典型氯酚类化合物对稀有鮈鲫肝脏的毒性效应和机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯酚类化合物(Chlorophenols, CPs),尤其是五氯酚(Pentachlorophenol, PCP)和三氯酚(Trichlorophenol, TCP)作为廉价、高效的农药主要成分之一,在我国曾被广泛地用于木材防腐、杀菌、灭螺等农业生产。由于CPs残留可以稳定存在于环境中,且可通过呼吸道黏膜,或者皮肤接触等直接或间接方式,进入生物体的血液循环,最后大量蓄积在肝和肾脏当中,造成肝脏、肾脏、免疫及生殖系统的严重损伤,对人类的健康产生严重威胁。但其相关毒性作用及其分子机制尚未阐明。
     随着现代分子生物学和环境毒理学技术的发展与应用,污染环境与蛋白质组之间相互作用规律的研究,已成为环境蛋白质组学研究领域备受关注的热点问题之一,然而氯酚类化合物对肝脏毒性作用研究,目前还仅限于一些常规毒理学单一指标的分析。
     本研究以PCP和TCP两种典型氯酚类化合物为研究对象,采用我国特有实验用鱼—稀有鮈鲫(Gobiocypris rarus)为受试动物,以其肝脏蛋白表达谱的变化特征以及肝脏差异表达蛋白的基因转录水平等为切入点,利用比较蛋白质组学方法结合荧光定量PCR等分子生物技术,通过体内和体外暴露实验,从基因调控水平、差异表达蛋白的改变以及终点效应水平等三个方面,探讨CPs对稀有鮈鲫肝脏毒性效应及其分子作用机制,将为氯酚化合物的毒性评价、污染控制和环境监测提供科学依据。本研究主要结果如下:
     一、本实验利用稀有鮈鲫肝脏细胞原代培养模型,结合噻唑蓝实验(MTT法)和单细胞凝胶电泳(SCGE)方法,探讨在PCP、TCP单独及其复合物暴露条件下,对肝细胞生长存活率的抑制作用及细胞DNA的损伤效应。
     结果显示,与对照组相比,PCP和TCP单独与复合物暴露均对肝脏细胞正常生长产生明显抑制作用,各暴露组细胞存活率与暴露浓度具有明显的剂量-效应关系。低浓度暴露时(如0.5、2.5μg·L-1)具有显著抑制作用(p<0.05);高浓度暴露时(如25、50μg·L-1)具有极显著抑制作用(p<0.01)。SCGE实验结果显示,与对照组相比,12.5μg·L-1的TCP及复合暴露组均引起DNA显著损伤(p<0.05),12.5μg·L-1、50μg·L-1的PCP暴露组均能引起DNA极显著损伤(p<0.01)。可见,氯酚类化合物对稀有鮈鲫肝细胞正常生长均具有明显抑制作用,且引起其DNA损伤,具有肝细胞毒性。
     二、本实验将稀有鮈鲫随机分为空白对照组、TCP暴露组(暴露浓度:1、10、100μg·L-1)和PCP暴露组(暴露浓度:0.5、5、50μg·L-1),采用流水暴露系统(28d),电镜观察TCP和PCP暴露致稀有鮈鲫肝脏的组织病理学改变,分析其脏器系数(如性肉和肝肉指数等)的变化;同时,重点利用二维凝胶电泳(2-DE)结合质谱分析技术(MALDI-TOF-MS和TOF-MS-MS),研究TCP和PCP暴露28d后稀有鮈鲫肝脏差异表达蛋白的改变,探讨CPs肝脏毒性效应导致肝脏蛋白质表达谱的变化特征。
     结果显示,由Mascot软件检索SwissProt数据库鉴定差异蛋白点,共发现74个(其中:PCP和TCP暴露组差异表达蛋白点分别是39个和35个)可能与CPs肝脏毒性效应相关的差异表达蛋白点,通过质谱鉴定技术(MALDI-TOF-MS和TOF-MS-MS)成功鉴定其中29个差异蛋白。利用GO Terms软件,将这些差异表达蛋白功能分为肝脏脂类物质代谢与转运、能量代谢、氧化应激以及其它生物学功能相关蛋白四大类,通过比较发现,CPs暴露后肝脏差异表达蛋白中线粒体ATP合酶和脂肪酸偶联蛋白(FABPs)表达量均发生明显下调,显示氯酚类化合物的肝脏毒性主要干扰脂肪酸转运和代谢、影响线粒体ATP能量合成等生物学过程。同时,CPs暴露致稀有鮈鲫肝脏组织发生明显组织病理学改变,且使肝脏组织的LDH、GST等酶活性升高,SOD活性下降及MDA含量升高,表明CPs暴露导致肝脏细胞氧化应激并产生肝脏毒性效应。
     三、本实验结合荧光定量PCR技术,分析与暴露致稀有鮈鲫肝脏损伤的肝脏型脂肪酸结合蛋白b(liver-basic fatty acid binding protein b, L-FABP)、谷胱甘肽过氧化酶(glutathione peroxidase, GST)、线粒体ATP合成酶(Mitochondrial ATP synthase, MATPS)、卵黄蛋白原(vitellogenin, Vtg)、果糖-1,6-二磷酸酶(fructose-1,6-bisphosphatase 1b, F-1,6-BP)以及II型肽基精氨酸脱亚氨酸(peptidyl arginine deiminase, type II, PAD)等6个差异蛋白的基因在mRNA表达水平上的变化,探讨CPs暴露所致肝脏损伤效应在其相应基因mRNA表达水平上变化情况,进一步研究PCP和TCP暴露对稀有鮈鲫肝脏损伤效应的分子机制。
     PCR定量结果显示,与稀有鮈鲫肝脏损伤的主要相关蛋白在mRNA基因表达水平也发生变化,但与差异蛋白表达水平相比较,两者的变化情况存在不一致性。因此,线粒体ATP合成酶、类固醇磺基转移酶和肝脏脂肪酸偶联蛋白等有可能作为,氯酚类化合物致稀有鮈鲫的肝脏毒性效应的蛋白标志物或毒性效应标志物。
     综上所述,通过建立稀有鮈鲫肝细胞原代培养模型,结合体外暴露实验,证实CPs对稀有鮈鲫肝细胞具有明显毒性效应;体内暴露实验的结果显示,TCP和PCP暴露致稀有鮈鲫肝脏发生组织病理学改变,差异表达蛋白和相关基因mRNA的表达也发生变化,初步阐明CPs肝脏毒性效应的损伤机制主要是通过干扰肝脏脂肪酸转运和代谢、影响线粒体ATP酶能量合成等生物学过程;但差异表达蛋白变化特征和相关基因mRNA表达水平存在不一致性,推断稀有鮈鲫对CPs暴露损伤可能存在着更复杂的基因表达调控机制。
The chlorophenol chemicals (CPs) are toxic environmental pollutants that are considered to be ubiquitous, of all the CPs, 2,4,6-trichlorophenol (TCP) and Pentachlorophenol (PCP) had been heavily used to control termites and protect wood from fungal-rot and wood-boring insects throughout the world. The CPs is stable and persistent in the environment, including air, water and soil, and it also can be absorbed into the body by ingestion, inhalation and through the skin, which has been associated with an increased risk of human and rodents carcinogen. In current reports it suggested that residue of PCP in liver and kidney, may enhance toxicity and carcinogenicity of PCP, since it is capable of inducing oxidative damage,and other results indicated that the exposure to rats at high levels of PCP will lead to increase the body temperature, liver defects, damage to the immune system and reproductive defects, while severe exposure of PCP could cause an acute and occasionally fatal illness mainly due to PCPs cytotoxicity, but the correlated molecular damage mechanisms has not been clear clarification.
     Recently, with the development of molecular biology and it’s application in the environmental toxicology research,to research the principles and techniques for protein expression under polluted environment have long been of concern. Previous studies have mostly focused on the single toxicity respect of these chemicals and there is rarely report so far about the effect on global protein profiles exposed to CPs.
