环境友好磺化聚砜质子交换膜的制备与改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源短缺和环境污染已成为制约人类经济发展和社会进步的两大全球性的难题。及早进行能源消费结构转型,实现能源的可持续发展,已得到国际社会的共识。燃料电池是一种新兴的绿色环保能源装置,在理论上只要不断的输入燃料和氧化剂,就能够源源不断的输出电流。质子交换膜燃料电池(PEMFC)具有高效节能、噪音低、寿命长等突出优点,因此成为全世界范围内研究的热点。质子交换膜(PEM)是PEMFC的核心部件,不但要分隔燃料与氧化剂以避免直接接触,而且还承担传导质子的功能。其性能将直接影响PEMFC的能量转化效率和使用寿命等。
     以Nafion膜为代表的商用PEM在使用过程中易造成环境污染,且废弃的Nafion膜难以处理,对环境具有潜在的危害;另外,Nafion膜还存在甲醇渗透系数高,高温质子传导率低等问题。为了使PEMFC真正成为绿色能源装置,同时提高和改善质子交换膜的综合性能,本文制备了一系列具有不同磺化度的环境友好磺化聚芳醚砜(SPAES)膜、双酚A型磺化聚砜(bi A-SPAES)膜、TiO2/SPAES和TiO2/bi A-SPAES复合膜以及PWA/bi A-SPAES复合膜,并对其结构进行了表征,对其性能进行了系统深入的研究,以期为Nafion膜寻找可替代的产品。
     通过亲核取代缩聚反应合成了一系列SPAES聚合物,通过粘度测试证明其具有较高的分子量,FTIR和1H NMR的测试结果表明得到了预期结构的聚合物,且该聚合物能铺成韧性较好的膜。通过检测发现SPAES膜具有较好的热稳定性和机械性能,且其磺化度对SPAES膜的性能有很大影响。随着磺化度的增加,SPAES膜的质子传导率增加,甲醇渗透系数同时也增加。本研究所制备的SPAES膜在磺化度为0.8时的质子传导率在80°C和100°C分别为0.116S/cm和0.126S/cm,优于Nafion 117膜(0.114S/cm和0.117S/cm),且其甲醇渗透系数仅为8.4×10-7 cm2/s,低于Nafion 117膜(2.1×10-6cm2/s)。
     通过亲核取代缩聚反应合成了一系列bi A-SPAES聚合物,通过粘度测试证明其具有较高的分子量,FTIR和1H NMR的测试结果表明得到了预期结构的聚合物,且该聚合物能铺成韧性较好的膜。通过检测发现bi A-SPAES膜具有较好的热稳定性和机械性能,且其磺化度对bi A-SPAES膜的性能有很大影响。随着磺化度的增加,bi A-SPAES膜的质子传导率增加,甲醇渗透系数同时也增加。本研究所制备的bi A-SPAES膜在磺化度为1.2时的质子传导率(0.10-0.15S/cm)在所有实验温度条件下均优于Nafion 117膜( 0.095-0.117S/cm),且其甲醇渗透系数为8.5×10-7cm2/s,低于Nafion 117膜。
     无机颗粒具有很好的亲水性,可以增加聚合物膜对水分子的约束力,增强水合作用,确保质子交换膜在高温条件下仍能保持一定的湿度,从而能够在高温时提高其质子传导的速率。为了克服磺化聚砜类膜低磺化度时质子传导率低、高磺化度时甲醇渗透系数高的缺点,进一步提高质子交换膜的综合性能,开发高性能的质子交换膜材料,本文采用共混的方法制备了性能优异的复合型质子交换膜。
     采用溶胶共混法制备了含有不同TiO2含量的TiO2/SPAES(Ds0.8, Ds1.0和Ds1.2)和TiO2/bi A-SPAES(Ds0.8, Ds1.0和Ds1.2)复合膜,通过FTIR和SEM测试结果表明TiO2已成功地掺入到SPAES和bi A-SPAES中。通过检测发现该系列复合膜具有较好的热稳定性和机械性能,且TiO2的含量对该系列复合膜的性能有很大影响。TiO2的掺入增加了该系列膜的质子传导率,同时改善了其阻醇性能。
     采用共混的方法制备了一系列具有不同磷钨酸(PWA)含量的PWA/bi A-SPAES(Ds0.4和Ds0.2)复合膜,通过FTIR和SEM测试结果表明PWA已成功地掺入到bi A-SPAES中。通过检测发现该系列复合膜具有较好的热稳定性和机械性能,且PWA的含量对该系列复合膜的性能有很大影响。PWA的掺入增加了该系列膜的质子传导率,同时增加了其甲醇渗透系数,但其甲醇渗透系数仍远远低于Nafion 117膜。
     综上所述,本研究所制备的SPAES和bi A-SPAES系列膜中,磺化度为0.8的SPAES膜与磺化度为1.2的bi A-SPAES膜综合性能较好,既改善了Nafion 117膜高温质子传导率低的问题,又改善了Nafion 117膜甲醇渗透系数高的问题;TiO2的掺入改善了高磺化度的SPAES和bi A-SPAES系列膜的阻醇性能和质子传导性;PWA的掺入改善了低磺化度的bi A-SPAES系列膜的质子传导性。因此,本研究所制备的膜有望成为直接甲醇燃料电池(DMFC)中质子交换膜材料的替代品,使燃料电池成为真正的绿色、高效的环保能源装置。
Energy shortages and environmental pollution have been two global problems that restrict human society and economic development. All the world have made an agreement on energy sustainable development and changing the energy consumption structure as soon as possible. Fuel cell is an emerging green energy device. In theory, it can produce current as long as fuel and oxidant are added to it constantly. Proton exchange membrane fuel cell (PEMFC) which has many outstanding advantages, such as highly efficient energy-saving, low noise, long life, has been a world's hot spot.Proton exchange membrane (PEM), the key part of PEMFC, not only separates the fuel from oxidant to avoid direct contact, but also transfers protons from anode to cathode. The properties of PEM would considerably impact on the PEMFC performances such as energy efficiency and service life.
     Nafion membrane, represented as a commercial PEM, is easy to cause environmental pollution in the course of using, and abandoned Nafion membrane is difficult to deal with and has a potential hazard to the environment; Besides, Nafion membrane has several problems, such as high methanol permeability, low proton conductivity at high temperature, etc. A series of environmental-friendly SPAES and bi A-SPAES membranes with different sulfonated degree (Ds), TiO2/SPAES and TiO2/bi A-SPAES composite membranes, and PWA/bi A-SPAES composite membranes were prepared in order to make PEMFC become a green energy device, and at the same time improve the overall performance of PEM. The structures of these membranes were characterized, and the properties of them were systematically studied, hoping to look for alternative material for Nafion membrane.
