DMFC用改性磺化聚醚醚酮质子交换膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)是一种极具广泛潜在应用价值的燃料电池。其发展面临两大难题:一是阳极催化剂对甲醇反应的催化活性低;二是通常使用的全氟磺酸质子交换膜的成本高且阻醇性能差。因此开发出低成本、高性能的替代膜是DMFC研究的重要课题之一。本论文在开发价格低廉的新型阻醇质子交换膜和耐高温质子交换膜方面进行了探索和尝试。
     聚醚醚酮(PEEK)是一种价格较低、性能优良的聚芳醚酮类聚合物。其磺化后可用来制备DMFC质子交换膜。高电导率要求磺化聚醚醚酮(SPEEK)的磺化度要高,但高磺化度会使膜的尺寸稳定性变差。为解决这个矛盾,需要对SPEEK进行改性。
     我们首次将羟基磷灰石(HA)、功能化二氧化硅(二氧化硅溶胶(SiO2)及带有磺酸基团的二氧化硅(SiOx–S))分别掺杂到较高磺化度的SPEEK中制备复合膜。研究表明,掺杂物与SPEEK之间发生氢键作用,因此复合膜的溶胀被有效地抑制,膜的阻醇性能、可使用温度都得到显著地提高。使用温度的提高使SPEEK高电导率的特性得以发挥,因此复合膜在高温时具有很高的电导率。我们还首次考察了复合膜在高温不同湿度下的电导率。结果表明,掺杂物的加入能显著提高复合膜在低湿度时的电导率。
     酚酞型聚醚砜(PES–C)经磺化后而制备的磺化酚酞型聚醚砜(SPES–C)质子交换膜,即使磺化度达到70%时,其在沸水中的溶胀度也很小(<13%)。膜的磺化度高,电导率高,但机械强度变差。我们首次将磺化度相对低的SPES–C及未磺化的PES–C分别混入高磺化度的SPEEK中制备共混膜。实验发现,通过控制SPEEK的磺化度及SPES–C、PES–C的混入量,可以制得尺寸稳定性好、电导率高、阻醇性能优良的共混膜。与具有相同离子交换容量的纯SPEEK膜相比,共混膜的阻醇性能及尺寸稳定性能更好。
     我们首次在SPEEK/PES–C共混溶液浇铸成膜过程中施加垂直膜面的电场,初步探索电场参数(场强、频率、波形、直流/交流)对膜性能的影响。研究发现,电场作用能够改变共混膜的微观结构,使膜在沿着电场方向上产生定向,从而大大提高膜沿着电场方向上的电导率;电场作用还能改变膜的含水率及阻醇性能。
Direct methanol fuel cell (DMFC) is a novel power technology and is expected to find wide applications in areas from mobile phones to electric rehicles. Two obstacles, however, need to be surmounted before its commercialization. One is low methanol oxidation activity at the anode, and the other is methanol crossover from the anode to the cathode through the membrane. Therefore, developing new membranes to deal with the obstacles has been an important research subject in the fuel cell field. In this study, new methanol barrier and high temperature membranes for DMFC are explored.
     Sulfonated poly(ether ether ketone) (SPEEK) membranes are very promising alternative to Nafion membrane in DMFC for their high conductivity and better methanol resistance. However, in SPEEK membranes, there exits conflicts among ionic conductivity, methanol resistance and dimensional stability. The demand of high proton conductivity calls for the membranes to have a high degree of sulfonation (DS) and work at elevated temperature. Such membranes at elevated temperature, however, tend to swell excessively or even dissolve, thereby lowers applicable temperature.
     In order to overcome the conflicts, insolvable hydroxyapatite (HA) and functionalized silica (silica sol (SiO2) and silica with sulfonic acid groups (SiOx–S)) were incorporated into the SPEEK matrix with relative high DS to prepare novle composite membranes, respectively. Results show that the hydrogen bond happened between the adulterants and the polymers, which helps to reduce the swelling and methanol permeability of the composite membranes, and improve their dimensional stability. For the composite membranes, high conductivity can be achieved as the applicable temperature is improved. For the hygroscopic property of the adulterants, the conductivity of composie membranes under low relative humidity at high temperature(>100℃) was improved efficiently.
     Phenolphthalein poly(ether sulfone) (PES–C) is an engineering thermoplastic with high temperature resistance, and can be sulfonated to prepare SPES–C proton exchage membranes. The SPES–C membrane swelled somewhat (<13%) in boiling water, even with DS as high as 70%. The demand of high proton conductivity calls for SPES–C membranes to have a high degree of sulfonation (DS), which decreases mechanical strength of the membranres. In order to improve the properties of SPEEK membrane with high DS, SPES–C with a relative low DS (DS=53.7%) and PES–C were chosen and blended into SPEEK matrix to fabricate SPEEK/SPES–C and SPEEK/PES–C blend membranes, respectively. Results show that by controlling the DS of SPEEK and blend proportion, the blend membranes with dimensinoal stability, high conductivity and excellent methanol resistance can be fabricated. Furthermore, compared with pure SPEEK membrane with the same ion–exchange capacity, the blend membrane has better methanol resistance and dimensional stability.
     An electric field perpendicular to the membrane plane was applied during the course of preparing SPEEK/PES–C membranes by solution casting, and the influence of the electric parameters (e.g., electric field strength (E), frequency (f), waveform and DC/AC electric field) on the blend membranes’performance was explored preliminary. Results show that the electric field can change the membranes’microstructures, and can induce the membranes to orient along the electric field direction, thus improving obviously the trans–plane conductivity of the blend membranes. Furthermore, the electric field can also change the water content and the methanol permeability of the blend membranes.
引文
[1] Appleby A J, Foulkes F R, Fuel cell handbook, Van Nostrand Reinhold, New York, 1989
    [2]衣宝廉,燃料电池现状和未来,电源技术, 1998, 22(5): 216~221
    [3]江船,燃料电池,北京:国防工业出版社, 1983
    [4]查全性,燃料电池技术的发展与我国应有的对策,应用化学, 1993, 10(10): 38~42
    [5]周运鸿,燃料电池,电源技术, 1996, 20(4): 161~164
    [6]黄倬,屠海令,张冀强等,质子交换膜燃料电池的研究开发和应用,北京:冶金工业出版社, 2000
    [7]衣宝廉,燃料电池–高效环境友好的发电方式,北京:化学工业出版社, 2000
    [8]顾登平,董茹亭,化学电源,北京:高等教育出版社, 1993
    [9] Yin Y, Fang J, Kita H, et al., Novel sulfoalkoxylated polyimide membrane for polymer electrolyte fuel cells, Chemstry Letters, 2003, 32(4): 328~329
    [10]林维明,燃料电池系统,北京:化学工业出版社, 1996
    [11]陈延喜,聚合物电解质燃料电池的研究进展,电源技术, 1996, 20(1): 21~27
    [12]衣宝廉,燃料电池技术–原理、技术、应用,北京:化学工业出版社, 2003
    [13] Ticianelli E A, Berry J G, Srinivasav S, Dependence of performance of solid polymer electrolyte fuel cells with low platinum loading on morphological characteristics of the electrodes, J. Appl. Electrochem., 1991, 21: 597~598
    [14]侯明,吴金锋,衣宝廉等, PEM燃料电池流场板,电源技术, 2001, 25(4): 294~298
    [15] Besmann T M, Klett J W, Henry J J, et al., Carbon/carbon composite bipolar plate for proton exchange membrane fuel cells, J. Electrochem. Soc., 2000, 147: 4083~4086
    [16] Davies D P, Adcock P L, Turpin M, et al., Bipolar plate materials for solid polymer fuel cells, J. Appl. Electrochem., 2000, 30: 101~105
    [17] Tsuchiya H, Kobayashi T, Mass production cost of PEM fuel cell by learning curve, International journal of hydrogen energy, 2005, 30(12): 1297~1302
    [18]蔡年生,质子交换膜在燃料电池中的应用,膜科学与技术, 1996, 16(4): 1~6
    [19]李国欣,新型化学电源导论,上海:复旦大学出版社, 1992
    [20] Mcnicol B D, Electrocatalytic problems associated with the development of direct methanol–air fuel cell, J. Electroanal. Chem., 1981, 118: 71~87
    [21] Baxter S F, Battaglia V S, White R E, Methanol fuel cell model: anode, J. Electrochem. Soc., 1999, 146(2): 437~447
    [22] Wasmus S, Kuver A, Methanol oxidation and direct methanol fuel cells: a selective review, J. Electroanal. Chem., 1999, 461: 14~31
    [23] Heinzel A, Barragán V M, A review of the state–of–the–art of the methanol crossover in direct methanol fuel cells, J. Power Sources, 1999, 84: 70~74
