筛选及降解特性研究[D].天津:天津大学,2006
    [13]Hofmann K W, Knackmuss H-J, Heiss G. Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation. Applied and Environmental Microbiology,2004,70(5):2854~2860
    [14]Ramos J L, Gonzalez-Perez M M, Caballero A, Dillewijn P. Bioremediation of polynitrated aromatic compounds:plants and microbes put up a fight. Current Opinion in Biotechnology,2005,16(3):275~281
    [15]Heiss G, Knackmuss H-J. Bioelimination of trinitroaromatic compounds:immobilization versus mineralization. Current Opinion in Microbiology,2002,5(3):282~287
    [1]Kumar A, Kumar S, Kumar S. Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal,2005,22(2): 151~159
    [2]Saravanan P, Pakshirajan K, Saha P. Growth kinetics of an indigenous mixed microbial consortium during phenol degradation in a batch reactor. Bioresource Technology,2008, 99:205~209
    [3]Juang R S, Tsai S Y. Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate. Biochemical Engineering Journal,2006, 31:133~140
    [4]Singh R K, Kumar S, Kumar S, Kumar A. Biodegradation kinetic studies for the removal of p-cresol from waste water using Gliomastix indicus MTCC 3869. Biochemical Engineering Journal,2008,40:293~303
    [5]徐亚同,史家樑,张明.污染控制微生物工程.北京:化学工业出版社(环境科学与工程出版中心),2001
    [6]突发性污染事故中危险品档案库.http://www.ep.net.cn/msds/chinese.htm,2010-1-11登陆
    [7]Nipper M, Carr R S, Biedenbach J M, Hooten R L, Miller K. Fate and effects of picric acid and 2,6-DNT in marine environments:toxicity of degradation products. Marine Pollution Bulletin,2005,50 (11):1205~1217
    [8]Nipper M, Qian Y, Carr R S, Miller K. Degradation of picric acid and 2,6-DNT in marine sediments and waters:the role of microbial activity and ultra-violet exposure. Chemosphere,2004,56:519~530
    [9]Wan N S, Gu J-D, Yan Y. Degradation of p-nitrophenol by Achromobacter xylosoxidans Ns isolated from wetland sediment. International Biodeterioration & Biodegradation, 2007,59 (2):90~96
    [10]Rajan J, Valli K, Perkins R E, Sariaslani F S, Barns S M, Reysenbach, A-L, Rehm S, Ehringer M, Pace N R. Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strain. Journal of Industrial Microbiology,1996,16:319~324
    [11]Heiss G, Hofmann K W, Trachtmann N, Walters D M, Rouviere P, Kanckmuss H-J. npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation. Microbiology,2002,148:799~806
    [12]Behrend C, Heesche-Wanger K. Formation of Hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Applied and Environmental Microbiology, 1999,65:1372~1377
    [13]Weidhaas J L, Schroeder E D, Chang D P. An aerobic sequencing batch reactor for 2,4,6-trinitrophenol (picric acid) biodegradation. Biotechnology and Bioengineering, 2007,97(6):1408~1414
    [14]Anthonisen A C, Loehr R C, Prakasam T, Srinarh E G. Inhibition of nitrification by ammonia and nitrous acid. Journal-Water Pollution Control Federation,1976, 48(5):835~852
    [15]Weon S-Y, Lee C-W, Lee S-I, Koopman B. Nitrite inhibition of aerobic growth of Acinetobacter sp. Water Research,2002,36:4471~4476
    [16]Grimberg S J, Rury M J, Jimenez K M, Zander A K. Trinitrophenol treatment in a hollow fiber membrane biofilm reactor. Water Science and Technology,2000,41: 235~238
    [17]Nuhoglu A, Yalcin B. Modelling of phenol removal in a batch reactor. Process Biochemistry,2005,40:1233~1239
    [18]于静洁,孙孝囡,顾国维,张志峰.印染废水异养菌产率系数的测定.工业用水与废水,2005,36(4):4-6
    [19]Wang S J, Loh K C. Modeling the role of metabolic intermediates in kinetics of phenol biodegradation. Enzyme and microbial technology,1999,25:177~184
    [1]Weidhaas J L, Schroeder E D, Chang D P. An aerobic sequencing batch reactor for 2,4,6-trinitrophenol (picric acid) biodegradation. Biotechnology and Bioengineering, 2007,97(6):1408~1414
    [2]Grimberg S J, Rury M J, Jimenez K M, Zander A K. Trinitrophenol treatment in a hollow fiber membrane biofilm reactor. Water Science and Technology,2000,41:235~238
    [3]Jimenez K, Grimberg S J, Zander A K. Membrane enhanced reactor for treatment of high strength wastewater containing nitrophenolic compounds. Proceedings of Water Environment Federation 71st Annual Conference and Exposition, Orlando, FL, October 3-7,1998
    [4]Edgehill R U. Degradation of pentachlorophenol (PCP) by Arthrobacter strain ATCC 33790 in biofilm culture. Water Research,1996,30(2):357~363