     A series of SPAES polymers were prepared by nucleophilic substitution reaction. The results of intrinsic viscosity showed that of their high molecular weight. The chemical structure of SPAES polymer was confirmed by FT-IR and 1H NMR spectra. All the polymers could be successfully cast into tough membranes. It was found that SPAES membranes had good thermal stability and mechanical properties by detecting, and Ds of SPAES had a great impact on the performance of membranes. The proton conductivities and methanol diffusion coefficient of SPAES membranes increased with the increase of Ds. The proton conductivity of SPAES membrane with Ds0.8 at 80°C and 100°C were 0.116S/cm and 0.126S/cm, respectively, which were higher than those of Nafion 117 membrane (0.114S/cm and 0.117S/cm); What’s more, the methanol diffusion coefficient of SPAES membrane with Ds0.8 was 8.4×10-7 cm2/s, which was lower than that of Nafion 117 membrane (2.1×10-6cm2/s).
     A series of bi A-SPAES polymers were prepared by nucleophilic substitution reaction. The results of intrinsic viscosity showed that of their high molecular weight. The chemical structure of bi A-SPAES polymer was confirmed by FT-IR and 1H NMR spectra. All the polymers could be successfully cast into tough membranes. It was displayed from detection that bi A-SPAES membranes had good thermal stability and mechanical properties, and Ds of bi A-SPAES had a great impact on the performance of membranes. The proton conductivities and methanol diffusion coefficient of bi A-SPAES membranes increased with the increase of Ds. The proton conductivity (0.10-0.15S/cm) of bi A-SPAES membrane with Ds1.2 was higher than that of Nafion 117 membrane (0.095-0.117S/cm) in all the experiments temperature conditions; and the methanol diffusion coefficient of bi A-SPAES membrane with Ds1.2 was 8.5×10-7cm2/s, which was lower than that of Nafion 117 membrane.
     Inorganic particles can increase sanction between water molecule and improve hydration because of their good hydrophilicity. They can ensure to keep adequate humidity in PEM at high tempereature, and therefore improve proton conductivity of the membranes at high temperature. We prepared composite PEM material with high performance by mixing inorganic particles in order to aviod the problems of low proton conductivity of the membranes with low Ds and high methanol diffusion coefficient of the membranes with high Ds, and improve the performance of PEM and exploit high-performance PEM.
     A series of TiO2/SPAES (Ds0.8, Ds1.0 and Ds1.2) and TiO2/bi A-SPAES (Ds0.8, Ds1.0 and Ds1.2) composite membranes with various contents of TiO2 particles were prepared through sol-gel reactions. FT-IR spectra and SEM images indicated the TiO2 particles were well dispersed within SPAES and bi A-SPAES polymer matrix. The results showed that TiO2/SPAES and TiO2/bi A-SPAES composite membranes had good thermal stability and mechanical properties by detecting, and the contents of TiO2 particles had a great impact on the performance of these composite membranes. The incorporation of TiO2 particles induced higher proton conductivity than the pure membranes and at the same time improved the property of methanol resistance. A series of PWA/bi A-SPAES (Ds0.4 and Ds0.2) composite membranes with various contents of PWA were prepared by blending method. FT-IR spectra and SEM images indicated the PWA particles were well dispersed within polymer matrix. PWA/bi A-SPAES composite membranes had good thermal stability and mechanical properties by detecting, and the contents of PWA particles had a great impact on the performance of these composite membranes. The introduction of PWA particles induced higher proton conductivity and methanol diffusion coefficient than the pure membranes, but the methanol diffusion coefficient was still much lower than that of Nafion 117 membrane.
     Summary, the comprehensive performance of SPAES membrane with Ds0.8 and bi A-SPAES membrane with Ds1.2 were better than others in this study. They not only improved the defect of low proton conductivity at high temperature, but also improved the defect of high methanol diffusion coefficient; The introduction of TiO2 particles improved the properties of methanol resistance and proton conductivity of SPAES and bi A-SPAES membranes with high Ds; The introduction of PWA particles improved the property of proton conductivity of bi A-SPAES membranes with low Ds. Therefore, the membranes prepared in this study were expected to be candidates for PEM of material in DMFC which make it a real green and effective energy device.
引文
1 Y. Yang, P. N. Pintauro. Multicomponent Space-Charge Transport Model for Ion-Exchange Membranes with Variable Pore Properties. Ind. Eng. Chem. Res. 2004,43(12):2957~2965
    2 K. D. Kreuer. On the development of proton conducting materials for technological applications, Solid State Ionics. 1997,97:1~15
    3 K. D. Kreuer. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells, J. Membr. Sci. 2001,185:29~39
    4 G. Inzelt, M. Pineri, J. W. Schultze, et al. Electron and proton conducting polymers: recent developments and prospects. Electrochim. Acta. 2000,45: 2403~2421
    5 L. Wang, G. M. Zhu, Y. Z. Meng, et al. Synthesis and properties of sulfonated poly(arylene ether) containing triphenyl methane moieties from isocynate masked bisphenol. Chinese J. Polym. Sci. 2007,25(4):419~426
    6方度,蒋兰蒸,吴正德.氯碱工艺学.北京:化学工业出版社. 1990: 268
    7 W. Zhou, R. Ran, Z. P. Shao. Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3?δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review. J. Power Sources. 2009,192:231~246
    8 A. Kirubakaran, Shailendra Jain, R. K. Nema. A review on fuel cell technologies and power electronic interface. Renewable and Sustainable Energy Reviews. 2009,13,9:2430~2440