    [24] Hogarth M P, Hards G A, Direct methanol fuel cells technological advances and further requirements, Platinum Metals Rev, 1996, 40: 150~159
    [25] Yu E H, Scott K, Development of direct methanol alkaline fuel cells using anion exchange membrances, J. Power Sources, 2004, 137: 248~256
    [26] John R V, Robert C T S, An electron–beam–grafted ETFE alkaline anion~exchange membrane in metal–cation free solid state alkaline fuel cells, Electrochem. Comm., 2006, 8: 839~843
    [27] Yamada K, Yasuda K, Fujiwara N, et al., Potential application of anion–exchange membrane for hydrazine fuel cell electrolyte, 2003, 5: 892~896
    [28]刘勇,刘世斌,张忠林等,阴离子膜直接甲醇燃料电池,电源技术, 2006, 130: 125~129
    [29] Smitha B, Sridhar S, Khan A A, Solid polymer electrolyte membranes for fuel cell applications–a review, J. Membr Sci., 2005, 259: 10~26
    [30] Strasser K, Mobile fuel cell development at Siemens, J. Power Sources, 1992, 37: 209~219
    [31] Murphy O J, Hitchens G D, Manko D J, High power density proton–exchange membrane fuel cells, J. Power Sources, 1994, 47: 353~368
    [32] Haubold H G, Vad T, Jungbluth H, et al., Nano structure of NAFION: a SAXS study, Electrochimica Acta, 2001, 46:1559~1563
    [33] Urata S, Irisawa J, Akira T, et al., Molecular dynamics study of the methanol effect on the membrane morphology of perfluorosulfonic ionomers, J. Phys. Chem. B, 2005, 109: 17274~17280
    [34] Kenneth A, Mauritz, Robert B M, State of undersdanding of Nafion, Chem. Rev. 2004, 104: 4535~4585
    [35] Adam Z, Weber, Newman J, Modeling transport in polymer–electrolyte fuel cells, Chem. Rev. 2004, 104: 4679~4726
    [36] Wang Y X, Kawano Y, Aubuchon S R, et al., TGA and time–dependent FTIR study of dehydrating Nafion–Na membrane, Macromolecules, 2003, 36: 1138~1146
    [37] Ana S, Jennifer S, Steven H, Effect of water on the low temperature conductivity of polymer electrolytes, J. Phys. Chem. B, 2006, 110: 6072~6080
    [38] Kreuer K D, Paddison S J, Spohr E, et al., Transport in proton conductors for fuel–cell applications simulations, elmentary reactions, and phenomenology, Chem. Rev. 2004, 104: 4637~4678
    [39] Kreuer K D, Proton conductivity: materials and applications, Chem. Mater. 1996, 8: 610~641
    [40] Hensley J E, Way J D, The relationship between proton conductivity and water permeability in composite carboxylate/sulfonated ionomer membranes, J. Power Sources, 2007, 172: 57~66
    [41] Chou J, McFarland E W, Metiu H, Electrolithographic investigations of the hydrophilic channels in Nafion membranes, J. Phys. Chem. B, 2005, 109: 3252~3256
    [42] Pei H Q, Hong L, Lee J Y, Polymer electrolyte membrane based on 2–methyl propanesulfonic acid fabricated by embedded polymeraization, J. Power Sources, 2006, 160: 949~956
    [43] Savadogo O, Emerging membranes for electrochemical systems (1) Solid polymer electrolyte membranes for fuel cell systems, J. New Mat. Electrochem. Systems, 1998, 1: 47~65
    [44] Yoshitsugu S, Per E, Daniel S, Proton conductivity of Nafion117 as measured by a four–electrode AC impedance method, J. Electrochem. Soc., 1996, 143(4): 1254~1259
    [45] Cappadonia M, Erning J W, Niaki S M S, et al., Conductance of Nafion 117 membranes as a function of temperature and water content, Solid State Ionics, 1995, 77: 65~69
    [46] Cappadonia M, Erning J W, Stimming U, Proton conduction of Nafion117 membrane between 140K and room temperature, J. Electroanal. Chem., 1994, 376: 189~195
    [47] Zawodzinski T A, Derouin C, Radzinski S, et al., Water uptake by and transport through Nafion117 membranes, J. Electrochem. Soc., 1993, 140(4): 1041~1047
    [48] Samms S R, Wasmus S, Savinell R F, Thermal stability of Nafion in simulated fuel cell environments, J. Electrochem. Soc., 1996, 143(5): 1498~1504
    [49] Wang J T, Wasmus S, Savinell R F, Real–time mass spectrometric study of the methanol crossover in a direct methanol fuel cell, J. Electrochem. Soc., 1996, 143(4): 1233~1239
    [50] Penner R M, Martin C R, Ion–transporting composite membranes I. Nafion–impregnated Gore–Tex, J. Electrochem Soc., 1985, 132: 514~515
    [51] Liu C, Martin C R, Ion transport mechanism in Nafion–impregnated Gore–Tex membranes, J. Electrochem. Soc., 1990, 137: 510~515.
    [52] Verbrugge M W, Hill R F, Schneider E W, Composite membranes for fuel–cell applications, AICHE Journal, 1992, 38(1): 93~100
    [53]刘富强,邢丹敏,于景荣等,质子交换膜燃料电池Nafion/PTFE复合膜的研究,电化学, 2002, 8(1): 86~92
    [54] Tang H L, Pan M, Jiang S P, et al., Highly durable proton exchange membranes for low temperature fuel cells, Electrochimica Acta, 2007, 52: 3895~3900
    [55] Denton J, Gascoyne J M, Hards G A, et al., Composite membranes, European Patent, EP0875524 A2, 1998~11~04
    [56] Li Q F, He R H, Jensen J O, et al., Approaches and recent developments of polymer electrolyte membranes for fuel cells operating above 100℃, Chem. Mater., 2003, 15: 4896~4915
    [57] Mitsushima S, Kudo K, Sakamoto R, Polymer electrolyte using ionic liquid for high temperature operation PEMFCs, 14th World Hydrogen Energy Conference, Canada, 2002
    [58] Tazi B, Savadogo O, Preparation and characterization of a new membane based on Nafion, silicotungstic acid and thiophene, 3rd Int. Symp. On New Materials for Electrochemical Systems, Montreal, Canada, July 1999, p.259
    [59] Tazi B, Savadogo O, Parameters of PEM fuel–cells based on new membranes fabricated from Nafion?, silicotungstic acid and thiophene, Electrochimica Acta, 2000, 45: 4329~4339
    [60] Costamagna P, Yang C, Bocarsly A B, et al., Nafion?115/zirconium phosphate composite membranes for operation of PEMFCs above 100℃, Electrochimica Acta, 2002, 47: 1023~1033
    [61] Yang C, Costamagna P, Srinivasan S, et al., Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells, J. Power Sources, 2001, 103: 1~9
    [62] Bonnet B, Jones D J, Rozière J, et al., Hybrid organic–inorganic membranes for a medium temperature fuel cell, J. New Mat. Electrochem. Systems, 2000, 3: 87~92
    [63] Yang C, Srinivasan S, Bocarsly A B, et al., A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes, J. Membr. Sci., 2004, 237: 145~161
    [64] Mikhailenko S D, Kaliaguine S, Moffat J B, Electrical impedance studies of the ammonium salt of 12–tungstophosphoric acid in the presence of liquid water, Solid State Ionics, 1997, 99(3~4): 281~286
    [65] Kim Y T, Kim K, Song M, et al., Nafion/ZrSPP composite membrane for high temperature operation of proton exchange membrane fuel cells, Current Applied Physics, 2006, 6: 612~615
    [66] Park Y I, Kim J D, Nagai M, Increase of proton conductivity in amorphous phosphate~Nafion membranes, Journal of Materials Science Letters, 2000, 19: 1621~1623