    [5]Perron N, Welander U. Degradation of phenol and cresols at low temperatures using a suspended-carrier biofilm process. Chemosphere,2004,55(1):45~50
    [6]Jeong Y-S, Chung J-S. Biodegradation of thiocyanate in biofilm reactor using fluidized-carriers. Process Biochemistry,2006,41(3):701~707
    [7]Li Q, Wang H, He N, Wang Y, Sun D, Lu Y. High efficiency of batch operated biofilm hydrolytic-aerobic recycling process in degradation of 2,4-dichlorophenol. Journal of Hazardous Materials,2008,152(2):536~544
    [8]Kim J H, Oh K K, Lee S T, Kim S W, Hong S I. Biodegradation of phenol and chlorophenols with defined mixed culture in shake flasks and packed bed reactor. Process Biochemistry,2002,37:1367~1373
    [9]孙仕萍,邢大荣,张岚,艾有年,付学红, 张庆娟.水中硝酸盐氮的麝香草酚分光光度测定法.职业与健康,2005,24(4):256~257
    [10]Kindler R, Miltner A, Richnow H-H, Kastner M. Fate of gram-negative bacterial biomass in soil—mineralization and contribution to SOM. Soil Biology and Biochemistry,2006,38(9):2860~2870
    [11]Li A-J, Yang S-F, Li X-Y, Gu J-D. Microbial population dynamics during aerobic sludge granulation at different organic loading rates. Water Research,2008,42,3552~3560
    [12]章胜红.曝气生物滤池深度净化有机废水的研究[D].上海:东华大学,2006
    [13]Rieger P-G, Sinnwell V, Preu(?) A, Francke W, Knackmuss H-J, Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. Journal of Bacteriology,1999,181(4): 1189~1195
    [14]Anthonisen A C, Loehr R C, Prakasam T, Srinarh E G. Inhibition of nitrification by ammonia and nitrous acid. Journal-Water Pollution Control Federation,1976, 48(5):835~852
    [15]Weon S-Y, Lee C-W, Lee S-I, Koopman B. Nitrite inhibition of aerobic growth of Acinetobacter sp. Water Research,2002,36:4471~4476
    [16]Morgan-Sagastume J M, Noyola A. Evaluation of an aerobic submerged filter packed with volcanic scoria. Bioresource Technology,2008,99 (7):2528~2536
    [17]Bhatti Z I, Toda H, Furukawa K.p-Nitrophenol degradation by activated sludge attached on nonwovens. Water Research,2002,36:1135~1142
    [18]Zepeda A, Texier A-C, Razo-Flores E, Gomez J. Kinetic and metabolic study of benzene, toluene and m-xylene in nitrifying batch cultures. Water Research,2006,40:1643~1649
    [19]Liu Y-Q, Tay J-H, Ivanov V, Moy B Y-P, Yu L, Tay S T-L. Influence of phenol on nitrification by microbial granules. Process Biochemistry,2005,40:3285~3289
    [20]Behrend C, Heesche-Wanger K. Formation of Hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Applied and environmental microbiology, 1999,65:1372~1377
    [21]Gemini V L, Gallego A, de Oliveira V M, Gomez C E, Manfio G P, Korol S E. Biodegradation and detoxification of p-nitrophenol by Rhodococcus wratislaviensis. International Biodeterioration & Biodegradation,2005,55(2):103~108
    [22]Nipper M, Qian Y, Carr R S, Miller K. Degradation of picric acid and 2,6-DNT in marine sediments and waters:the role of microbial activity and ultraviolet exposure. Chemosphere,2004,56:519~530
    [23]Nipper M, Carr R S, Biedenbach J M, Hooten R L, Miller K. Fate and effects of picric acid and 2,6-DNT in marine environments:toxicity of degradation products. Marine Pollution Bulletin,2005,50 (11):1205~1217
    [24]Ramos J L, Gonzalez-Perez M M, Caballero A, Dillewijn P. Bioremediation of polynitrated aromatic compounds:plants and microbes put up a fight. Current Opinion in Biotechnology,2005,16(3):275~281
    [25]Heiss G, Knackmuss H-J. Bioelimination of trinitroaromatic compounds:immobilization versus mineralization. Current Opinion in Microbiology,2002,5(3):282~287
    [1]Allan M, Leopoldo M E, Tom S. A comparison of floating and sunken media biological aerated filters for nitrification. Journal of Chemical Technology and Biotechnology, 1998,72(3):273-279
    [2]Wang C, Li J, Wang B, Zhang G. Development of an empirical model for domestic wastewater treatment by biological aerated filter. Process Biochemistry,2006,41, 778-782
    [3]Mann A T, Stephenson T. Modeling biological aerated filters for wastewater treatment. Water Research,1997,31:2443-2448
    [4]Su D, Wang J, Liu K, Zhou D. Kinetic performance of oil-field produced water treatment by biological aerated filter. Chinese Journal of Chemical Engineering,2007,15 (4): 591-594
    [5]章胜红.曝气生物滤池深度净化有机废水的研究[D].上海:东华大学,2006
    [6]Sa C S A, Boaventura R A R. Biodegradation of phenol by Pseudomonas putida DSM 548 in a trickling bed reactor. Biochemical Engineering Journal,2001,9:211-219