    9 G. Alberti, M. Casciola, L. Massinelli, et al. Polymeric proton conducting membranes for medium temperature fuel cells (110°C–160°C). J. Membr. Sci. 2001,185:73~81
    10 K. T. Adjeman, S. J. Lee, S. Srinivasan, et al. Silicon oxide Nafion composite membranes for proton exchange membrane fuel cell operation at 80–140°C. J. Electrochem. Soc. 2002,149:A256~261
    11毛宗强.燃料电池.北京:化学工业出版社. 2005:7~29
    12衣宝廉.燃料电池的原理、技术状态与展望.电池工业. 2003,8(1):16~22
    13邓会宁.含有杂蔡联苯的聚芳醚电解质膜研究.天津大学博士学位论文. 2004:4
    14顾爽.磺化聚芳醚砜酮新型质子交换膜的制备与研究.大连理工大学博士学位论文. 2007:3
    15任学佑.质子交换膜燃料电池的进展与前景.电池. 2003,33(6):395~397
    16潘海燕.磺化杂萘联苯聚醚酮酮及聚酰亚胺质子交换膜的研究.大连理工大学博士学位论文.2008: 4~19
    17 J. C. Tsai, J. F. Kuo, C. Y. Chen. Synthesis and properties of novel HMS-based sulfonated poly(arylene ether sulfone)/silica nano-composite membranes for DMFC applications, J. Power Sources. 2007,174:103~113
    18 W. Huang, S. B. Qing, J. T. Yang, et al. Preparation and characterization of sulfonated polybenzimidazole for proton exchange membrane materials. Chinese J. Polym. Sci. 2008, 26 (2):121~129
    19 M. Gil, X. L. Ji, X. F. Li, et al. Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications, J. Membr. Sci. 2004,234:75~81
    20栾英豪,张恒,张永明等.全氟磺酸离子交换膜的制备与性能研究.功能高分子学报. 2005,18(1):62~66
    21王文瀚,侯结民,桑佩培等.全氟磺酞树脂研究进展.有机氟工业. 2002,(3):18~22
    22侯结民,桑佩培,王文瀚等.全氟磺酞树脂的分析表征.有机氟工业. 2002,(4):36~38
    23 A. Bosnjakovic, S. Sehliek. Nafion Perfluorinated Membranes Treated in Fenton Media:Radieal Species Detected by ESR Spectroscopy. J. Phys. Chem. B. 2004,108(14):4332~4337
    24 D. E. Curtin, R. D. Lousenberg, T. J. Henry, et al. Advanced materials for improved PEMFC Performance and life. J. Power Sources. 2004,131:41~48
    25 F. Bauer, S. Denneler, M. W. Porada. Influence of Temperature and Humidity on the Mechanical Properties of Nafion 117?Polymer Electrolyte Membrane. J. Polym. Sci. Part B. 2005,43:786~795
    26 M. A. Hickner, B. S. Pivovar. The Chemical and structural Nature of proton Exchange Membrane Fuel Cell Properties. Fuel Cells. 2005,5(2):214~229
    27 J. Kawamura, K. Hattori, T. Hongo, et al. Microscopic states of water and methanol in Nafion membran observed by NMR micro imaging. Solid State Ionics. 2005,176:2451~2456
    28 K. J. Oberbroeekling, D. C. Dunwoody, S. D. Minteer, et al. Density of NafionExchanged with Transition Metal Complexes and Tetramethyl Ammonium, Ferrous, and Hydrogen Ions:Commercial and Recast Films. Analytieal Chemistry. 2002,74(18):4794~4799
    29沈春晖,杨新胜,潘牧等.燃料电池用全氟磺酸型复合质子交换膜的研究.化工新型材料. 2002,30(8):10-12
    30李辰楠,孙公权,任素贞等.应用于燃料电池的全氟磺酸膜及其改性.科学通报. 2005,50(19):2049~2054
    31 H. G. Haubold, T. Vad, H. Jungbluth, P. Hiller. Nano structure of NAFION: a SAXS study. J. Electrochimica Acta. 2001,46,1559~1563
    32 E. Skou, P. Kauranen, J. Hentschel. Water and methanol uptake in proton conducting Nafion? membranes. Solid State Ionics. 1997,97:333~337
    33 C. A. Edmondsom, P. E. Stallworth, M. C. Wintersgill, et al. Electrical conductivity and NMR stydies of methanol/water mixtures in Nafion membranes. J. Electrochimica Acta. 1998,43(10-11):1295~1299
    34 M. C. Wintersgill, J. J. Fontanella. Complex impedance measurements on Nafion. J. Electrochimica Acta. 1998,43(10-11):1533~1538
    35 M. Doyle, M. E. Lewittes, M. G. Roelofs, et al. Relationship between ionic conductivity of perfluorinated ionomeric membranes and nonaqueous solvent properties. J. Mem. Sci. 2001,184:257~273
    36 T. Y. Chen, J. Leddy. Ion Exchange Capacity of Nafion and Nafion Composites. Langmuir. 2000,16(6):2866~2871
    37 M. Doyle, M. E. Lewittest, M. G. Roelofs, et al. Ionic Conductivity of Nonaqueous Solvent-Swollen Ionomer Membranes Based on Fluorosulfonate,Fluorocarboxylate, and Sulfonate Fixed Ion Groups. J. Phys. Chem. B. 2001,105:9387~9394
    38 Y. G. Jin, S. Z. Qiao, L. Zhang, et al. Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers. J. Power Sources. 2008,185:664~669
    39 G. B. Jung, F. B. Weng, A. Su, et al. Nafion/PTFE/silicate membranes for high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy. 2008,33:2413~2417
    40 S. Xue, G. P. Yin, K. D. Cai, et al. Permeabilities of methanol, ethanol and dimethyl ether in new composite membranes: A comparison with Nafion membranes. J. Membr. Sci. 2007,289:51~57
    41 B. Yang, Y. Z. Fu, A. Manthiram. Operation of thin Nafion-based self-humidifying membranes in proton exchange membrane fuel cells with dry H2 and O2. J. Power Sources. 2005,139:170~175
    42 H. L. Lin, T. L. Yu, K. S. Shen, et al. Effect of Triton-X on the preparation of Nafion/PTFE composite membranes. J. Membr. Sci. 2004,237:1~7
    43 F. Q. Liu, B. L. Yi, D. M. Xing, et al. Nafion/PTFE composite membranes for fuel cell applications. J. Membr. Sci. 2003,212:213~223
    44 H. L. Lin, T. L. Yu, L. N. Huang, et al. Nafion/PTFE composite membranes for direct methanol fuel cell applications. J. Power Sources. 2005,150:11~19
    45 L. N. Huang, L. C. Chen, T. L. Yu, et al. Nafion/PTFE/silicate composite membranes for direct methanol fuel cells. J. Power Sources. 2006,161:1096~1105
    46 H. L. Lin, T. J. Chang. Preparation of Nafion/PTFE/Zr(HPO4)2 composite membranes by direct impregnation method. J. Membr. Sci. 2008,325:880~886
    47 F. B. Weng, J. S. Wang, T. L. Yu. The study of PTFE/Nafion/Silicate membranes operating at low relative humidity and elevated temperature. Journal of the Chinese Institute of Chemical Engineers. 2008,39:429~433
    48 B. Bahar, A. R. Hobson, J. A. Kolde, et al. 1996, US5547551
    49刘富强,衣宝廉,邢丹敏等.燃料电池的复合质子交换膜研究-不同多孔聚四氟乙烯底膜对复合膜性能的影响.电源技术. 2002,26(增刊):210~213
    50 J. Shim, H. Y. Ha, S. A. Hong, et al. Characteristics of the Nafion ionomer-impregnated composite membrane for polymer electrolyte fuel cells. J. Power sources. 2002,109:412~417