     Taking Gobiocypris rarus as the test animals, this study was designed to investigate the hepatotoxicity of chlorophenols on fish in genetic transcription, protein and enzyme activity levels from both in vitro and in vivo respectively. And this dissertation is to discuss the molecular mechanism of the toxic effect following the CPs exposure, the toxicoproteomic approach and the real–time PCR analysis method were applied to identify proteins differentially expressed in the livers of rare minnow. The results will provide useful data for not only the assessment of the potential risk of Chlorophenols, but also the understanding of their mechanism of action. The main results are as follows:
     1. The system of primary cultural hepatocytes from rare minnow was successfully established, and the hepatocyte of rare minnow were also extracted for primary culture, whereby the inhibition rate and DNA damage of hepatocyte exposed to these materials were examined by MTT assay and single-cell gel electrophoresis (SCGE), respectively. Results show that: Each group observed a inhibition effect on hepatocyte, furthermore, in each group, the low-dose exposure (0.5, 2.5μg·L-1) showed a obvious dose-effective and a significant inhibition effect compared with control group when reaching medium and high dose (25, 50μg·L-1). The SCGE results show that is a significant increase in DNA damage at PCP exposed dose of 12.5, 50μg·L-1 (p<0.01), TCP and joint exposure dose of 12.5μg·L-1 (p<0.05). There is significant (p<0.01, p<0.05) difference between the damage rate of these treated groups and that of control group, suggesting that the PCP and TCP have cytotoxicity and can induce the hepatocyte DNA strand to break in vitro.
     2. For further understanding of mechanisms of action and identify the potential protein biomarkers for CPs exposure, two-dimensional electrophoresis coupled with mass spectrometry (MALDI-TOF-MS) was used to identify the differentially expressed proteins in the livers of rare minnow following TCP exposure of 1, 10, 100μg·L-1, and PCP exposure of 0.5, 5, 50μg·L-1 under flow-through conditions for period time of 28d, respectively. The pathological of liver was associated with a hypertrophy of hepatocytes and damages to cellar structure by pathological observation, and the tissue somatic indices were also analysis.
     After comparison of the protein profiles between treated and control groups, 39 and 35 protein spots were found altered in abundance (>2-fold) from PCP and TCP treated groups, respectively. Matrix-assisted laser desorption/ionization (MALDI) tandem time-of-flight mass spectrometry (MALDI-TOF-MS) analysis allowed the unambiguous identification, and the 30 protein spots were identified successfully. The identified proteins were then matched to specific biological processes or functions by searching Gene Ontology (GO Terms) using Uniprot/Swissprot database and submitted to ingenuity, we classified those proteins manually to a variety of cellular biological processes, according to that took part in a variety of cellular biological processes such as: transport, metabolism of lipid, response to oxidative stress, protein repair, oxidative phosphorylation and other related processes. And the results show that the gonadosomatic index (GSI) was significantly greater than that of control, while, the hepatosomatic index (HSI) for female and male contained statistically differences compared to control groups. PCP increased LDH and GST activity in liver of Gobiocypris rarus, and decreased SOD activity, these results indicate that exposure to Chlorophenols may lead to generation of free radicals, depletion of antioxidants and peroxidation of lipids, thus resulting in oxidative stress in liver of the Gobiocypris rarus.