    [67] Kevork T A, Raymond D, Lakshmi K, et al., Function and characterization of metal oxide~Nafion composite membranes for elevated–temperature H2/O2 PEM fuel cell, Chem. Mater., 2006, 18: 2238~2248
    [68] Shao Z G, Xu H F, Li M Q, et al., Hybrid Nafion–inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell, Solid State Ionics, 2006, 177: 779~785
    [69] Gosalawit R, Chirachanchai S, Manuspiya H, et al., Krytox–Silica–Nafion? composite membrane: A hybrid system for maintaining proton conductivity in a wide range of operating temperatures, Catalysis Today, 2006, 118: 259~265
    [70] Hinokuma K, Ata M, Proton conduction in polyhydroxy hydrogensulfonated fullerenes, J. Electrochem. Soc., 2003, 150: A112~A116
    [71] Hinokuma K, Ata M, Fullerenes proton conductors, Chem. Phys. Lett., 2001, 341: 442~449
    [72] Tasaki K, Desousa R, Wang H B, et al., Fullerenes composite proton conducting membranes for polyner electrolyte fuel cells operating under low humidity conductions, J. Membr. Sci., 2006, 281: 570~580
    [73] Florjanczyk Z, Wielgus B E, Poltarzewski Z, Radiation–modified nafion membranes for methanol fuel cells, Solid State Ionics, 2001, 145: 119~126
    [74] Savinell R, Yeager E, Tryk D, et al., A polymer electrolyte for operation at temperatures up to 200–degrees–C, J. Electrochem. Soc., 1994, 141 (4): L46~L48
    [75] Wasmus S, Valeriu A, Mateescu G D, et al., Characterization of H3PO4–equilibrated Nafion117 membranes using 1H And 31P NMR spectroscopy, Solid State Ionics, 1995, 80: 87~92
    [76] Li Q F, Hjuler H A, Bjerrum N J, Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolytes, Electrochimica Acta, 2000, 45: 4219~4226
    [77] Malhotra S, Datta R, Membrane–supported nonvolatile acidic electrolytes allow higher temperature operation of proton~exchange membrane fuel cells, J. Electrochem. Soc., 1997, 144(2): L23~L26
    [78] Kreuer K D, Fuchs A, Ise M, et al., Imidazole and pyrazole–based proton conducting polymers and liquids, J. Mater. Electrochim. Acta, 1998, 143: 1281~1288
    [79] Sun J, Jordan L R, Forsyth M, et al., Acid–organic base swollen polymer membranes, Electrochimica Acta, 2001, 46: 1703~1708
    [80] Florjańczyk Z, Wielgus B E, Poltarzewski Z, Radiation–modified Nafion membranes for methanol fuel cells, Solid State Ionics, 2001, 145: 119~126
    [81] Lin H L, Yu T L, Han F H, A Method for Improving Ionic Conductivity of Nafion Membranesand its Application to PEMFC, Journal of Polymer Research, 2006, 13: 379~385
    [82] Yu T L, Lin H L, Han F H, et al., A novel perfluorocarbon ionomer membrane with high proton conductivity and preparation thereof, US Patent, US2007/0093561 A1, submitted, 2005
    [83] Yang L X, Allen R G, Scott K, et al., A comparative study of Pt Ru and PtRuSu thermally formed on titanium mesh for methanol electro–oxidation, J. Power Sources, 2004, 137: 257~263
    [84] Koji Matsuoka, Yasutoshi Iriyama, et al., Alkaline direct alcohol fuel cells using an anion exchange membrane. J. Power Sources, 2005, 150: 27~31
    [85] Peled E, Livshits V, Duvdevani T, High–power direct ethylene glycol fuel cell (DEGFC) based on nanoporous proton–conducting membrane (NP–PCM), J. Power Sources, 2002, 106: 245~248
    [86] John C, Keith S, The degree and effect of methanol crossover in the direct methanol fuel cell, J. Power Sources, 1998, 70: 40~47
    [87] Hogarth M, Christensen P, Hamnett A, et al., The design and construction of high–performance direct methanol fuel cells. 2. Vapour–feed systems, J. Power Sources, 1997, 69: 125~136
    [88] Liu F Q, Lu G Q, Wang C Y, Low crossover of methanol and water through thin membranes in direct methanol fuel cells, J. Electrochem. Soc., 2006, 153: A543~A553
    [89] Salinas C, Simpson S F, Murphy O J, et al., Membrane and electrode structure for methanol fuel cell, US Patent, US5958616, 1999~09~28
    [90] Shul Y G, Chu Y H, Lee C H , et al., Effect of crossover rate on direct alcohol fuel cell, 2000 Fuel Cell Seminar Abstracts, Portland Oregon, 2000~10~30
    [91] Sundmacher K, Nowitzki O, Hiffmann U, Oxygen reduction on gas–diffusion electrodes with non–noble metal catalysts, Chem. Ing. Tech., 1997, 69: 1143~1146
    [92] Kuver A, Vielstich W, Investigation of methanol crossover and single electrode performance during PEMDMFC operation: A study using a solid polymer electrolyte membrane fuel cell system, J. Power Sources, 1998, 74: 211~218
    [93] Ren X, Wilson M S, Gottesfeld S, High performance direct methanol polmer electrolyte fuel cells, J. Electrochem. Soc., 1996, 143: 12~15
    [94] Hobson L J, Ozu H, Yanmaguchi M, et al., Modification Nafion 117 as an improved polymer electrolyte membrane for direct methanol fuel cells, J. Electrochem. Soc., 2001, 148(10): A1185~A1190
    [95] Choi W C, Kim J D, Woo S I, Modification of proton conducting membrane for reducing methanol crossover in a direct–methanol fuel cell, J. Power sources, 2001, 96(2): 411~414
    [96] Finsterwalder F, Hambitzer C, Proton conductive thin films prepared by plasma polymerization, J. Membr. Sci., 2001, 185: 105~124
    [97] Yoon S R, Hwang G H, Cho W I, et al., Modification of polymer electrolyte membranes for DMFCs using Pd films formed by sputtering, J. Power Sources, 2002, 106: 215~223
    [98] Ma Z Q, Cheng P, Zhao T S, A palladium–alloy deposited Nafion membrane for direct methanol fuel cells, J. Membr. Sci., 2003, 215: 327~336
    [99] Liu Z L, Guo B, Huang J C, et al., Nano–TiO2–coated polymer electrolyte membranes for direct methanol fuel cells, J. Power Sources, 2006, 157: 207~211
    [100] Uchida H, Mizuno Y, Watanabe M, Suppression of methanol crossover and distribution of ohmic resistance in Pt–dispersed PEMS under DMFC operation, J. Electrochem. Soc., 2002, 149: A1682~A1687
    [101] Kim Y M, Park K W, Choi J H, et al., A Pd–impregnated nanocomposite Nafion membrane for use in high–concentration methanol fuel in DMFC, Electrochem. Comm., 2003, 5: 571~574
    [102] Langsdorf B L, Easton E B, Sultan J, et al., Nafion/Polypyrrole composite polymer electrolytes for use in direct methanol fuel cells, 201st Meeting of The Electrochemical Society, Philadelphia, 2002
    [103] Park H S, Kim Y J, Hong W H, et al., Influence of Morphology on the Transport Properties of Perfluorosulfonate Ionomers/Polypyrrole Composite Membrane, Macromolecules, 2005, 38: 2289~2295
    [104] Zhu J, Rita R. S, Arnd G, et al., Optimisation of polypyrrole/Nafion composite membranes for direct methanol fuel cells, Electrochimica Acta, 2006, 51: 4052~4060
    [105] Yang B, Manthiram A, Multilayered membranes with suppressed fuel crossover for direct methanol fuel cells, Electrochem. Comm., 2004, 6(3): 231~236