    51 S. Hommura, Y. Kunisa, I. Terada, et al. Characterization of fibril reinforced membranes for fuel cells. J. Fluorine Chemistry. 2003,120:151~155
    52李先锋.磺化聚芳醚酮类质子交换膜材料的结构与性能研究.吉林大学博士学位论文. 2006:6~15
    53 H. Tian, O. Savadogo. Effect of silicotungstic acid(STA) on the performance of a polymer electrolyte fuel cell (PEMFC) based on Nafion cast in dimethylformamide. Fuel Cells. 2005,5(3):375~382
    54余军,潘牧,袁润章. PEMFC用Nafion1135/SiO2复合膜的性能研究.电池. 2005,35(2):83~84
    55余军,潘牧,袁润章.高温质子交换膜燃料电池用Nafion/SiO2复合膜研究进展.膜科学与技术. 2005,25(2):91~98
    56刘永浩,衣宝廉,张华民.质子交换膜燃料电池用Nafion/SiO2复合膜.电源技术. 2005,29(2):92~94
    57 J. H. Tian, P. F. Gao, Z. Y. Zhang, et al. Preparation and performance evaluation of a Nafion-TiO2 composite membrane for PEMFCs. International Journal of Hydrogen Energy. 2008,33:5686~5690
    58 V. Baglio, A. S. Aricò, A. D. Blasi, et al. Nafion–TiO2 composite DMFC membranes: physico-chemical properties of the filler versus electrochemical performance. Electrochim Acta. 2005, 50:1241~1246
    59 S. Y. Chen, C. C. Han, C. H. Tsai, et al. Effect of morphological properties of ionic liquid-templated mesoporous anatase TiO2 on performance of PEMFC with Nafion/TiO2 composite membrane at elevated temperature and low relative humidity. J. Power sources. 2007,17:363~372
    60 X. G. Teng, Y. T. Zhao, J. Y. Xi, et al. Nafion/organic silica modified TiO2 composite membrane for vanadium redox flow battery via in situ sol–gel reactions. J. Membr. Sci. 2009, 341:149~154
    61 A. Saccà, I. Gatto, A. Carbone, et al. ZrO2–Nafion composite membranes for polymer electrolyte fuel cells (PEFCs) at intermediate temperature. J. Power sources. 2006,163:47~51
    62 M. A. Navarra, C. Abbati, B. Scrosati. Properties and fuel cell performance of a Nafion-based,sulfated zirconia-added, composite membrane. J. Power sources. 2008,183:109~113
    63 S. Z. Ren, G. Q. Sun, C. N. Li, et al. Sulfated zirconia–Nafion composite membranes for higher temperature direct methanol fuel cells. J. Power sources. 2006,157:724~726
    64 C. Yang, S. Srinivasan, A. B. Bocarsly, et al. A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes. J. Membr. Sci. 2004,237:145~161
    65 G. Albert, M. Casciola, D. Capitani, et al. Novel Nafion–zirconium phosphate nanocomposite membranes with enhanced stability of proton conductivity at medium temperature and high relative humidity. Electrochim. Acta. 2007,52:8125~8132
    66 H. K. Lee, J. I. Kim, J. H. Park, et al. A study on self-humidifying PEMFC using Pt–ZrP–Nafion composite membrane. Electrochim. Acta. 2004,50:761~768
    67侯宏英,孙公权,吴智谋等.直接甲醇燃料电池用磷酸氢锆/Nafion115的研究.电源技术. 2009,33(1):17~20
    68 Y. F. Zhai, H. Zhang, Y. Zhang, et al. A novel H3PO4/Nafion–PBI composite membrane for enhanced durability of high temperature PEM fuel cells. J. Power sources. 2007,169:259~264
    69许晶,管蓉,余建佳等.质子交换膜掺杂固体无机质子导体材料的研究进展.化工新型材料. 2007,35(3):23~39
    70 P. L. Antonucci, A. S. Aricò, P. Cretì, et al. Investigation of a direct methanol fuel cell based on a composite Nafionò-silica electrolyte for high temperature operation. Solid State Ionics. 1999,125:431~437
    71 K. T. Adjimian, S. Srinivasan, J. Benziger, et al. Investigation of PEMFC operation above 100°C employing perfluorosulfonic acid silicon oxide composite membranes. J. Power sources. 2002,109:356~354
    72 P. Costamagna, C. Yang, A. B. Bocarsly, et al. Nafion? 115/zirconium phosphate composite membranes for operation of PEMFCs above 100°C. Electrochim. Acta. 2002,47:1023~1033
    73 B. Tazi, O. Savadogo. Parameters of PEM fuel-cells based on new membranes fabricated from Nafion?, silicotungstic acid and thiophene. Electrochim. Acta. 2000,45:4329~4339
    74 P. Dimitrova, K. A. Friedrich, U. Stimming, et al. Modified NafionR-based membranes for use in direct methanol fuel cells. Solid State Ionics. 2002,150:115~122
    75 V. D. Noto, R. Gliubizzi, E. Negro, et al. Hybrid inorganic–organic proton conducting membranes based on Nafion and 5 wt.% of MxOy (M = Ti, Zr, Hf, Ta and W) Part I. Synthesis, properties and vibrational studies. Electrochim. Acta. 2007,53:1618~1627
    76 K. P. Wang, S. McDermid, J. Li, et al. Preparation and performance of nano silica/Nafion composite membrane for proton exchange membrane fuel cells. J. Power sources. 2008,184:99~103
    77杨武斌,朱红,王明等.纳米氧化物/Nafion复合膜的制备与性能表征.功能材料. 2007,12(38):2077~2083
    78 Z. G. Shao, H. F. Xu, M. Q. Li, et al. Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell. Solid State Ionics. 2006,177:779~785
    79 A. Mahreni, A. B. Mohamad, A. A. H. Kadhum, et al. Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity. J. Membr. Sci. 2009,327:32~40
    80费国平,李卫东,赵炯心. SPSU/PWA/SiO2有机-无机复合质子交换膜的研究.电源技术. 2009,33(4):254~257
    81 Z. G. Shao, P. Joghee, I. M. Hsing. Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. J. Membr. Sci. 2004,229:43~51
    82钮振强.有机/无机质子交换复合膜的制备和性能研究.大连理工大学.硕士学问论文.2007:10~35
    83 T. Kallio, K. Jokela, H. Ericson, et al. Effects of a fuel cell test on the structure of irradiation grafted ion exchange membranes based on different fluoropolymers. J. Appl. Electrochem. 2003,33:505~514
    84 Y. S. Yang, Z. Q. Shi, S. Holdcroft. Synthesis of Sulfonated Polysulfone-block-PVDF Copolymers: Enhancement of Proton Conductivity in Low Ion Exchange Capacity Membranes. Macromolecules. 2004,37:1678~1681
    85 D. M. Xing, B. L. Yi, F. Q. Liu, et al. Characterization of sulfonated poly(ether ether ketone)/polytetrafluoroethylene composite membranes for fuel cell applications. Fuel Cells. 2005,5(3):406~411
    86 L. Wang, Y. Z. Meng, S. J. Wang, et al. Synthesis and Sulfonation of Poly(aryl ethers) Containing Triphenyl Methane and Tetraphenyl Methane Moieties from Isocynate-Masked Bisphenols. Macromolecules. 2004,37:3151~3158