     3. The transcriptional analysis of six mRNA encoding proteins altered by PCP exposure in the proteome analysis was determined by real-time PCR, such as Mitochondrial ATP synthase, Steroid Sulfotransferase-like protein, Liver-basic fatty acid binding protein b and Vitellogenin were observed to be potential biomarker in toxicological studies of rare minnow following PCP exposure, which should be the main focus of studies on mechanism of PCP toxicity in the future.
     In conclusion, the system of primary cultural hepatocytes from Gobiocypris rarus was successfully established. The in vitro analysis using the primary cultural hepatocyte was carried out to confirm that the PCP and TCP have cytotoxicity can induce the hepatocyte DNA strand to break. Based on the observed histopathological changes, and the differentially expressed proteins and the mRNA level in the livers of Gobiocypris rarus following TCP and PCP exposure in vivo, we can concluded that the molecular damage mechanisms of toxicity effect of CPs mainly by the interfering the fatty acid transporting, the mitochondrial ATP synthase and the related fundamental regulation processes. In addition, the discrepant results between mRNA and protein levels suggested that complicated regulatory mechanisms of gene expression were implicated in the response to chlorophenols exposure.
引文
[1]罗茜,查金苗,雷炳莉,等.三种氯代酚的水生态毒理和水质基准[J].环境科学学报, 2009,29(11): 2241-2249.
    [2] ATSDR. Toxicological profile for pentachlorophenol [R]. ATSDR/TP289/19. Atlanta: Department of Health and Human Services, Public Health Service: Agency for Toxic Substances and Disease Registry, 2001.1-11.
    [3]董军,孙丽娜,陈若虹,等.珠江口地区表层水中氯酚化合物污染研究.环境科学与技术,2009, 32(7): 82-85.
    [4] Ge J C, Pan J L, Fei Z L, et al. Concentrations of pentachlorophenol (PCP) in fish and shrimp in Jiangsu Province, China. Chemosphere, 2007, (69): 164-169.
    [5]王芳,林少彬,陈亚妍.氯酚在鲫鱼体内的分布、存在形式与生物富集研究.卫生研究, 1999.28 (3) :169-171
    [6] U. S. EPA. 1985. Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses [R]. National Technical Information Service Accession Number PB85-227049. Washington, D C: U. S. Environmental Protection Agency
    [7] Gao X J, Fang Y J, Wang C H, et al. Toxicity effects of two kinds of typical chlorophenols on hepatocytes of Gobiocypris Rarus [J]. Asian Journal of Ecotoxicology, 2009, 4(5): 682-687
    [8]杨淑贞,韩晓冬,陈伟.五氯酚对生物体的毒性研究进展,环境与健康杂志,2005, 22(5): 396-398.
    [9] Dimich WH, Hertazman C, Teschke K, et al. Reproductive effects offemales expodsed to chlorophenate wood preservatives in sawmill industry. Sc J Work E, 1996, 22: 267-273.
    [10]陈海刚,李兆利,徐韵,等.五氯酚钠对鲤鱼肾细胞DNA损伤的体内和体外研究.环境与健康杂志, 2006,23(6): 515-517.
    [11]郑唯华,周颖,屈卫东,等.五氯酚暴露与肿瘤风险关系的Meta分析,卫生研究,2008, 37(2): 151-154.
    [12] Johnson W W, Finley M T. Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates [M ]. Washington DC: US Department of Interior, fish and Wildlife Service, 2008,98-102.
    [13] Yin D, Hu S, J in H, et al.. Deriving freshwater quality criteria for 2, 4,6-trichlorophenol for p rotection of aquatic life in China.Chemosphere, 2003,52: 67-73.
    [14] Besser J M, Wang N, Dwyer F J, et al. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part II. Chronic toxicity of copper and pentachlorophenol to two endanger species and two surrogate species. Archives of Environmental Contamination and Toxicology, 2005, 48: 155-161
    [15] Li D, Paulina S. Chlorophenols and chlorocatechols induce apoptosis in human lymphocyres(in vitro). Toxicology Letters, 2009, 191:246-252.
    [16]李延,赵庆顺,尹大强,等.五氯酚诱导斑马鱼p53基因点突变的nested PCR-RFLP分析.中国环境科学,2005,25(3): 357-360.
    [17] Zha J.M, Sun L.W, Wang Z.J, et al. Assessment of 17α-ethinylestradiol effects and underlying mechanisms in a continuous, multigeneration exposure of the Chinese rare minnow(Gobiocypris rarus), Toxicology and Applied Pharmacology, 2008, 226:298-308.
    [18]周永欣,成水平,胡炜.稀有鮈鲫一种新的鱼类毒性试验材料,动物学研究,1995,16(1):59-63.
    [19] Chanchal K, Matthias M. Bioinformatics analysis of mass spectrometry-based proteomics data sets. FEBS Letters 2009, 583:1703-1712.
    [20] Fusaro V.A., Mani D.R., Mesirov, J.P. et al. Prediction of highresponding peptides for targeted protein assays by mass spectrometry. Nat. Biotechnol. 2009, 27: 190-198.
    [21]高先军,房彦军,王彩红,等.两种典型氯酚类化合物暴露致稀有鮈鲫肝细胞的损伤效应.生态毒理学,2006,4(5):682-687.