    [106] Ren S Z, Li C N, Zhao X S, et al., Surface modification of sulfonated poly(ether ether ketone) membranes using Nafion solution for direct methanol fuel cells, J. Membr. Sci., 2005, 247: 59~63
    [107] Pu C, Huang W H, Kevin L L, et al., A methanol impermeable proton conducting composite electrolyte system, J. Electrochem. Soc., 1995, 142(7): L119~L120
    [108] Banerjee S, Cropley C C, Kosek, J A, et al., Membrane and electrode assembly employing exclusion membrane for direct methanol fuel cell, US Patent, US5672438, 1997~09~30
    [109] Mauritz K A, Payne J T, Perfluorosulfonate ionomer/silicate hybrid membranes via base–catalyzed in situ sol–gel processes for tetraethylorthosilicate, J. Membr. Sci., 2000, 168: 39~51
    [110] Mauritz K A, Organic–inorganic hybrid materials: perfluorinated ionomers as sol–gel polymerization for inorganic alkoxides, Mater. Sci. Eng., 1998, C6: 121~133
    [111] Deng Q, Moore R B, Mauritz K A, Nafion/(SiO2, ORMOSIL, and Dimethylsiloxane) hybrids via in situ sol–gel reactions: characterization of fundamental properties, J. Appl. Polym. Sci., 1998, 68: 747~763
    [112] Baglioa V, Arico A S, Blasi Di, Naflon–TiO2 composite DMFC membranes: physico–chemical properties of the filler versus electrochemical perfomerc, Electrochimica Acta, 2005, 50: 1241~1246
    [113] Kim H, Chang H, Organic/inorganic hybrid membranes for direct methanol fuel cells, J. Membr. Sci., 2007, 288: 188~194
    [114] Tricoli V, Nannetti F, Zeolite–Nafion composites as ion conducting membrane materials, Electrochimical Acta, 2003, 48: 2625~2633
    [115] Miyake N, Wainrigh J S, Savinell R F, Evaluation of a sol–gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications, J. Electrochem Soc., 2001, 148: A905~A909
    [116] Li C N, Sun G Q, Ren S Z, et al., Casting Nafion–sulfonated organosilica nano–composite membranes used in direct methanol fuel cells, J. Membr. Sci., 2006, 272: 50~57
    [117] Kim Y, Jae S L, Rhee C H, et al., Montmorillonite functionalized with perfluorinated sulfonic acid for proton–conducting organic–inorganic composite membranes, J. Power Sources, 2006, 162: 180~185
    [118] Yu F L, Chuan Y Y, Chen C M M, et al., Preparation and properties of high performance nanocomposite proton exchange membrane for fuel cell, J. Power Sources, 2007, 165(2): 692~700
    [119] Wu H, Wang Y X, Wang S C, A methanol barrier polymer electrolyte membrane in direct methanol fuel cells, J. New Mater. Electrochem. Systems, 2002, 5 (4): 251~254
    [120]吴洪,王宇新,王世昌,聚偏氟乙烯–Nafion共混膜的制备及阻醇质子导电性能研究,高分子学报, 2002, 4: 540~543
    [121]吴洪,王宇新,王世昌,新型阻醇质子导电聚合物膜PVA–Nafion共混膜的制备及性能研究,高校化学工程学报, 2002, 16: 326~330
    [122]吴洪,王宇新,王世昌,直接甲醇燃料电池用阻醇质子导电膜聚乙烯醇–聚苯乙烯磺酸共混膜,功能高分子学报, 2002, 15: 6~10
    [123]李磊,张军,吴洪等,直接甲醇燃料电池新型聚合物膜的研究,电化学, 2002, v8(2): 177~181
    [124] Jung C L, Meng O, James M F, et al., Study of blend membranes consisting of NafionR and vinylidene fluoride–hexafluoropropylene copolymer, J. Appl. Polym. Sci., 1998, 70: 121~127
    [125] Hodgdon R B, Polyelectrolytes prepared from perfluoroalkylaryl macromolecules, J. Polym. Sci., 1968, 6: 171~191
    [126] Wei J Z, Stone C, Steck A E, Trifluorostyrene and substituted trifluorostyrene copolymeric compositions and ion–exchange membranes formed therefrom, U.S. Patent, US5,422,411, 1995~06~06
    [127] Beattie P D, Orfino F P, Basura V I, et al., Ionic conductivity of proton exchange membranes, J. Electroanal. Chem., 2001, 503: 45~56
    [128] Basura V I, Chuy C, Beattie P D, et al., Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonatedα,β–trifluorostyrene (BAM?) and sulfonated styrene–(ethylene–butylene)–styene triblock (DAIS~analytical) copolymers, J. Electroanal. Chem., 2001, 501: 77~88
    [129] Hübner G, Roduner E, EPR investigation of HO/radical initiated degradation reactions of sulfonated aromatics as model compounds for fuel cell proton conducting membranes, J. Mater. Chem., 1999, 9: 409~418
    [130] Laurent M, Jorg M, Plasma–polymerised electrolyte membrane for nuniaturised direct methanol fuel cell, Membrane atechnology, 1998, 115: 5~9
    [131] Chen Y L, Meng Y Z, Wang S J, et al., Sulfonated poly(fluorenyl ether ketone) membrane prepared via direct polymerization for PEM fuel cell application, J. Membr. Sci., 2006, 280: 433~441
    [132] Liu B J, Kim D S, Murphy J, et al., Fluorenyl–containing sulfonated poly(aryl ether ether ketone ketone)s for fuel cell applications, J. Membr. Sci., 2006, 280: 54~64
    [133]任素贞,孙公权,吴智谋等,磺化聚醚醚酮/聚偏氟乙烯共混膜的研究,电源技术, 2006, 30(3): 200~202
    [134] Chen N P, Liang H, Proton–conducting membrane composed of sulfonated polystyrene microspheres, poly(vinylpyrrolidone) and poly(vinylidene fluoride), Solid State Ionics, 2002, 146: 377~385
    [135] Poltarzewski Z, Wieczorek W, Przyluski J, et al., Novel proton conducting composite electrolyte for application in methanol fuel cell, Solid State lonics, l999, 119: 301~304
    [136] Robertson G P, Serguei D, Mikhailenko S D, et al., Casting solvent interactions with sulfonated poly(ether ether ketone) during proton exchange membrane fabrication, J. Membr. Sci., 2003, 219: 113~121
    [137] Silva V S, Ruffmann B, Vetter S, et al., Characterization and application of composite membranes in DMFC, Catalysis Today, 2005, 104: 205~212
    [138] Silva V S, Ruffmann B, Vetter S, et al., Mass transport of direct methanol fuel cell species insulfonated poly(ether ether ketone) membranes, Electrochimica Acta, 2006, 51: 3699~3706
    [139] Silva V S, Weisshaar S, Reissner R, et al., Performance and efficiency of a DMFC using non–fluorinated composite membranes operating at low/medium temperatures, J. Power Sources, 2005, 145: 485~494
    [140] Wu H L, Chen C M M, Liu F Y, et al., Preparation and characterization of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membranes, European Polymer Journal, 2006, 42: 1688~1695
    [141] Kaliaguine S, Mikhailenko S D, Wang K P, et al., Properties of SPEEK based PEMs for fuel cell application, Catalysis Today, 2003, 82: 213~222
    [142] Zaidi S M J, Mikhailenko S D, Robertson G, et al., Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, J. Membr. Sci., 2000, 173: 17~34
    [143] Wu H L, Chen C M M, Li C H, et al., Sulfonated poly(ether ether ketone)/poly(amide imide) polymer blends for proton conducting membrane, J. Membr. Sci., 2006, 280: 501~508
    [144] Nagarale R K, Gohil G S, Vinod K, Sulfonated poly(ether ether ketone)/polyaniline composite proton–exchange membrane, J. Membr. Sci., 2006, 280: 389~396
    [145] Krishnan P, Park J S, Yang T H, et al., Sulfonated poly(ether ether ketone)–based composite membrane for polymer electrolyte membrane fuel cells, J. Power Sources, 2006, 163(1): 2~8