    87 Y. M. Kim, S. H. Choi, H. C. Lee, et al. Organic–inorganic composite membranes as addition of SiO2 for high temperature-operation in polymer electrolyte membrane fuel cells (PEMFCs). Electrochim Acta. 2004,49:4787~4796
    88 T. Nakano, S. Nagaoka, H. Kawakami. Preparation of novel sulfonated block copolyimides for proton conductivity membranes. Polym. Adv. Technol. 2005,16:753~757
    89 L. Wang, Y. Z. Meng, S. J. Wang, et al. Synthesis and Properties of Sulfonated Poly(arylene ether) Containing Tetraphenylmethane Moieties for Proton-Exchange Membrane. J. Polym. Science: Part A: Polymer Chemistry. 2005,43:6411~6418
    90张耀霞.磺化聚芳醚质子交换膜材料的合成及改性研究.大连理工大学硕士学位论文. 2007:6
    91 T. Uma, H. Y. Tu, S. Warth, et al. Synthesis and characterization of proton conducting poly phosphate composites. J. Mater. Sci. 2005,40:2059~2063
    92 N. W. Li, Z. M. Cui, S. H. Li, et al. Synthesis and properties of water stable poly[bis(benzimidazobenzisoquinolinone)] ionomers for proton exchange membranes fuel cells. J. Membr. Sci. 2009,326:420~428
    93 W. Lee, H. Kim, H. Lee. Proton exchange membrane using partially sulfonated polystyrene-b-poly(dimethylsiloxane) for direct methanol fuel cell. J. Membr. Sci. 2008,320:78~85
    94 H. Bai, W. S. Winston Ho. New poly(ethylene oxide) soft segment-containing sulfonated polyimide copolymers for high temperature proton-exchange membrane fuel cells. J. Membr. Sci. 2008,313:75~85
    95 Z. W. Yang, D. H. Coutinho, R. Sulfstede, et al. Proton conductivity of acid-doped meta-polyaniline. J. Membr. Sci. 2008,313:86~90
    96 S. Gu, G. H. He, X. M. Wu, et al. Preparation and characteristics of crosslinked sulfonated poly(phthalazinone ether sulfone ketone) with poly(vinyl alcohol) for proton exchange membrane. J. Membr. Sci. 2008,312:48~58
    97 X. H. Ma, L. P. Shen, C. J. Zhang, et al. Sulfonated poly(arylene thioether phosphine oxide)s copolymers for proton exchange membrane fuel cells. J. Membr. Sci. 2008,310:303~311
    98 S. Kang, C. J. Zhang, G. Y. Xiao, et al. Synthesis and properties of soluble sulfonated polybenzimidazoles from 3,3’-disulfonate-4,4’-dicarboxylbiphenyl as proton exchange membranes. J. Membr. Sci. 2009,334:91~100
    99 H. Bai, W. S. Winston Ho. New sulfonated polybenzimidazole (SPBI) copolymer-based proton-exchange membranes for fuel cells. Journal of the Taiwan Institute of Chemical Engineers. 2009,40:260~267
    100 J. K. Lee, W. Li, A. Manthiram. Poly(arylene ether sulfone)s containing pendant sulfonic acid groups as membrane materials for direct methanol fuel cells. J. Membr. Sci. 2009,330:73~79
    101 C. J. Zhang, S. Kang, X. H. Ma, et al. Synthesis and characterization of sulfonated poly(arylene ether phosphine oxide)s with fluorenyl groups by direct polymerization for proton exchange membranes. J. Membr. Sci. 2009,329:99~105
    102 L. J. Ghil, C. K. Kim, H. W. Rhee. Phosphonic acid functionalized poly(dimethyl siloxane) membrane for high temperature proton exchange membrane fuel cells. Current Applied Physics. 2009,9:e56~e59
    103 X. H. Ma, C. J. Zhang, G. Y. Xiao, et al. Synthesis and properties of sulfonated poly(arylene ether phosphine oxide)s for proton exchange membranes. J. Power sources. 2009,188:57~63
    104 A. S. Badami, A. Roy, H. S. Lee, et al. Morphological investigations of disulfonated poly(arylene ether sulfone)-b-naphthalene dianhydride-based polyimide multiblock copolymers as potential high temperature proton exchange membranes. J. Membr. Sci. 2009,328:156~164
    105 X. Glipa, M. E. Haddad, D. J. Jones, et al. Synthesis and characterization of sulfonated polybenzimidazole:a highly conducting proton exchange polymer. Solid State Ionics.1997,97:323~331
    106 B. Smitha, S. Sridhar, A. A. Khan. Synthesis and characterization of proton conducting polymer membranes for fuel cells. J. Membr. Sci. 2003,225:63~76
    107 H. R. Allcock, M. A. Hofmann, C. M. Ambler, et al. Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells. J. Membr. Sci. 2006,201:47~54
    108 D. Gomes, J. Roeder, M. L. Ponce, et al. Single-step synthesis of sulfonated polyoxadiazoles and their use as proton conducting membranes. J. Power sources. 2008,175:49~59
    109王亚琴,张宏伟.燃料电池用非氟质子交换膜研究现状.安徽建筑工业学院学报(自然科学版). 2006,14(3):81~87
    110 H. L. Lin, Y. S. Hsieh, C. W. Chiu, et al. Durability and stability test of proton exchange membrane fuel cells prepared from polybenzimidazole/poly(tetrafluoro ethylene) composite membrane. J. Power sources. 2009,193:170~174
    111 Y. K. Oono, A. Sounai, M. Hori. Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells. J. Power sources. 2009,189:943~949
    112 Q. F. Li, J. O. Jensen, R. F. Savinell, et al. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Progress in Polymer Science. 2009,34:449~477
    113 P. Jannasch. Recent developments in high-temperature proton conductingpolymer electrolyte membranes. Current Opinion in Colloid and Interface Science. 2003,8:96~102
    114 P. G. Romero, J. A. Asensio, S. Borrós. Hybrid proton-conducting membranes for polymer electrolyte fuel cells Phosphomolybdic acid doped poly(2,5-benzimidazole)—(ABPBI-H3PMo12O40). Electrochim. Acta. 2005,50:4715~4720
    115 J. A. Asensio, S. Borrós, P. G. Romero. Enhanced conductivity in polyanion-containing polybenzimidazoles. Improved materials for proton-exchange membranes and PEM fuel cells. Electrochim. Communication. 2003,5:967~972
    116 C. Genies, R. Mercier, B. Sillion, R. Petiaud, et al. Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium. Polymer. 2001,42:5097~5105
    117 F. Zhang, N. W. Li, Z. M. Cui, et al. Novel acid–base polyimides synthesized from binaphthalene dianhydrie and triphenylamine-containing diamine as proton exchange membranes. J. Membr. Sci. 2008,314:24~32