    [22]邓颖,陈杰,毕惠娥,等.原代肝细胞培养及其在药物代谢和毒理学研究中的应用进展.中国药理学通报,2006,22(8): 900-903.
    [23] Zha J, Wang Z, Schlenk D. Effects of pentachlorophenol on the reproduction of Japanese medaka (oryzias latipes). Chemico-biological Interactions, 2006, 161: 26-32.
    [23] Singh N.P, Stephens R.E. Microelectronics study of radiation induced DNA damage in individual mammalian cells. Mut Res, 1998, 383: 167-175.
    [24]石艳玲,王磊,周祺. Vero细胞对2, 4, 6-三氯酚的毒性和敏感性分析.生态毒理学报,2008,3(5) :479-487.
    [25]魏雪涛,蒋建军,林静芳.五氯酚钠诱导小鼠遗传损伤的研究.中国公共卫生,2004,20(8) :950-952.
    [26]徐晓白. 1990.有毒有机物环境行为和生态理论论文集.北京:中国科学技术出版社,187-191.
    [27] Jekat F.W, Meisel M.L, Winterhoff H. Effect of pentachlorophenol (PCP) on the pituitary and thyroidal hormone regulation in the rat. Toxicology Letters, 1994, 71(1): 9-25
    [28] Daniel V, Huber W, Bauer K, Opelz G. Impaired in-vitro lymphocyte responses in patients with elevated pentachlorophenol (PCP) blood levels. Archives of Environmental Health, 1995, 50(4): 287-292
    [29]周群芳,傅建捷,江桂斌.水体硝基苯对日本青鳉和稀有鮈鲫的亚急性毒理学效应,中国科学B辑:化学,2007, 37(2): 197-206
    [30] Duan Z H, Zhu L, Zhu L Y. et al. Individual and joint toxic effects of pentachlorophenol and bisphenol A on the development of zebrafish (Danio rerio) embryo. Ecotoxicology and Environmental Safety, 2008, 71: 774-780.
    [31] Hsieh, S.H, Tsai, K.P, et al. The combined toxic effects of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata. Water Res,2006, 40(10): 1957-1964.
    [32] Zhang M, Yin D.Q, Kong F.X. The changes of serum testosterone level and hepatic microsome enzyme activity of crucian carp (Carassius carassius) exposed to a sublethal dosage of pentachlorophenol. Eco-toxicology and Environmental Safety, 2008, 71: 384-389.
    [33] Qian, Y, Wang, J., Zhang, M. Effects of four chlorobenzenes on serum sex steroids and hepatic microsome enzyme acticities in crucian carp (Carassius auratus). Chemosphere, 2004, 57: 127–133.
    [34] Patton, W. F. A thousand points of light: the application of fluorescence detection technologies to two-dimensional gel electrophoresis. and proteomics. Electrophoresis, 2000, 21, 1123-1144.
    [35] Dowling, V. A, Sheehan, D. Proteomics as a route to identification of toxicity targets in environmental toxicology. Proteomics, 2006, 6 (20), 5597–5604.
    [36] Wei, Y. H, Wang D. Z, Dai J. Y, et al. Proteomic Analysis of Hepatic Protein Profiles in Rare Minnow (Gobiocypris rarus) Exposed to Perfluorooctanoic Acid. Journal of Proteome research, 2008, 7: 1729-1739.
    [37] Wei, Y. H, Dai, J. Y, Liu, M, et al. Estrogen-like properties of perfluoroctanoic acid as revealed by expressing hepatic estrogen-responsive genes in rare minnows (Gobiocypris rarus). Environ. Toxicol. Chem, 2007, 26 (11): 2440–2447.
    [38]房彦军,高先军,高志贤,等.三氯酚暴露致致稀有鮈鲫肝脏损伤的比较蛋白质组学研究,生态毒理学报. 2009, 4(6): 834-840.
    [39] Badr, M. Z, Birnbaum, L. S. Enhanced potential for oxidative stress in livers of senescent rats by the peroxisome proliferator-activated receptor alpha agonist perfluorooctanoic acid. Mech. Ageing Dev, 2004, 125 (1): 69–75.
    [40] Dimitris P, Petros K, Martina S, et al. Detoxification of 2,4-dichlorophenol by the marine microalga Tetraselmis marina. Phyochemistry, 2008, 69:707-714.
    [41] Zhang, H. X, Shi, Z. M, Liu, Y, et al. Lipid homeostasis and oxidative stress in the liver of male rats exposed to perfluorododecanoic acid. Toxicol. Appl. Pharmacol, 2008, 227(1): 16–25.
    [42] Day, J.A, Saunders, F.M. Glycosidation of chlorophenols by Lemna minor. Environ. Toxicol. Chem, 2004, 23: 613-620.
    [43] Maher, P. The effects of stress and aging on glutathione metabolism. Ageing Res. Rev. 2005, 4 (2): 288–314.
    [44] Yang, S.Y, Wu, R.S.S, Kong, R, et al. Biodegradation and enzymatic responses in the marine diatom skeletonema costatum upon exposure to 2,4-dichlorophenol. Aquat.Toxicol, 2002, 59: 191-200.
    [45] Bartz R, Zehmer J. K, Zhu M, et al. Dynamic activity of lipid droplets: protein phosphorylation and GTP-mediated protein translocation. J Proteome Res, 2007, 8: 3256-3265.
    [46] Matthias S, Ruth B.G. Functional proteomics in lipid research: Lipases, lipid droplets and lipoproteins. Journal of proteomics, 2009, 1006-1018.