    [146] Muthu Lakshmi R T S, Jochen M H, Schlenstedt K, et al., Sulphonated poly(ether ether ketone) copolymers: Synthesis,characterisation and membrane properties, J. Membr. Sci., 2005, 261: 27~35
    [147] Paturza L, Basile A, Iulianelli A, et al., High temperature proton exchange membrane fuel cells using a sulfonated membrane obtained via H2SO4 treatment of PEEK–WC, Catalyst Today, 2005, 104: 213~218
    [148] Basile A, Paturzo L, Iulianelli A, et al., Sulfonated PEEK–WC membranes for proton conducting membrane fuel cell: effect of the increasing level of sulfonation on electrochemical performances, J. Membr. Sci., 2006, 281: 377~385
    [149] Bauer B, Jones D J, Rozière J, et al., Electrochemical characterisation of sulfonated polyetherketone membranes, J. New Mat. Electrochem. Systems, 2000, 3: 93~98
    [150] Thomas S G, Jochen B, Georg F, et al., Method for producing a membrane used to operate fuel cells and electrolyzers, US Patent, US6355149, 2002~03~12
    [151] Kreuer K D, On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci., 2001, 185: 29~39
    [152]邓会宁,许莉,王宇新,磺化杂萘联苯聚醚酮膜的制备及其阻醇和质子导电性能,膜科学与技术, 2005, 25(4): 13~16
    [153] Kopitzke R W, Linkous C A, Anderson H R, Conductivity and water uptake of aromatic–based proton exchange membrane electrolytes, J. Electrochem. Soc., 2000, 147: 1677~1681
    [154] Blanco J F, Nguyen Q T, Schaetzel P, Sulfonation of polysulfones: suitability of the sulfonated materials for asymmetric membrane preparation, J. Appl. Polym. Sci., 2002, 84: 2461~2473
    [155]邓会宁,许莉,王宇新,磺化杂萘联苯聚醚砜膜的制备及其阻醇和质子导电性能,化学通报, 2005, 68: w035
    [156] Chen M H, Chiao T C, Tseng T W, Preparation of sulfonated polysulfone/polysulfone and aminated polysulfone/polysulfone blend membranes, J. Appl. Polym. Sci., 1996, 61: 1205~1209
    [157] Deimede V, Voyiatzis G A, Kallitsis J K, et al., Miscibility behavior of polybenzimidazole/sulfonated polysulfone blends for use in fuel cell applications, Macromolecules, 2000, 33: 7609~7617
    [158] Hasiotis C, Deimede V, Kontoyannis C K, New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole, Electrochimica Acta, 2001, 46: 2401~2406
    [159] Nolte R, Ledjeff K, Bauer M, Partially sulfonated poly(arylene ether sulfone)–a versatile proton conducting membrane material for modern energy conversion technologies, J. Membr. Sci., 1993, 83: 211~220
    [160] Kerres J, Cui W, Richie S, New sulfonated engineering polymers via the metalation route. 1. Sulfonated poly(ether sulfone) PSU Udel? via metalation–sulfination–oxidation, J. Polym. Sci., 1996, 34: 2421~2438
    [161] Lufrano F, Gatto I, Staiti P, Sulfonated polysulfone ionomer membranes for fuel cells, Solid State Ionics, 2001, 145: 47~51
    [162] Jones D J, Rozière J, Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications, J. Membr. Sci., 2001, 185: 41~58
    [163] Wainright J S, Wang J T, Weng D, Acid–doped polybenzimidazoles: a new polymer electrolyte, J. Electrochem. Soc., 1995, 142(7): L121~L123
    [164] Yin Y, Fang J H, Cui Y F, et al., Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3–(2’,4’~diamiphenoxy) propane sulfonic acid, polymer, 2003, 44: 4509~4518
    [165] BaeJ M, Honma I, Murata M, et al., Properties of selected sulfonated polymers as proton–conducting electrolytes for polymer electrolyte fuel cells, Solid State Jonics, 2002, 147: 189~194
    [166] Wycisk R, Pintauro P N, Sulfonated polyphosphazene ion–exchange membranes, J. Membr. Sci, 1996, 119: 155~160
    [167] Allcock H R, Hofmann M A, Ambler C M, et al., Phenyl phosphonic acid functionalized poly(aryloxyphosphazenes) as proton–conducting membranes for direct methanol fuel cells, J. Membr. Sci., 2002, 201: 47~54
    [168] Honma I, Hirakawa S, Yamada K, et al., Synthesis of organic/inorganic nanocomposites protonic conducting membrane through sol–gel processes, Solid State lonics, 1999, 118(1~2): 29~36
    [169] Honma I, Nomura S, Nakajima H Protonic conducting organic/inorganic nanocomposites for polymer electrolyte membrane, J. Membr. Sci., 2001, 185(1): 83~94
    [170] Nakajima H, Honrna I, Proton–conducting hybrid solid electrolytes for intermediate temperature fuel cells, Solid State lonics, 2002, 148: 607~610
    [171]蔡雨泉,黄绵延,王宇新等, DMFC用磺化聚醚醚酮/聚苯胺共混型质子交换膜的研究,高分子材料科学与工程, 2007, 1: 246~249
    [172]于景荣,衣宝廉,邢丹敏等,燃料电池用磺化聚苯乙烯膜降解机理及其复合膜的初步研究,高等学校化学学报, 2002, 23(9): 1792~1796
    [173]蒋中林,燃料电池用质子交换膜PAMPS的制备与性能: [硕士学位论文],武汉;武汉理工大学, 2005
    [174] Kim J, Kim B, Jung B, Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene–block–poly (ethylene–ran–butylene)–block–polystyrene copolymers, J. Membr. Sci., 2002, 207(1): 129~137
    [175] Won J, Choi S W, Kang Y S, et al., Structural characterization and surface modification of sulfonated polystyrene–(ethylene–butylene)–styrene triblock proton exchange membranes, J. Membr. Sci., 2003, 214(2): 245~257
    [176] Mokrini A, Acosta J L, Studies of sulfonated block copolymer and its blends, Polymer, 2001, 42(1): 9~15
    [177]杨洪迁,钱晓良,索进平,燃料电池用质子交换膜,化学通报, 2003, 6: w034
    [178]庄铭军,何国荣,王晓琳,新型质子交换膜材料及其改性方法研究进展,膜科学与技术, 2004, 24(6): 44~50
    [179] Glipa X, Haddad M E, Jones D J, Synthesis and characterization of sulfonated polybenzimidazole: a highly conducting proton exchange polymer, Solid State Ionics, 1997, 97: 323~331
    [180] Bhuvanesh G, Felix N B, Günther G. S, Development of radiation~grafted FEP–g–polystyrene membranes: some property–structure correlations, Polym. Adv. Technol., 1994, 5(9): 493~498
    [181] Brack H P, Wyler M, Peter G, A contact angle investigation of the surface properties of selected proton~conducting radiation–grafted membranes, J. Membr. Sci., 2003, 214: 1~19
    [182] Xiao G, Sun G, Yan D, Polyelectrolytes for fuel cells made of sulfonated poly(phthalazinone ether ketone)s, Macromol. Rapid, Commun, 2002, 23: 488~492
    [183] Gao Y, Robertson G P, Guiver M D, Direct copolymerization of sulfonated Poly(phthalazinone arylene ether)s for proton–exchange–membrane materials, J. Polym. Sci. Part A: Polym. Chem., 2003, 41: 2731~2742
    [184]何九龄,高等有机化学,北京:化学工业出版社, 1987
    [185] Satomi Y, Yuko T, Masahro R, Synthesis and Evaluation of Polyphenylene Derivatives with Various Acid Groups, 204th Meeting, 2003, Abs. 188
    [186] Lafitte B, Karlsson L E, Jannasch P, Sulfopbenylation of Polysulfones for Proton–Conducting Fuel Cell Membranes, Macromol. Rapid. Commun., 2002, 23: 896~900
    [187] Puppe D, Frey H, Kreuer K D, et al., Carboxylated and sulfonated poly(arylene–co–arylene sulone)s: Thermostable polyelectrolytes for fuel cell applications, Macromolecules, 2002, 35: 7936~7941
    [188] Genova D P, Baraclie B, Foscallo D, et al., Ionomeric membranes for proton exchange membrane fuel cell (PEMFC): sulfonated polysulfone associated with phosphatoantimonic acid, J. Membr. Sci., 2001, 185: 59~71