    118 F. X. Zhai, X.X. Guo, J. H. Fang, et al. Synthesis and properties of novel sulfonated polyimide membranes for direct methanol fuel cell application, J. Membr. Sci. 2007,296:102~109
    119 C. Genies, R. Mercier, B. Sillion, et al. Soluble sulfonated naphthalenic polyimides as materials for proton exchange membranes, Polymer. 2001,42:359~373
    120 J. M. Song, K. Miyatake, H. Uchida, et al. Investigation of direct methanol fuel cell performance of sulfonated polyimide membrane. Electrochim. Acta. 2006,51:4497~4504
    121 Y. H. Li, R. Jin, Z. M. Cui, et al. Synthesis and characterization of novel sulfonated polyimides from 1,4-bis(4-aminophenoxy)-naphthyl-2,7-disulfonic acid. Polymer. 2007,48:2280~2287
    122 Y. Woo, S. Y. Oh, Y. S. Kang, et al. Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. J. Membr. Sci. 2003,220:31~45
    123 E. Vallejo, G. Pourcelly, C. Gavach, et al. Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/Mz+ by electrodialysis comparison with a perfluorosulfonic membrane. J.Membr. Sci. 1999,160:127~137
    124 F. Sylvain, P. Michel, A. Pierre, et al. Sulphonated polyimides, membranes and fuel cell. French Pat.9605707
    125任杰,陈云华.聚磷腈的研究和应用.材料导报. 2004,18(7):58~61
    126李爱元,张慧波,陈亚东等.聚磷腈在防护涂料中的研究进展.特种涂料与涂料专刊. 2007,10(9):48~51
    127李爱元,张慧波,陈亚东等.聚磷腈在航空航天高分子材料中的应用.化学推进剂与高分子材料. 2007,5(6):40~44
    128黄小彬,尹林,唐小真.一种新型有机无机杂化聚磷腈高分子的制备及表征.中国科学B辑:化学. 2008,38(1):43~47
    129遇丽.聚磷腈的应用研究进展.重庆科技学院学报(自然科学版). 2008,10(2):29~32
    130骆蓉,聂进.聚磷腈高分子固体电解质研究进展.功能高分子学报.2004,17(1):151~158
    131 Q. H. Guo, P. N. Pintauro, H. Tang, et al. Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes. J. Membr. Sci. 1999,154:175~181
    132 H. R. Allcock, M. A. Hofmann, C. M. Ambler, et al. Phenyl phosphonic acid functionalized poly[aryloxyphosphazenes] as proton-conducting membranes for direct methanol fuel cells. J. Membr. Sci. 2002,201:47~54
    133 D. A. Conner, D. T. Welna, Y. Chang, et al. Influence of Terminal Phenyl Groups on the Side Chains of Phosphazene Polymers: Structure-Property Relationships and Polymer Electrolyte Behavior. Macromolecules. 2007,40:322~328
    134 S. Y. Cho, H. R. Allcock. Novel Highly Fluorinated Perfluorocyclobutane-Based Phosphazene Polymers for Photonic Applications. Chem. Mater. 2007,19:6338~6344
    135 R. Wycisk, P. N. Pintauro. Sulfonated polyphosphazene ion-exchange membranes. J. Membr. Sci. 1996,119:155~160
    136 M. V. Fedkin, X. Y. Zhou, M. A. Hofmann, et al. Evaluation of methanol crossover in proton-conducting polyphosphazene membranes. Materials Letters. 2002,52:192~196
    137 X. Y. Zhou, J. Weston, E. Chalkova, et al. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells.Electrochim. Acta. 2003,48:2173~2180
    138 K. Tsuruhara, M. Rikukawa, K. Sanui, et al. Synthesis of proton conducting polymer based on poly(silamine). Electrochim. Acta. 2000,45:1391~1394
    139 R. W. Kopitzke, C. A. Linkous, G. L. Nelson. Thermal stability of high temperature polymers and their sulfonated derivatives under inert and saturated vapor conditions. Polymer Degradation and Stability. 2000,67:335~344
    140 M. A. Vargas, R. A. Vargas, B. E. Mellander. New proton conducting membranes based on PVAL/H3PO2/H2O. Electrochim. Acta. 1999,44:4227~4232
    141 M. J. Sumner, W. L. Harrison, R. M. Weyers, et al. Novel proton conducting sulfonated poly(arylene ether) copolymers containing aromatic nitriles. J. Membr. Sci. 2004,239:199~211
    142 J. H. Pang, H. B. Zhang, X. F. Li, et al. Synthesis and characterization of sulfonated poly(arylene ether)s with sulfoalkyl pendant groups for proton exchange membranes. J. Membr. Sci. 2008,318:271~279
    143王雷,孟跃中,高春梅等.质子交换膜用磺化聚芳醚的合成与性能研究.化学学报. 2007, 65(14):1403~1406
    144 S. G. Feng, Y. M. Shang, X. F. Xie, et al. Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for DMFC applications. J. Membr. Sci. 2009,335:13~20
    145 A. S. Badami, O. Lane, H. S. Lee, et al. Fundamental investigations of the effect of the linkage group on the behavior of hydrophilic–hydrophobic poly(arylene ether sulfone) multiblock copolymers for proton exchange membrane fuel cells. J. Membr. Sci. 2009,333:1~11
    146 J. H. Li, H. Y. Yu. Synthesis and characterization of sulfonated poly(benzoxazole ether ketone)s by direct copolymerization as novel polymers for proton-exchange membranes. J. Polym. Sci. 2007,45:2273~2286
    147张耀霞,朱秀玲,蹇锡高.质子交换膜材料磺化聚芳醚腈酮酮的合成及性能表征.材料导报:研究篇. 2009,23(4):98~101
    148 H. D. Lin, C. J. Zhao, Z. M. Cui, et al. Novel sulfonated poly(arylene ether ketone) copolymers bearing carboxylic or benzimidazole pendant groups for proton exchange membranes. J. Power Sources. 2009,193:507~514
    149 X. Y. Shang, S. M. Fang, Y. Z. Meng. Synthesis and characterization ofpoly(arylene ether ketone) with sulfonated fluorene pendants for proton exchange membrane. J. Membr. Sci. 2007,297:90~97
    150 J. Choi, D. H. Kim, H. K. Kim, et al. Polymer blend membranes of sulfonated poly(arylene ether ketone) for direct methanol fuel cell. J. Membr. Sci. 2008,310:384~392
    151 F. C. Ding, S. J. Wang, M. Xiao, et al. Fabrication and properties of cross-linked sulfonated fluorene-containing poly(arylene ether ketone) for proton exchange membrane. J. Power Sources. 2007,170:20~27
    152 Y. Zhang, Z. M. Cui, C. J. Zhao, et al. Synthesis and characterization of novel sulfonated poly(arylene ether ketone) copolymers with pendant carboxylic acid groups for proton exchange membranes. J. Power Sources. 2009,191:253~258
    153 S. L. Zhong, C. G. Liu, Z. Y. Dou, et al. Synthesis and properties of sulfonated poly(ether ether ketone ketone) containing tert-butyl groups as proton exchange membrane materials. J. Membr. Sci. 2006,285:404~411