    [47] Kershaw E.E, Hamm J.K, Verhagen L.A, et al A dipose triglyceride lipase: function, regulation by insulin, and comparison with adiponutrin. Diabetes, 2006, 1: 148-157.
    [48] Jessani N, Young J.A, Diaz S.L, et al. Class assignment of sequence-unrelated members of enzyme superfamilies by activity-based protein profiling. Angew Chem, 2005, 16:2452-2455.
    [49] Julie, C, Brodeur, D, George, D, et al. Inhibition of oxygen consumption by pentachlorophenol and tetrachloroguaiacol in rainbow trout (Oncorhynchusmykiss). Aquatic Toxicology, 2001, 54, 143–148.
    [50] Jurgella, G. F, Marwah, A, Malison, J.A, et al. Effects of xenobiotics and steroids on renal and hepatic estrogen metabolism in lake trout. Gen. Comp. Endocrinol, 2006, 148, 273–281.
    [51] Judith, Storch, Alfred E.A.T. The fatty acid transport function of fatty acid-binding proteins. Biochimica et Biophysica Acta, 2000, 1486: 28–44.
    [52] Kimie, S, Kyung-Sun, K, Akihiko, H, et al. Inhibition of apoptosis by pentachlorophenol in v-myc-transfected rat liver epithelial cells: relation to down-regulation of gap junctional intercellular communication. Cancer Letters, 2001, 173: 163–174.
    [53] Wang, L.Q, Margaret, O.J. Sulfonation of 17β-estradiol and inhibition of sulfotransferase activity by polychlorobiphenylols and celecoxib in channel catfish, Ictalurus punctatus. Aquatic Toxicology, 2007, 81: 286–292.
    [54]陈汉,王慧君,李学锋.甲基苯丙胺对大鼠脑组织中NO, SOD和MDA的影响.中国药物依赖性杂志, 2007, (2): 25-31.
    [55] Luebker, D. J, Hansen, K. J, Bass, N. M, et al. Interactions of Chlorophenols with rat liver fatty acidbinding protein. Toxicology,2002, 176: 175–185.
    [56] Merrick, B. A, Bruno, M. E. Genomic and proteomic profiling for biomarkers and signature profiles of toxicity. Curr. Opin. Mol. Ther, 2004, 6: 600–607.
    [57] McConnachie, P.R, Zahalsky, A.C. Immunologic consequences of exposure to pentachlorophenol. Arch Environ Health, 1991, 46: 249–253.
    [58] Zhang, M, Yin, D.Q, kong, F.X, The changes of serum testosterone level and hepatic microsome enzyme activity of crucian carp (Carassius carassius) exposed to a sublethal dosage of pentachlorophenol. Ecotoxicology and environmental safety,2008, 71: 384–389.
    [59] Ohkimoto, K, Liu, M.Y, Suiko, M., Sakakibara,Y., Liu, M.C. Characterization of a zebrafish estrogen-sulfating cytosolic sulfotranferase: inhibitory effects and mechanism of action of phytoestrogens. Chem. Biol. Interact,2004, 141: 1–7.
    [60] Plaitakis, A., Zaganas, I. Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain, 2001, 66: 899–908.
    [61] Proudfoot, A. Pentachlorophenol poisoning. Toxicol Rev, 2003, 22:3–11.
    [62] Strott, C.A. Sulfonation and molecular action. Endocrine Rev, 2005,24:703–732.
    [63] Shoshana, B.N., Jackob, M. Mouse methionine sulfoxide reductase B: effect of selenocysteine incorporation on its activity and expression of the seleno-containing enzyme in bacterial and mammalian cells. Biochemical and Biophysical Research Communications, 2002, 297, 956–961.
    [64] Thibaut, R., Porte, C. Effects of endocrine disrupters on sex steroid synthesis and metabolism pathways in fish. J. Steroid Biochem. Mol. Biol, 2004, 92: 485–494.
    [65] Hurk, V.D.P., Kubiczak, G.A., Lehmler, et al. Hydroxylated polychlorinated biphenyls as inhibitors of the sulfation and glucuronidation of 3-hydroxybenzo[a]pyrene. Environ. Health Perspect, 2002, 110: 343–348.
    [66] Vijayaraj, P., Kr?ger, C., Reuter, U., Windoffer, R., Leube, R.E., Magin, T.M., Keratins regulate protein biosynthesis through localization of GLUT1 and upstream of AMP kinase and Raptor. J Cell Biol, 2009, 187,157–159.
    [67] Wang, Y.J., Lin, J.K., Estimation of selected phenols in drinking water with in situ acetylation and study on the DNA damaging properties of polychlorinated phenols. Arch Environ Contam Toxicol, 1995, 28, 537–542.
    [68] Wang, L.Q., James, M.O. Inhibition of sulfotransferases by xenobiotics. Curr. Drug Metab, 2006, 7, 83–104.
    [69] Zhang, H. X, Shi, Z. M, Dai, J. Y. Lipid homeostasis and oxidative stress in the liver of male rats exposed to perfluorododecanoic acid. Toxicol. Appl. Pharmacol, 2008, 227(1), 16–25.
    [70] Tokutomi, Y, Araki, N, Kataoka, K, et al. Oxidation of Prx2 and phosphorylation of GRP58 by angiotensin II in human coronary smooth muscle cells identified by 2D-DIGE analysis. Biochem. Biophys. Res. Commun. 2007, 364(4): 822–830.