    [189] Wang F, Hickner M, Kim Y S, Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes, J. Membr. Sci., 2002, 197: 231~242
    [190] Hickner M, Wang F, Kim Y S, High temperature proton exchange membrane nanocomposites for fuel cells, 2002 Annual Hydrogen Program Review Meeting, May 9, 2002
    [191] Wang F, Hickner F, Qing J, et al., Synthesis of highly sulfonated poly(arylene ether sulfone) random (statistical) copolymers via direct polymerization, Macromolecular IUPAC symposium, 2001, 175: 387~395
    [192] Harrison W, Wang F, Mecham J B, et al., Influence of Bisphenol Structure on the Direct Synthesis of Sulfonated Poly(arylene ether copolymers), J. Polym. Sci. Part A: Folym. Chem., 2003, 41: 2264~2276
    [193]李磊,直接甲醇燃料电池聚合物电解质的研究: [博士学位论文],天津;天津大学, 2003
    [194] Zhao C, Li X, Na H, Synthesis of sulfonated poly(ether ether ketone) (S–PEEKs) material for proton exchange membrane, J. Membr. Sci., 2006, 280: 643~650
    [195]刘晨光,钟双玲,赵成吉等,不同侧基对磺化聚醚醚酮质子交换膜的影响,吉林大学学报(理学版), 2006, 44(1): 101~104
    [196] Su Y H, Liu Y L, Sun Y M, et al., Using silica nanoparticles for modifying sulfonated poly(pathalazinone ether ketone) membrane for direct methanol fuel cell: a significant improvement on cell performance, J. power sources, 2006, 155: 111~117
    [197]邓会宁,含有杂萘联苯的聚芳醚电解质膜研究: [博士学位论文],天津;天津大学, 2004
    [198]王国庆,朱秀玲,张守海等,一种杂环磺化聚芳醚腈酮质子交换膜材料的合成及表征,高分子学报, 2006, (2): 209~212
    [199] Powers E D, Serad G A, High Performance Polymers: Their Origin and Development, (Seymour R B, Kirshenbaum G S, eds.), Elsevier, New York, 1986, p. 355
    [200] Mika T, Ritva S, Veli E, ASAXS Study of styrene–grafted sulfonated poly(vinylidene fluoride) membranes, J. Polym. Sci. B: Polym. Phys., 2000, 38: 1734~1748
    [201] Rikukawa M, Sanui K, Proton–conducting polymer electrolyte membranes based on hydrocarbon polymers, Prog. Polym. Sci., 2000, 25: 1463~1502
    [202] Kawahara M, Rikukawa M, Sanui K, Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) films, Solid State Ionics, 2000, 136&137: 1193~1196
    [203] Woo Y T, Oh S H, Kang Y S, et al., Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell, J.Membr. Sci., 2003, 220: 31~45
    [204] Faure S, Cornet N, Gebel G, Sulfonated polyimides as novel proton exchange membranes for H2/O2 fuel cell, Proceeding of the Second International Symposium on New Materials for Fuel Cell and Modern Battery Systems (Savadogo O, Roberg P R, eds.), Montreal, Canada, July 6–10, 1997, p. 818
    [205] Gebel G, Aldebert P, Pineri M, Swelling study of perfluorosulphonated ionomer membranes, Polymer, 1993, 34: 333~339
    [206] Asnao N, Aoki M, Suziki S, et al., Aliphatic/aromatic polyimide ionomers as a proton conductive membranes for fuel cell application, J. Am. Chem. Soc., 2006, 128: 1762~1769
    [207] Steck A E, Stone C, Development of BAM membrane for fuel cell applications, Proceedings of the Second International Symposium on New Materials for Fuel Cell and Modern Battery Systems, (Savadogo O, Roberg P R, eds.), Montreal, Canada, July 6–10, 1997, p.792
    [208] Miyatake K, shouji E, Yamamoto K, et al., Synthesis and Proton Conductivity of Highly Sulfonated Poly(thiophenylene), Macomolecules, 1997, 30: 2941~2946
    [209]吴叔青,张所波,磺化聚苯质子传输膜的制备及性能研究,全国高分子年会,北京, 2005年10月
    [210] Tricoli V, Carretta N, Polymer electrolyte membranes formed of sulfonated polyethylene, Electrochem. Comm., 2002, 4: 272~276
    [211] Choi Y J, Kang M S, Moon S H, A new preparation method for cation–exchange membrane using monomer sorption into reinforcing materials, Desalinaiion, 2002, 146: 287~291
    [212] Zhou X, Weston J , Chalkova E , et al., High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells, Electrochimica Acta, 2003, 48: 2173~2180
    [213] Guo Q H, Pintauro P N, Tang H, et al., Sulfonated and crosslinked polyphosphazene–bases proton–exchange membranes, J. Membr. Sci., 1999, 154: 175~181
    [214] Tetsuya Y, Kazuhiro K, Masaharu A, Preparation of proton exchange membranes based on crosslinked polytetrafluoroethylene for fuel cell applications, Polymer, 2004, 45: 6569~6573
    [215] Gautier L I, Denoyelle A, Sanchez J Y, et al., Organic–inorganic piotonic polymer electiolytes as nmbrane for low temperature fuel cell, Electrochimica Acta, 1992, 37(9): 1615~1618
    [216] Laurent D, Jurgen K, Michael P, Inorganic–organic proton conductors based on alkylsulfone functionalities and their patterning by photoinduced methods, Electiochimica Acta, 1998, 43(10~11): 1301~1306
    [217] Evans P J, Slade R C T, Varcoe J R, et al., Realisation of siloxane ionomers by mild oxidation of alkylmercaptosiloxanes, J. Mater. Chem., 1999, 9: 3015~3021
    [218]毛宗强,燃料电池,北京:化学工业出版社, 2005
    [219]刘启志,蒲鸿丁,燃料电池用改性PBI膜研究进展,高分子材料科学与工程, 2005, 212: 29~33
    [220] Fontanella J J, Wintersgill M C, Wainright J S, High pressure electrical conductivity studies of acid doped polybenzimidazole, Electrochimica Acta, 1998, 43: 1289~1294
    [221] Li Q F, He R H, Berg R W, et al., Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells, Solid State Ionics, 2004, 168: 177~185
    [222] He R H, Li Q F, Xiao G, et al., Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, J. Membr. Sci., 2003, 226: 169~184
    [223] David M, Hans G, Oscar M, Porous polybenzimidazole membranes doped with phosphoric acid: highly proton–conducting solid electrolytes, Chem. Mater., 2004, 16: 604~607
    [224] Bouchet R, Siebert E, Proton conduction in acid doped polybenzimidazole, Solid State Ionics, 1999, 118: 287~299
    [225] Li Q F, Hjuler H A, Hasiotis C, et al., A quasI–direct methanol fuel cell system based on blend polymer membrane electrolytes, Electrochemical and solid–state letters, 2002, 5: A125~A134
    [226] Nakamura O, Kodama T, Ogino I, et al., High–conductivity solid proton conductors: dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals, Chem. Lett., 1979, 85: 17~18
    [227] Kreuer K D, Hampele M, Dolde K, et al., Proton transport in some heteropolyacidhydrates: A single crystal PFG–NMR and conductivity study, Solid State Ionics, 1988, 28&30: 589~593
    [228] Alberti G, Casciola M, Solid state protonic conductors, present main applications and future prospects, Solid State Ionics, 2001, 145: 3~16
    [229] Staiti P, Minutoti M, Influence of composition and acid treatment on proton conduction of composite polybenzimidazole membranes J. Power Sources, 2001, 94: 9~13
    [230] Kim J D, Homma I, Proton conducting polydimethylsiloxane/zirconium oxide hybrid membranes added with phosphotungstic acid, Etetrochimica Acta, 2003, 48: 3633~3638
    [231]李磊,许莉,王宇新,磷钨酸/磺化聚醚醚酮质子导电复合膜,高等学校化学学报, 2004, 2: 388~390