    154 F. Wang, T. L. Chen, J. P. Xu, et al. Synthesis and characterization of poly(arylene ether ketone) (co)polymers containing sulfonate groups. Polym. 2006,47:4148~4153
    155 Z. L. Li, X. C. Liu, D. M. Chao, et al. Controllable sulfonation of aromatic poly(arylene ether ketone)s containing different pendant phenyl rings. J. Power Sources. 2009,193:477~482
    156 C. J. Zhao, X. F. Li, Z. Wang, et al. Synthesis of the block sulfonated poly(ether ether ketone)s (S-PEEKs) materials for proton exchange membrane. J. Membr. Sci. 2006,280:643~650
    157 R. T. S. M. Lakshmi, J. M. Haack, K. Schlenstedt, et al. Sulphonated poly(ether ether ketone) copolymers: Synthesis, characterisation and membrane properties. J. Membr. Sci. 2005,261:27~35
    158 S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications, J. Membr. Sci. 2000,173:17~34
    159 C. J. Zhao, X. F. Li, H. D. Lin, et al. Sulfonated poly(arylene ether ketone)s prepared by direct copolymerization as proton exchange membranes:synthesis and comparative investigation on transport properties. J. Appl. Polym. Sci. 2008, 108:671~680
    160 G. H. Li, H. Y. Yu. Synthesis and characterization of sulfonatedpoly(benzoxazole ether ketone)s by direct copolymerization as novel polymers for proton-exchange membranes. J. Polym. Sci. Part A: Polymer Chemistry. 2007, 45:2273~2286
    161 M. H. Jeong, K. S. Lee, Y. T. Hong, et al. Selective and quantitative sulfonation of poly(arylene ether ketone)s containing pendant phenyl rings by chlorosulfonic acid. J. Membr. Sci. 2008,314:212~220
    162 M. H. Jeong, K. S. Lee, J. S. Lee. Synthesis and characterization of sulfonated poly(arylene ether ketone) copolymers containing crosslinking moiety. J. Membr. Sci. 2009,337:145~152
    163 X. F. Li, G. Zhang, D. Xu, et al. Morphology study of sulfonated poly(ether ether ketone ketone)s (SPEEKK) membranes: The relationship between morphology and transport properties of SPEEKK membranes. J. Power Sources. 2007, 165:701~707
    164 X. F. Li, Z. Wang, H. Lu, et al. Electrochemical properties of sulfonated PEEK used for ion exchange membranes. J. Membr. Sci. 2005,254 :147~155
    165 X. F. Li, C. J. Zhao, H. Lu, et al. Direct synthesis of sulfonated poly(ether ether ketone ketone)s (SPEEKKs) proton exchange membranes for fuel cell application. Polymer. 2005,46: 5820~5827
    166 X. F. Li, C. P. Liu, H. Lu, et al. Preparation and characterization of sulfonated poly(ether ether ketone ketone) proton exchange membranes for fuel cell application. J. Membr. Sci. 2005, 255:149~155
    167 Y. Gao, G. P. Rboertson, M. D. Guiver, et al. Sulfonated copoly(phthalazinone ether ketone nitrile)s as proton exchange membrane materials. J. Membr. Sci. 2006,278:26~34
    168 Y. M. Sun, T. C. Wu, H. C. Lee, et al. Sulfonated poly(phthalazinone ether ketone) for proton exchange membranes in direct methanol fuel cells. J. Membr. Sci. 2005,265:108~114
    169 Y. Dai, X. G. Jian, S. H. Zhang, et al. Thin film composite (TFC) membranes with improved thermal stability from sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK). J. Membr. Sci. 2002,207:189~197
    170 Y. Gao, G. P. Robertson, M. D. Guiver, et al. Sulfonation of poly(phthalazinones) with fuming sulfuric acid mixtures for proton exchange membrane materials. J. Membr. Sci. 2003,227:39~50
    171龚云麦,石安富.合成树脂与塑料手册.上海科学技术出版社. 1993,1:193~198
    172左彦东,齐雪莹,于磊.新兴环保材料聚砜的性能及用途. 2003,27(2):109~110
    173 M. Paul, H. B. Park, B. D. Freeman. et al. Synthesis and Crosslinking of Partially Disulfonated Poly(arylene ether sulfone) random Copolymers as Candidates for Chlorine Resistant Reverse Osmosis Membranes. Polym. 2008,49: 2243~2252
    174 B. R. Liaw, W. Y. Huang, P. T. Huang, et al. Novel Poly(arylene ether)s Containing Multi-substituted Pentaphenylene Moiety. Polym. 2007,48: 7087~7097
    175 F. Schonberger, M. Hein, J. Kerres. Preparation and Characterisation of Sulfonated Partially Fluorinated Statistical Poly(arylene ether sulfone)s and their blends with PBI. Solid State Ionics. 2007,178: 547~554
    176 D. S. Kim, K. H.Shin, H. B. Park. et al. Synthesis and Characterization of Sulfonated Poly(arylene ether sulfone) Copolymers Containing Carboxyl Groups for Direct Methanol Fuel Cells. J. Membr. Sci. 2006,278: 428~436
    177 Y. S. Kim, M. A. Hickner, E. McGrath. et al. Sulfonated Poly(arylene ether sulfone) Copolymer Proton Exchange Membranes: composition and morphology effects on the methanol permeability. J. Membr. Sci. 2004,243: 317-326
    178 Y. X. Li, F. Wang, J. Yang, et al. Synthesis and Characterization of Controlled Molecular Weight Disulfonated Poly(arylene ether sulfone) Copolymers and Their Applications to Proton Exchange Membranes. Polym. 2006,47: 4210~4217
    179 H. Y. Jung, K. Y. Cho, K. A. Sung, et al. Sulfonated poly(arylene ether sulfone) as an electrode binder for direct methanol fuel cell, Electrochim. Acta, 2007,52: 4916~4921
    180 Y. S. Kim, B. Einsla, M. Sankir, et al. Structure-property-performance relationships of sulfonated poly(arylene ether sulfone)s as a polymer electrolyte for fuel cell applications, Polym. 2006, 47: 4026~4035
    181 W. L. Harrison, F. Wang, J. B. Mecham, et al. Influence of the bisphenol structure on the direct synthesis of sulfonated poly(arylene ether) copolymers.1, J. Polym. Sci. Part A: Polym. Chem. 2003,41:2264~2276
    182 W. L. Harrison, M. A. Hicker, Y. S. Kim, et al. Poly(arylene ether sulfone) copolymers and related systems from disulfonated monomer building blocks:synthesis, characterization, and performance-a topical review. Fuel Cells. 2005,5: 201~212
    183 X. P. Zhang, S. Z. Liu, J. Yin. Selectively sulfonated poly(aryl ether sulfone)-b-polybutadiene for proton exchange membrane. J. Polym. Sci. Part B:Polym. Physics. 2006, 44:665~672