    [71] William, H.D., Hallett, W.J. Positive and negative regulation of Natural Killer cells: Therapeutic implications.Seminars in Cancer Biology, 2006, 16, 367–382.
    [72] Zhang, M., Yin, D.Q., Kong, F.X. The changes of serum testosterone level and hepatic microsome enzyme activity of crucian carp(Carassius carassius) exposed to a sublethal dosage of pentachlorophenol. Ecotoxicology and Environmental Safety, 2008, 71, 384–389.
    [73] Zhang, H., Evenhuis, J.P., Thorgaard, G.H., et al. Cloning, characterization and genomic structure of the natural killer cell enhancement factor (NKEF)-like gene from homozygous clones of rainbow trout (Oncorhynchus mykiss). Dev Comp Immunol, 2001, 25, 25–35.
    [74] Vattanaviboon, P, Seeanukun, C, Whangsuk, W, et al. Important role for methionine sulfoxide reductase in the oxidative stress response of Xanthomonas campestris. pv. phaseoli. J. Bacteriol, 2005, 187 (16): 5831–5836.
    [75] Yeung, L. W, So, M. K, Jiang, G., et al.Perfluorooctanesulfonate and related fluorochemicals in human blood samples from China. Environ. Sci. Technol, 2006, 40 (3): 715–720.
    [76] Zimmerman, A.W, Moerkerk, V, Veerkamp, H.T. Ligand specificity and conformational stability of human fatty acid binding proteins. Int. J. Biochem. Cell Biol, 2001.33, 865–876.
    [77] Yeung, L. W, Guruge, K. S, Yamanaka, N, et al. Differential expression of chicken hepatic genes responsive to PFOA and PFOS. Toxicology, 2007, 237(1–3): 111–125.
    [78] Dowling, V. A, Sheehan, D. Proteomics as a route to identification of toxicity targets in environmental toxicology. Proteomics, 2006, 6 (20): 5597–5604.
    [79] Merrick, B. A, Bruno, M. E. Genomic and proteomic profiling for biomarkers and signature profiles of toxicity. Curr. Opin. Mol. Ther, 2004, 6 (6), 600–607.
    [1]郑唯华,周颖,屈卫东,蒋颂辉,陈丽.五氯酚暴露与肿瘤风险关系的Meta分析,卫生研究,2008, 37(2): 151-154.
    [2]罗茜,查金苗,雷炳莉,许宜平,王子健.三种氯代酚的水生态毒理和水质基准.环境科学学报, 2009, 29(11): 2241-2249.
    [3] Jaromir M, Paulina S. Chlorophenols and chlorocatechols induce apoptosis in human lymphocyres(in vitro). Toxicology Letters, 2009, 191:246-252.
    [4]董军,孙丽娜,陈若虹,梁锐杰.珠江口地区表层水中氯酚化合物污染研究.环境科学与技术,2009, 32(7): 82-85.
    [5] Besser JM, Wang N, Dwyer FJ, et al. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part II. Chronic toxicity of copper and pentachlorophenol to two endanger species and two surrogate species. Archives of Environmental Contamination and Toxicology, 2005. 48: 155-161
    [6] Grobler D F, Badenhorst J E, Kempster P L. Chlorinatedhydrocarbon pesticides and hlorophenols in the isipingo estuary, natal, Republic of South Africa. Marine Pollution Bulletin, 1996. Pcbs, 32: 572-575
    [7] Zhou Y, Jiang Q, Peng Q, et al. Development of a solid phase micro-extraction-gas chromatography-mass spectrometry method for the determination of pentachlorophenol in human plasma using experimental design. Chemosphere, 2007, 70: 256-262.
    [8] Gao J, Liu L, Liu X, et al. Levels and geographic distribution of 2, 4-dichlorophenol, 2, 4, 6-trichlorophenol, pentachlorophenol in surface waters of china. Chemosphere, 2008, 71: 1181-1187.
    [9]杨丽,徐镜波,刘征涛.苯酚类化合物致突变Ames试验研究.东北师范大学学报(自然科学版) , 2003,35 (1) : 82-88.
    [10] US EPA. 2000. 2, 4, 6-Trichlorophenol ( CAS RN 8820622 ) [OL]. Washington, DC: Environmental Protection Agency, 2009-06-09, http: //www. epa. gov/ iris/ subst /012. htm
    [11]尹大强,朱含开,吴兆毅.典型氯酚类化合物分子生态毒性研究, 3th全国环境化学会议论文集,1031-1033.
    [12]陈海刚,李兆利,徐韵,孔志明,刘征涛.五氯酚钠对鲤鱼肾细胞DNA损伤的体内和体外研究.环境与健康杂志, 2006,23(6): 515-517
    [13]高先军,房彦军,王彩红,等.两种典型氯酚类化合物暴露致稀有鮈鲫肝细胞的损伤效应,生态毒理学报,2009,4(5): 682-687.
    [14]李延,赵庆顺,尹大强.五氯酚诱导斑马鱼p53基因点突变的nested PCR-RFLP分析.中国环境科学,2005,25(3):357-360.
    [15]宋瑞霞,阮鸿洁,刘征涛.五氯酚钠致突变性研究.中国公共卫生, 2008, 24(3): 337-339
    [16] Alexander H C, Dill D C, Smith LW, et al. Bisphenol a: Acute aquatic toxicity. Environmental Toxicology and Chemistry, 1988, 7:19-25.
    [17]蒋琳,周珍,胡俊,等.五氯酚和八氯代二苯并二英复合暴露对斑马鱼胚胎发育的毒性效应.生态毒理学报, 2008, 3 ( 4 ) : 370-376.