    [232] Ponce M L, Prado L, Ruffmann B, et al., Reduction of methanol permeability in polyetherketone–heteropolyacid membranes, J. Membr. Sci., 2003, 217: 5~15
    [233] Zaidi S M J, Ahmad M I, Novel SPEEK/heteropolyacids loaded MCM–41 composite membranes for fuel cell applications, 2006, J. Membr. Sci., 279: 548~557
    [234]黄绵延, DMFC改性磺化聚芳醚酮质子交换膜的研究: [博士学位论文],天津;天津大学, 2007
    [235] Zhang G W, Zhou Z T, Organic/inorganic composite membranes for applicationin in DMFC, J. Membr. Sci., 2005, 261: 107~113
    [236] Rhee C H, Kim H K, Chang H, et al., Nafion/sulfonated montmorillonite composite: a new concept electrolyte membrane for direct methanol fuel Cells, Chem. Mater., 2005, 17: 1691~1697
    [237] Krishnan P, Park J S, Kim C S, Preparation of proton–conducting sulfonated poly(ether ether ketone)/boron hosphate composite membranes by an in situ sol–gel process, J. Membr. Sci., 2006, 279: 220~229
    [238] Nunes S P, Ruffmann B, Rikowski E, et al., Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells, J. Membr. Sci., 2002, 203: 215~225
    [239] Kim D S, Park H B, Rhim J W, et al., Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications, J. Membr. Sci., 2004, 240: 37~48
    [240] Hirata K, Matsuda A, Hirata T, et al., Preparation and Characterization of Highly Proton–Conductive Composites Composed of Phosphoric Acid–Doped Silica Gel and Styrene–Ethylene–Butylene–Styrene Elastomer Journal of Sol–Gel Science and Technology, 2000, 17(1): 61~69
    [241]李俊刚,李源勋,高分子材料,北京:化学工业出版社, 2002
    [242]杨玉良,胡汉杰,高分子物理,北京:化学工业出版社, 2001
    [243] Cui W, Kerres J, Eigenberger G, Development and characterization of ion–exchange polymer blend membranes, Separation and Purification Technology, 1988, 14: 145~154
    [244]代化,许晶,管蓉,磺化芳香聚合物复合质子交换膜,现代塑料加工应用, 2006, 18(5): 57~60
    [245] Manea C, Mulder M, Characterization of polymer blends of polyethersulfone/sulfonated polysulfone and polyethersulfone/sulfonated polyetheretherketone for direct methanol fuel cell applicatlons, J. Membr. Sci., 2002, 206(12): 443~453
    [246] Kerres J, Ullrich A, Meier F, et al., Synthesis and characterization of novel acid–base polymer blends for application in membrane fuel cells, Solid State Ionics, 1999, 125(1–4): 243~249
    [247] Kerres J, Development of ionomer membrane for fuel cells, J. Membr. Sci., 2001, 185(1): 3~27
    [248] Walker M, Proton conducting polymers with reduced methanol permeation, J. Appl. Polym. Sci., 1999, 74(1): 67~73
    [249] Mikhailcnko S D, Zaicli S M J, Kaliaguine S, Electrical properties of sulfonated polyether ether ketone/polyetherimide blend membranes doped with inorganic acids, J. Polym. Sci. Polym. Phys., 2000, 38(10): I385~I395
    [250] Swier S, Shaw M T, Weiss R, et al., Morphology control of sulfonated poly(ether ketone ketone) poly(ether imide) blends and their use in proton–exchange membranes, J. Membr. Sci., 2006, 270(1–2): 22~31
    [251]蔡雨泉,直接甲醇燃料电池用质子交换膜的研究: [硕士学位论文],天津;天津大学, 2006
    [252] Kim B, Jung K, Partially sulfonated polystyrene and poly (2,6–dimethyl–1,4–phenylene oxide) blend membranes for fuel cells, Macromol. Rapid. Commun., 2001, 25(13): I263~I267
    [253] Jung K, Kim B, Yang J M, Transport of methanol and protons through partially sulfonated polymer blend membranes for direct methanol duel cell, J. Membr. Sci., 2004, 245(1–2): 61~69
    [254] Gasa J, Boob S B, Weiss R A, Proton–exchange membranes composed of slightly sulfonated poly( ether ketone ketone) and highly sulfonated crasslinked polystyrene particles, J. Membr. Sci., 2006, 269(1–2): 177~186
    [255] Swier S, Ramani V, Fenton I M, et al., Polymer blends based on sulfonated poly(ether ketone ketone) and poly(ether sulfone) as proton exchange membranes for fuel cells, J. Membr. Sci., 2005, 256(1–2): 122~133
    [256] Huang R Y M, Shao P H, Feng X, et al., Pervaporation separation of water/isopropanol mixture using sulfonated poly(ether ether ketone) (SPEEK) membranes: transport mechanism and separation performance, J. Membr. Sci., 2001, 192: 115~127
    [257] Gohil G S, Nagarale R K, Binsu V V, et al., Preparation and characterization of monovalent cation selective sulfonated poly(ether ether ketone) and poly(ether sulfone) composite membranes, Journal of Colloid and Interface Science, 2006, 298: 845~853
    [258]吴雪梅,贺高红,顾爽等,化学交联法在质子交换膜中的应用,高分子材料科学与工程, 2006, 22(4): 28~35
    [259] Alelio G D F, Production of synthetic polymeric compositions comprising sulphonated polymerizates of poly–vinyl aryl compounds and treatment of liquid media therewith, US Patent, US2366007, 1944~12~26
    [260] Qiao J L, Yoshimoto N, Ishikawa M, et al., Acetic acid–doped poly(ethylene oxide)–modified poly(methacrylate): a new proton conducting polymeric gel electrolyte, Electrochimica Acta, 2002, 47: 3441~3446
    [261] Qiao J L, Yoshimoto N, Ishikawa M, Proton conducting behavior of a novel polymeric gel membrane based on poly(ethylene oxide)–grafted–poly(methacrylate),J. Power Sources Sources, 2002, 105: 45~51
    [262] Przyluski J, Poltarzewski Z, Wieczorek W, Proton–conducting hydrogel membranes, Polymer, 1997, 39: 4343~4347
    [263] Yen S P S, Narayanan S R, Halpert G, et al., Polymer material for electrolytic membranes in fuel cells, US Patent, US5795496, 1998~08~18
    [264] Mao S S, Hamrock S J, Ylitalo D A, Crosslinked ion conductive membranes, US Patent, US6, 090,895, 2000~07~18
    [265] Kaur S, Florio G, Michalak D, Cross–linking of sulfonated styrene–ethylene/butylene–styrene triblock polymer via sulfonamide linkages, Polymer, 2002, 43: 5163~5167
    [266] Mikhailenko S D, Wang K P, Kaliaguine S, et al., Proton conducting membranes based on cross–linked sulfonated poly(ether ether ketone) (SPEEK), J. Membr. Sci., 2004, 233: 93~99
    [267] Schnurnberger W, Kerres J, Cui W, Cross–linking of modified engineering thermoplastics, US Patent, US6221923, 2001~04~24
    [268] Kerres J, Zhang W, Cui W, New Sulfonated Engineering Polymers via the Metalation Route. II Sulfinated/Sulfonated Poly(ether sulfone) PSU Udel and Its Crosslinking, J. Polym. Sci: Part A: Polym. Chem., 1998, 36: 1441~1448
    [269] Kerres J, Cui W, Junginger M, Development and characterization of crosslinked ionomer membranes based upon sulfinated and sulfonated PSU. 1. Crosslinked PSU blend membranes by alkylation of sulfinate groups with dihalogenoalkanes, J. Membr. Sci., 1998, 139: 227~241
    [270] Metayer M, M'Bareck C O, Semi–interpenetrating networks (sIPN) Preparation of ion–exchange membranes, using a gaseous crosslinking reagent, Reactive & Functional Polymers, 1997, 33: 311~321
    [271] Kang M, Choi Y, Moon S, Water–swollen cation–exchange membranes prepared using poly(vinyl alcohol) (PVA)/poly(styrene sulfonic acid–co–maleic acid) (PSSA–MA), J. Membr. Sci., 2002, 207: 157~170