    184 B. Bae, K. Miyatake, M. Watanabe. Sulfonated poly(arylene ether sulfone) ionomers containing fluorenyl groups for fuel cell applications. J. Membr. Sci. 2008,310:110~118
    185 P. Zschocke, D. Quellmalz. Novel Ion Exchange Membranes Based on an Aromatic Polyethersulfone. J. Membr. Sci. 1985,22:325~332
    186 T. Okada, M. Ueda. Synthesis of Polyethers by Oxovanadium-catalyzed Oxidative Coupling Polymerization of Di(1-naphthoxy) Compounds. Reactive and Functional Polymers. 1996,30:157~163
    187 F. Wang, M. Hickner, Y. S. Kim, et al. Direct Polymerization of Sulfonated Poly(arylene ether sulfone) Random (Statistical) Copolymers: Candidates for New Proton Exchange Membranes. J. Membr. Sci. 2002,197:231~242
    188 Y. S. Kim, L. Dong, M. A. Hickner, et al. Processing Induced Morphological Development in Hydrated Sulfonated Poly(arylene ether sulfone) Copolymer Membranes. Polym. 2003,44:5729~5736
    189 H. Ghassemi, G. Ndip, J. E. McGrath. New multiblock copolymers of sulfonated poly(4′-phenyl-2,5-benzophenone) and poly(arylene ether sulfone) for proton exchange membranes. Polym. 2004,45:5855~5862
    190 C. G. Cho, Y. S. Kim, X. Yu, et al. Synthesis and characterization of poly(arylene ether sulfone) copolymers with sulfonimide side groups for a proton-exchange membrane. J. Polym. Science. 2006, 44:6007~6014
    191 Z. Wang, X. F. Li, C J Zhao, et al. Sulfonated poly(ether ether sulfone) copolymers for proton exchange membrane fuel cell. J. Appl. Polym. Sci. 2007, 104:1443~1450
    192王哲,李先锋,赵成吉等.新型燃料电池质子交换膜-含叔丁基的磺化聚芳醚砜.高等学校化学学报. 2005, 26: 2149~2152
    193王哲,倪宏哲,那辉.邻甲基对苯二酚型磺化聚醚醚砜质子交换膜材料的合成与表征.吉林大学学报. 2007, 45(1):111~115
    194张海博.磺化聚芳醚酮聚合物系列质子交换膜材料的合成及性能.吉林大学博士学位论文. 2005:25
    195 S. Swier, M. T. Shaw, R. A. Weiss. Morphology control of sulfonated poly(ether ketone ketone) poly(ether imide) blends and their use in proton-exchange membranes. J. Membr. Sci. 2006,270:22~31
    196 S. Swier, V. Ramani, J. M. Fenton, et al. Polymer blends based on sulfonated poly(ether ketone ketone) and poly(ether sulfone) as proton exchange membranes for fuel cells. J. Membr. Sci. 2005,256:122~133
    197 H. L. Wu, C. C. M. Ma, F. Y. Liu, et al. Preparation and characterization of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend membranes. European Polymer Journal. 2006,42:1688~1695
    198 R. K. Nagarale, G. S. Gohil, V. K. Shahi. Sulfonated poly(ether ether ketone)/polyaniline composite proton-exchange membrane. J. Membr. Sci. 2006,280:389~396
    199 Y. T. Hong, C. H. Lee, H. S. Park, et al. Improvement of electrochemical performances of sulfonated poly(arylene ether sulfone) via incorporation of sulfonated poly(arylene ether benzimidazole). J. Power Sources. 2008,175:724~731
    200 Z. Y. Dou, S. L. Zhong, C. J. Zhao, et al. Synthesis and characterization of a series of SPEEK/TiO2 hybrid membranes for direct methanol fuel cell. J. Appl. Polym. Sci. 2008, 109:1057~1062
    201窦志宇.新型燃料电池用质子交换膜的合成与性能研究.吉林大学博士论文. 2006:80~104
    202 V. S. Silva, B. Ruffmann, H. Silva, et al. Proton electrolyte membrane properties and direct methanol fuel cell performance I. Characterization of hybrid sulfonated poly(ether ether ketone)/zirconium oxide membranes. J. Power Sources. 2005,140:34~40
    203 D. S. Kim, B. J. Liu, M. D. Guiver. Influence of silica content in sulfonated poly(arylene ether ether ketone ketone) (SPAEEKK) hybrid membranes on properties for fuel cell application. Polym. 2006,47:7871~7880
    204 I. Colicchio, F. Wen, H. Keul, et al. Sulfonated poly(ether ether ketone)–silica membranes doped with phosphotungstic acid. Morphology and proton conductivity. J. Membr. Sci. 2009,326:45~57
    205 C. H. Lee, K. A. Min, H. B. Park, et al. Sulfonated poly(arylene ether sulfone)–silica nanocomposite membrane for direct methanol fuel cell (DMFC). J. Membr. Sci. 2007,303:258~266
    206 Y. H. Su, Y. L. Liu, Y. M. Sun, et al. Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells. J. Membr. Sci. 2007,296:21~28
    207 Y. S. Kim, F. Wang, M. Hickner, et al. Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications. J. Membr. Sci. 2003,212:263~282
    208 H. W. Zhang, B. K. Zhu, Y. Y. Xu. Composite membranes of sulfonated poly(phthalazinone ether ketone) doped with 12-phosphotungstic acid (H3PW12O40) for proton exchange membranes. Solid State Ionics, 2006,177:1123~1128
    209 H. B. Zhang, J. H. Pang, D. Wang, et al. Sulfonated poly(arylene ether nitrile ketone) and its composite with phosphotungstic acid as materials for proton exchange membranes. J. Membr. Sci. 2005, 264: 56~64
    210 P. Krishnan, J. S. Park, C. S. Kim. Preparation of proton-conducting sulfonated poly(ether ether ketone)/boron phosphate composite membranes by an in situ sol–gel process. J. Membr. Sci. 2006,279:220~229
    211邓会宁,王宇新.磷钨酸/磺化杂萘联苯聚醚铜复合质子交换膜的制备及其性能.物理化学学报. 2007, 23(8) :1235~1240
    212衣宝廉.燃料电池—原理·技术·应用.北京:化学工业出版社. 2003:160~275
    213毕大武.带长脂肪链聚芳醚酮类聚合物制备与性能研究.吉林大学博士学位论文.2007:100
    214刘晨光.用于质子交换膜的磺化聚醚醚酮的合成和性能研究.吉林大学博士学位论文. 2005:62~64
    215 Y. Chikashige, Y. Chikyu, K. Miyatake, et al. Poly(arylene ether) Ionomers Containing Sulfofluorenyl Groups for Fuel Cell Applications. Macromolecules. 2005,38:7121~7126
    216梁勇芳.磺化杂萘联苯聚芳醚质子交换膜的研究.大连理工大学博士学位论文. 2007:108
    217熊传溪,闻荻江,皮正杰.超微细Al2O3增韧增强聚苯乙烯的研究.高分子材料科学与工程. 1994,4:69~72
    218张宏伟.二氮杂萘酮结构聚醚酮的改性及其用于燃料电池聚电解质膜的研究.浙江大学博士学位论文. 2006:72
    219 B.B.Bardin, S. V. Bordawekar, M. Neurock, et al. Acidity of Keggin-typeheterpolycompounds evaluated by catalytic probe reactions, sorption microcalorimetry, and density functional quantum chemical calculations. J. Phys. Chem. B. 1998,102(52):10817~10825
    220王哲,倪宏哲,张明耀.磷钨酸/磺化聚芳醚酮砜复合型高温燃料电池用质子交换膜. 2009,26(2):41~46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700