    [18] Yin D, J in H, Yu L, et al. Deriving freshwater quality criteria for 2, 4-dichlorophenol for p rotection of aquatic life in China. Environmental Pollution, 2003, 122: 217-223.
    [19] Zhang X, Zha J, Li W, et al. Effects of 2, 4-dichlorophenol on the expression ofvitellogenin and estrogen recep tor genes and physiology impairments in chinese rare minnow ( gobiocyp ris rarus). Environmental Toxicology, 2008.23: 694-701.
    [20] Zha J, Wang Z, Schlenk D. Effects of pentachlorophenol on the reproduction of japanese medaka ( oryzias latipes). Chemico-biological Interactions, 2006, 161: 26-32.
    [21] Bread A P, Mcrae A C, Rawlings N C., Reproductive efficiency in mink(mustela vision) treated with pesticides lindane, caardane, carbofuran and PCP. J Peroid Fertil,1997,111: 21-28.
    [22] Bemard B K, hobema A M, Brown W K, et al. Oral (gavage) two generation reproduction study of PCP in rats. Int J Toxicl, 2002, 21:301-318.
    [23] Karmous W, Wolf N. Reduced birthweight and length in the offspring of females expodsed to PCDFs, PCP and lindane. Environ health perspect, 1995,103:1120-1125..
    [24] Dimich W H, Hertazman C, Teschke K, et al. Reproductive effects offemales expodsed to chlorophenate wood preservatives in sawmill industry. Sc J Work E, 1996, 22: 267-274.
    [25] Hurk, V.D.P., Kubiczak, G.A., Lehmler, H.J., James, M.O., Hydroxylated polychlorinated biphenyls as inhibitors of the sulfation and glucuronidation of 3-hydroxybenzo[a]pyrene. Environ. Health Perspect. 2002, 110: 343-350.
    [26]房彦军,高先军,高志贤,等.三氯酚暴露致致稀有鮈鲫肝脏损伤的比较蛋白质组学研究,生态毒理学报. 2009, 4(6): 834-840.
    Amita, L., Rajpal, S., Kashyap,B., Atya, K., Sanjeev, G., Hemant, J.P., Hatim, F.D., Giridhar, M..T., 2008. Modulation of signal transduction pathways in lymphocytes due to sub-lethal toxicity of chlorinated phenol. Toxicology Letters.179, 23–28.
    Anming, X.,Vineet, K.S., Guillermo, C., and Radheshyam, K.J., 2000. Molecular characterization of the ferric-uptake regulator, Fur, from Staphylococcusaureus. Microbiology. 146, 659–668.
    Bass, N.M., 1990. Fatty acid-binding protein expression in the liver: its regulation and relationship to the zonation of fatty acid metabolism. Mol Cell Biochem. 98, 167–176.
    Chen, J., Jiang,J., Zhang, F., Yu, H., and Zhang, J.,,2004. Cytotoxic effects of environmentally relevant chlorophenols on L929 cells and their mechanisms. Cell Biology and Toxicology.20, 183–196.
    Chen, Z.W., Hassan-Abdulah, A., Zhao, G., Jorns, M.S., Mathews, F.S., 2006. Heterotetrameric sarcosine oxidase: structure of a diflavin metalloenzyme at 1.85 A resolution. J Mol Biol. 360, 1000–1018.
    Chlumsky, L.J., Zhang, L., Jorns, M.S., 1995.Sequence analysis of sarcosine oxidase and nearby genes reveals homologies with key enzymes of folate one-carbon metabolism. J Biol Chem. 270, 18252–18259.
    Coughtrie, M.W.H., 1996. Sulphation catalysed by the human cytosolic sulphotransferases-chemical defence or molecular terrorism. Hum. Exp. Toxicol. 15, 547–555.
    Charles, A.S., 2004. Hyperinsulinism/hyperammonemia syndrome: insights into the regulatory role of glutamate dehydrogenase in ammonia metabolism. Molecular Genetics and Metabolism. 81,S45–S51.
    Dowling, V.A., Sheehan, D., 2006. Proteomics as a route to identification of toxicity targets in environmental toxicology. Proteomics. 6, 5597–5604.
    Falany, C.N., 1991. Molecular enzymology of human liver cytosolic SULTs. Trends Pharmacol. Sci. 12, 255–259.
    Gregory, G. M., Barbara, P.A., Avery, L. M., John, T.M., Ann, B.K., Friedhelm, S., 2006. Liver fatty acid binding protein gene ablation potentiates hepatic cholesterol accumulation in cholesterol-fed female mice. Am J Physiol Gastrointest Liver Physiol. 290, G36–G48.
    Lu, L., Shen, Y.W., 2002. Acute toxicity of phenol, alkyl benzene, nitrobenzene and water sample to sword fish (Xiphophorus helleri) and rare minnow. Res Environ Sci.15:57–59 (in Chinese) .
    Hanstein,W.G., 1976. Uncoupling of oxidative phosphorylation. Biochim.Biophys.Acta.456, 129–148.
    Herbert, W., Lionel, R., Nathan, B., 2005. Methionine sulfoxide reductases: history and cellular role in protecting against oxidative damage. Biochimica et Biophysica Acta 1703, 203– 212.
    Jaume F., Marc, Y.V., Daniel, A.., Aureli, V.T., Meritxell B., Marta, L., Francesc, X. S., Victor, R., Antoni, C., Merce, P., 2009. Evaluation of pathways involved in pentachlorophenol-induced apoptosis in rat neurons. NeuroToxicology.30, 451–458.