    [7]突发性污染事故中危险品档案库.http://www.ep.net.cn/msds/chinese.htm,2010-1-11登陆
    [8]Nipper M, Qian Y, Carr R S, Miller K. Degradation of picric acid and 2,6-DNT in marine sediments and waters:the role of microbial activity and ultraviolet exposure. Chemosphere,2004,56:519-530
    [9]Nipper M, Carr R S, Biedenbach J M, Hooten R L, Miller K. Fate and effects of picric acid and 2,6-DNT in marine environments:toxicity of degradation products. Marine Pollution Bulletin,2005,50 (11):1205~1217
    [10]Spain J C. Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 1995,49:523~555
    [11]Kulkarni M, Chaudhari A. Microbial remediation of nitro-aromatic compounds:An overview. Journal of Environmental Management,2007,85:496~512
    [12]Rieger P-G, Sinnwell V, Preu(?) A, Francke W, Knackmuss H-J, Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. Journal of Bacteriology,1999,181(4): 1189~1195
    [13]Ramos J L, Gonzalez-Perez M M, Caballero A, Dillewijn P. Bioremediation of polynitrated aromatic compounds:plants and microbes put up a fight. Current Opinion in Biotechnology,2005,16(3):275~281
    [14]Heiss G, Knackmuss H-J. Bioelimination of trinitroaromatic compounds:immobilization versus mineralization. Current Opinion in Microbiology,2002,5(3):282~287
    [1]蒋荣光,刘自铴.起爆药.北京:兵器工业出版社,2005
    [2]蒋荣光,刘自铴.K·D复盐起爆药.南京:南京理工大学出版社,1999
    [3]Ghafari S, Hasan M, Aroua M K. Bio-electrochemical removal of nitrate from water and wastewater—a review. Bioresource Technology,2008,99(10):3965~3974
    [4]Shrimali M, Singh K P. New methods of nitrate removal from water. Environmental Pollution,2001,112:351~359
    [5]Glass C, Silverstein J. Denitrification of high-nitrate, high-salinity wastewater. Water Research,1999,33:223~229
    [6]Rocca C D, Belgiorno V, Meric S. Overview of in-situ applicable nitrate removal processes. Desalination,2007,204(1-3):46~62
    [7]Glass C, Silverstein J. Denitrification kinetics of high nitrate concentration water:pH effect on inhibition and nitrite accumulation. Water Research,1998,32:831~839
    [8]Forglar L, Briski F, Sipos L, Vukovic M. High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresource Technology,2005,96:879~888
    [9]Almeida J S, Julio S M, Reis M A M, Carrondo M J T. Nitrite inhibition of denitrification by Pseudomonas fluorescens. Biotechnology Bioengineering,1995,46:194~201
    [10]McAdam E J, Judd S J. Immersed membrane bioreactors for nitrate removal from drinking water:Cost and feasibility. Desalination,2008,231:52~60
    [11]McAdam E J, Judd S J. Denitrification from drinking water using a membrane bioreactor: Chemical and biochemical feasibility. Water Research,2007,41:4242~4250
    [12]Ergas S J, Rheinheimer D E. Drinking water denitrification using a membrane bioreactor. Water Research,2004,38:3225~3232
    [13]Nuhoglu A, Pekdemir T, Yildiz E, Keskinler B, Akay G. Drinking water denitrification by a membrane bio-reactor. Water Research,2002,36:1155~1166
    [14]Cyplik P, Grajek W, Marecik R, Kroliczak P, Dembczynski R. Application of a membrane bioreactor to denitrification of brine. Desalination,2007,207:134~143
    [15]Reyes-Avila J, Razo-Flores E, Gomez J. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Research,2004,38:3313~3321
    [16]Martienssen M, Schops R. Population dynamics of denitrifying bacteria in a model biocommunity. Water Research,1999,33:639~646
    [17]Liu H, Jiang W, Wan D, Qu J. Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water. Journal of Hazardous Materials,2009,169:23~28
    [18]Dhamole P B, Nair R R, D'Souza S F, Lele S S. Denitrification of high strength nitrate waste. Bioresource Technology,2007,98:247~252
    [19]Wang Q, Feng C, Zhao Y, Hao C. Denitrification of nitrate contaminated groundwater with a fiber-based biofilm reactor. Bioresource Technology,2009,100:2223~2227
    [20]Constantin H, Fick M. Influence of C-source on the denitrification rate of a high-nitrate concentrated industrial wastewater. Water Research,1997,31:583~589
    [21]Martin D, Salminen J M, Niemi R M, Heiskanen I M, Valve M J, Hellsten P P, Nysten T H. Acetate and ethanol as potential enhancers of low temperature denitrification in soil contaminated by fur farms:A pilot-scale study. Journal of Hazardous Materials,2009, 163:1230~1238

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700