    [272] Gasa J, Weiss R A, Shaw M T, Electric–field–structured Proton Exchange Membranes, Prepr. Pap.–Am. Chem. Soc. Div. Fuel Chem., 2004, 49(2): 592~593
    [273] Gasa J, Shaw M T, Fabrication and charcteration of structed membranes for proton transport, Annual Technical Conference–Society of Plastics Engineers 62nd, 2004, 2307~2310
    [274] Umeda M, Uchida I, Electric–Field Oriented Polymer Blend Film for Proton Conduction, Langmuir, 2006, 22: 4476~4479
    [275] Boob S B, Shaw M T, Effect of Electric Field on Alignment Behavior and Conductivity of Composite Membranes, Annual Technical Conference–Society of Plastics Engineers 62nd, 2004, 68~72
    [276] Oren Y, Freger V, Linder C, Highly conductive ordered heterogeneous ion–exchange membranes, J. Membr. Sci., 2004, 239: 17~26
    [277] Adachi K, Tanaka M, Shikata T, et al., Deformation of a Viscoelastic Droplet in an Electric Field.1. Aqueous Cetyltrimethylammonium Bromide–Sodium Salicylate Solution in Poly( dimethylsiloxane), Langmuir, 1991, 7: 1281~1286
    [278] Nishiwaki T, Adachi K, Kotaka T, Deformation of viscous droplets in an electric field: poly(propylene oxide)/poly(dimethylsiloxane) systems, Langmuir, 1988, 4: 170~175
    [279] Moriya S, Adachi K, Kotaka T, Deformation of droplets suspended in viscous media in an electric field (2), Burst behavior Langmuir, 1986, 2: 161~165
    [280] Amundson K, Helfand E, Quan X, et al., Effect of an electric field on block copolymer microstructure, Macromolecules, 1991, 24: 6546~6548
    [281] Oren Y, Freger V, Linder C, Highly conductive ordered heterogeneous ion–exchange membranes, J. Membr. Sci., 2004, 239: 17~26
    [282] Karthikeyan C S, Schossig M, Radovanovic E, et al., Aligned Nafion? Nanocomposites: Preparation and Morphological Characterization, Macromol. Mater. Eng., 2003, 288: 175~180
    [283] Ryan K M, Mastroianni A, Stancil K A, et al., Electric–Field–Assisted Assembly of Perpendicularly Oriented Nanorod Superlattices, Nano Letters, 2006, 6(7): 1479~1482
    [284]王常珍,固体电解质和化学传感器,北京:冶金工业出版社, 2000
    [285]史美伦,固体电解质,重庆:科学技术文献出版社重庆分社, 1982
    [286] Gardner C L, Anantaraman A V, Studies on ion–exchange membranes.Ⅱ. measurement of the ansisotropic conductance of Nafion, J. Electroanal. Chem., 1998, 449: 209~214
    [287]中华人民共和国国家技术监督局, GB1040–79,中华人民共和国国家标准,北京:中国标准出版社, 1979~05~01
    [288] http://www.degussa–hpp.com.cn/cn/product/index–12.asp, DEGUSSA公司VESTAKEEP?产品系列产品说明书, 2007
    [289] Hickner M A, Pivovar B S, The chemical and structure nature of proton exchange membrane fuel cell propertyes, Fuel Cells, 2005, 2: 213~229
    [290] Jin X, Bishop M T, Ellis T S, et al., A sulphonated poly(aryl ether ketone), Br. Polym. J., 1985, 17: 4~10
    [291] Dai H, Guan R, Li C H, Development and characterization of sulfonated poly(ether sulfone) for proton exchange membrane materials, Solid State Ionics, 2007, 178: 339~345
    [292] Guan R, Zou H, Lu D P, et al., Polyethersulfone sulfonated by chlorosulfonic acid and its membrane characteristics, European Polymer Journal, 2005, 41: 1554~1560
    [293] Kim D W, Jang M K, Kim W J, et al., Study on the electrochemical characteristics of quasi–solid–state electric double layer capacitors assembled with sulfonated poly(ether ether ketone), J. Power Sources, 2006, 163: 300~303
    [294] Xiao G Y, Sun G M, Yan DY, et al., Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization, Polymer, 2002, 43: 5335~5339
    [295] Bishop M T, Karasz F E, Russo P S, et al., Solubility and properties of a poly(aryl ether ketone) in strong acids, Macromolecules, 1985, 18: 86~93
    [296]张克惠,张广成,焦剑,塑料材料学,西安:西北工业大学出版社, 2000
    [297] Day M, Cooney J D, Wiles D M, Degradation of poly(aryl–ether–ether–ketone) PEEK as monitored by pyrolysis–GC/MS, TG/MS, J Anal. Appl. Pyrol., 1990, 18: 163~168
    [298]黄绵延,王宇新,蔡雨泉等,磺化聚醚醚酮/三羧基丁烷膦酸锆复合质子交换膜的研究,高分子学报, 2007, 4: 337~342
    [299]黄绵延,陈华艳,郭建钊等, DMFC用PES/SPEEK共混阻醇质子交换膜,物理化学学报, 2007, 23(1): 44~49
    [300]何曼君,陈维孝,董西侠,高分子物理,上海:上海复旦大学出版社, 1998
    [301] Zawodzinski T A, Springer T E, Davey J, et al., A comparative study of water uptake by and transport through ionomeric fuel cell membranes, J. Electrochem. Soc., 1993, 140: 1981~1985
    [302] Kauranen P S, Skou E, Methanol permeability in perfluorosulfonate proton exchange membranes at elevated temperatures, J. Appl. Electrochem., 1996, 26: 909~915
    [303] Tricoli V, Carretta N, Bartolozzi M, A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes, J. Electrochem. Soc., 2000, 147: 1286~1290
    [304]柯以侃,董惠茹,分析化学手册3–光谱分析,第三版,北京:化学工业出版社, 1998
    [305] Shao P L, Mauritz K A, Moore R B, Perfluorosulfonate ionomer/[SiO2–TiO2] nanocomposite via polymer in situ sol–gel chemistry sequential alcoxide procedure, J. Polym. Sci. Phys., 1996, 34: 873~882
    [306] Merkel T C, Freeman B D, Spontak R J, Transport and Structural Evidence for Enhanced Free Volume in Poly(4–methyl–2–pentyne)/Fumed Silica Nanocomposite Membranes, Chem. Mater., 2003, 15: 105~123
    [307] Martinelli A, Matic A, Jacobsson P, et al., Structural analysis of PVA–based proton conducting membranes, Solid State Ionics, 2006, 177: 2431~2435
    [308] Croce F, Persi L, Scrosati B, Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes, Electrochimi. Acta, 2001, 46: 2457~2461
    [309] Sambandam, S, Ramani V, SPEEK/functionalized silica composite membranes for polymer electrolyte fuel cells, J. Power Sources, 2007, 170: 259~267
    [310] Kim, Y S, Wang F, Hickner M, et al., Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications, J. Membr. Sci., 2003, 212: 263~282
    [311]刘克静,张海春,陈天禄,一步法合成带有酞侧基的聚芳醚砜,中国专利, CN 85101721, 1986~09~24
    [312]兰可,陈启元,胡慧萍,磺化酚酞型聚醚砜/蒙脱土质子导电复合膜的表征与性能,功能材料, 2006, 37(8): 1259~1262
    [313]李继新,酚酞基聚醚砜热化学性质表征,化学工业与工程, 2002, 19: 271~273
    [314]李继新,酚酞基聚醚砜热化学行为及其改性,大连轻工业学院学报, 2001, 4: 251~253
    [315] Rice C, Ha S, Mase R I, et al., Catalysts for direct formic acid fuel cells, J. Power Sources, 2003, 115: 229~235
    [316]吴培熙,张留城,聚合物共混改性,第一版,北京:中国轻工业出版社, 1996, 29~31
    [317] Zhang L L, Tang Y W, Bao J C, et al., A carbon–supported Pd–P catalyst as the anodic catalyst in a direct formic acid fuel cell, J. Power Sources, 2006, 62: 177~179
    [318]赵孝彬,杜磊,张小平等,聚合物共混物的相容性及相分离,高分子通报, 2001, 4: 75~81
    [319] Prasse t, Schwarz M K, Schulte K, et al., The interaction of epoxy resin and an additional electrolyte with non–oxidized carbon black in colloidal dispersions, Colloids and Surfaces A: physicochemical and engineering Aspects, 2001, 189: 183~188
    [320] Boob S B, Field–structured proton exchange membranes for fuel cells: [Ph. D. Dissertation], Connecticut; University of Connecticut, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700