    Josef, Hou?těk., Andrea, Pícková., Alena Vojtí?ková., Tomá? Mrá?ek., Petr Pecina., Pavel Je?ina., 2006. Mitochondrial diseases and genetic defects of ATP synthase. Biochimica et Biophysica Acta (BBA)– Bioenergetics.1757, 1400–1405.
    Juhl, U., Witte, I., Butte, W., 1985. Metabolism of pentachlorophenol to tetrachlorohydroquinone by human liver homogenate. Bull Environ Contam Toxicol. 33, 596–601.
    Julie, C., Brodeur, D., George, D., R.Scott McKinley, 2001. Inhibition of oxygen consumption by pentachlorophenol and tetrachloroguaiacol in rainbow trout (Oncorhynchusmykiss). Aquatic Toxicology. 54, 143–148.
    Jurgella, G.F., Marwah, A., Malison, J.A., Peterson, R., Barry, T.P., 2006. Effects of xenobiotics and steroids on renal and hepatic estrogen metabolism in lake trout. Gen. Comp. Endocrinol. 148, 273–281.Judith, Storch., Alfred E.A.T., 2000. The fatty acid transport function of fatty acid-binding proteins. Biochimica et Biophysica Acta. 1486, 28–44.
    Kimie, S., Kyung-Sun, K., Akihiko, H., Ryuichi, H., James, E.T., Tohru, I., 2001. Inhibition of apoptosis by pentachlorophenol in v-myc-transfected rat liver epithelial cells: relation to down-regulation of gap junctional intercellular communication. Cancer Letters. 173, 163–174.
    Wang, L,Q., Margaret, O.J., 2007. Sulfonation of 17β-estradiol and inhibition of sulfotransferase activity by polychlorobiphenylols and celecoxib in channel catfish, Ictalurus punctatus. Aquatic Toxicology. 81, 286–292.
    Lundberg, K., Nijenhuis, S., Vossenaar, E.R., Palmblad, K., Klareskog, L., Zendman A.J., Harris H.E., 2005. Citrullinated proteins have increased immunogenicity and arthritogenicity and their presence in arthritic joints correlates with disease severity. Arthritis Res Ther. 7, 458–467.
    Luebker, D. J., Hansen, K. J., Bass, N. M., Butenhoff, J. L., Seacat, A. M., 2002. Interactions of fluorochemicals with rat liver fatty acidbinding protein. Toxicology.176, 175–185.
    Merrick, B. A., Bruno, M. E., 2004.Genomic and proteomic profiling for biomarkers and signature profiles of toxicity. Curr. Opin. Mol. Ther. 6, 600–607.
    McConnachie, P.R., Zahalsky, A.C., 1991. Immunologic consequences of exposure to pentachlorophenol. Arch Environ Health.46, 249–253.
    Zhang, M., Yin, D.Q., kong, F.X., 2008.The changes of serum testosterone level and hepatic microsome enzyme activity of crucian carp (Carassius carassius) exposed to a sublethal dosage of pentachlorophenol. Ecotoxicology and environmental safety. 71, 384–389.
    Ohkimoto, K., Liu, MY., Suiko, M., Sakakibara,Y., Liu, M.C., 2004. Characterization of a zebrafish estrogen-sulfating cytosolic sulfotranferase: inhibitory effects and mechanism of action of phytoestrogens. Chem. Biol. Interact.141, 1–7.
    Plaitakis, A., Zaganas, I., 2001. Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain. J Neurosci Res. 66, 899–908.
    Proudfoot, A.., 2003. Pentachlorophenol poisoning. Toxicol Rev.22, 3–11.
    Renner, G., Hopfer, C., 1990. Metabolic studies on pentachlorophenol(PCP) in rat. Xenobiotica.20, 573–582.
    Roberts, H.J., 1990. Pentachlorophenol-associated aplastic anaemia red cell aplasia leukaemia and other blood disorders. J. Florida Med Assoc.77, 86–90.
    Strott, C.A., 2005. Sulfonation and molecular action. Endocrine Rev. 24, 703–732.
    Shoshana, B.N., Jackob, M., 2002. Mouse methionine sulfoxide reductase B: effect of selenocysteine incorporation on its activity and expression of the seleno-containing enzyme in bacterial and mammalian cells. Biochemical and Biophysical Research Communications. 297, 956–961.
    Thibaut, R., Porte, C., 2004. Effects of endocrine disrupters on sex steroid synthesis and metabolism pathways in fish. J. Steroid Biochem. Mol. Biol. 92,485–494.
    Hurk, V.D.P., Kubiczak, G.A., Lehmler, H.J., James, M.O., 2002. Hydroxylated polychlorinated biphenyls as inhibitors of the sulfation and glucuronidation of 3-hydroxybenzo[a]pyrene. Environ. Health Perspect.110, 343–348.
    Vijayaraj, P., Kr?ger, C., Reuter, U., Windoffer, R., Leube, R.E., Magin, T.M., 2009. Keratins regulate protein biosynthesis through localization of GLUT1 and upstream of AMP kinase and Raptor. J Cell Biol. 187,157–159.
    Wang, Y.J., Lin, J.K., 1995. Estimation of selected phenols in drinking water with in situ acetylation and study on the DNA damaging properties of polychlorinated phenols. Arch Environ Contam Toxicol.28, 537–542.
    Wang, L.Q., James, M.O., 2006. Inhibition of sulfotransferases by xenobiotics. Curr. Drug Metab. 7, 83–104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700