兴安落叶松不同生长时期诱导防御基因表达谱的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兴安落叶松(Larix gmelinii)是中国东北地区最具经济意义和生态价值的重要树种之一。目前,对兴安落叶松生长发育及抗性相关基因知之甚少。为此,采用喷雾法对松苗进行非离体处理,分别喷施0.1mM的茉莉酸和茉莉酸甲酯水溶液,诱导6h后,剪取相距松苗顶端30cm处的针叶用CTAB法进行总RNA提取,应用短读序测序技术—-Illumina测序技术对兴安落叶松进行转录组de novo测序、组装;分别构建茉莉酸和茉莉酸甲酯诱导6h后兴安落叶松的数字基因表达谱,分析不同生长时期经由茉莉酸和茉莉酸甲酯诱导的兴安落叶松基因表达谱的变化。结果如下:
     转录组通过单次运行测序得到25,977,782条短读序列,相互缀连成545,211个叠连群,锚定出92,511个框架和平均读长为517nt的51,157个Unigene,其中包含了脂氧合酶基因、苯丙氨酸解氨酶基因、丝氨酸蛋白酶抑制剂基因、半胱氨酸蛋白酶抑制剂基因和几丁质酶基因等若干与抗虫、抗病相关的基因。把组装得到的Unigene在不同的数据库中进行比对,有32,445个独特基因序列与Nr数据库中蛋白相似;与COG数据库中的序列同源的Unigene9,920个,分为25种功能;基于与GO数据库中序列的同源性,把13,317个Unigene分为44个功能类群;在KEGG(?)库中14,462个Unigene进行Pathway注释,涉及到的Pathway有119个,有36.76%的Unigene参与到代谢途径、次生代谢产物的生物合成途径中。基于测序结果,经Blastx有32,047个Unigene得到编码区核酸序列和氨基酸序列,为进一步研究相关基因的功能提供了大量的本底数据。
     数字基因表达谱测序有5个样本,分别得到350万到590万数量不等的原始序列标签,去冗余后获得了52,040个参考基因;差异表达基因中孤儿序列数量低于30%;多数差异表达基因显著富集于分子功能Ontology中的氧化还原酶活性功能。从总体上研究不同诱导处理后,生长时期不同的兴安落叶松mRNA的表达变化情况,对样品DGE数据库间的差异表达基因进行分析,茉莉酸与茉莉酸甲酯诱导处理后针叶差异表达基因数量相近,多数为下调表达;抽芽后120天的兴安落叶松针叶诱导处理后上调表达和下调表达基因数量均多于相同处理后抽芽60天的针叶。
     兴安落叶松经茉莉酸和茉莉酸甲酯诱导后,代谢相关基因差异表达变化的数量约为次生代谢相关基因变化数量的2倍。分别对相同生长时期不同诱导处理和不同生长时期相同诱导处理的兴安落叶松差异表达基因进行分析,且着重分析与抗虫或抗病相关的苯丙氨酸、酪氨酸和色氨酸的生物合成,苯丙酸类化合物生物合成、芥子油苷生物合成和α-亚麻酸代谢途径中的关键酶基因的差异表达。
     抽芽后60天的兴安落叶松经茉莉酸和茉莉酸甲酯分别诱导处理后,天冬氨酸解氨酶、苯丙氨酸解氨酶、反式肉桂酸4-单加氧酶、松柏醛脱氢酶、转移酶活性、糖基转移酶和脂氧合酶基因表达量变化趋势相同,表达量均明显高于对照;茉莉酸诱导3-脱氢奎尼酸脱水酶、莽草酸脱氢酶和香豆酸3-羟化酶基因下调表达,而茉莉酸甲酯诱导其上调表达。
     抽芽后120天的兴安落叶松经茉莉酸和茉莉酸甲酯分别诱导处理后,3-脱氢奎尼酸脱水酶、莽草酸脱氢酶、天冬氨酸解氨酶、香豆酸3-羟化酶、松柏醛脱氢酶、转移酶活性、糖基转移酶和脂氧合酶的基因表达量变化趋势相同,表达量明显高于对照;茉莉酸诱导的苯丙氨酸解氨酶和反式肉桂酸4-单加氧酶的基因上调表达,而茉莉酸甲酯诱导其下调表达。
     对不同生长时期相同诱导处理后差异表达基因分析显示,抽芽后120天的兴安落叶松经茉莉酸诱导后与相同诱导处理抽芽后60天的兴安落叶松相比更侧重于能量合成与代谢,而经茉莉酸甲酯诱导后则侧重于诱导植物化学防御。无论是茉莉酸诱导还是茉莉酸甲酯诱导,抽芽后120天的兴安落叶松,苯丙氨酸解氨酶和脂氧合酶基因相较于抽芽后60天的兴安落叶松基因表达量明显上调。
     对丝氨酸蛋白酶抑制剂基因、半胱氨酸蛋白酶抑制剂基因、病原相关蛋白基因和几丁质酶基因等抗性相关基因进行差异表达分析,茉莉酸和茉莉酸甲酯的诱导处理都可以使丝氨酸蛋白酶抑制剂基因表达量发生明显差异,而半胱氨酸蛋白酶抑制剂基因和磺基转移酶基因均无差异表达。
     转录组和数字基因表达谱所获得的数据为进一步研究落叶松生长发育、生理代谢及抗性相关基因结构和功能提供了重要的本底资源。兴安落叶松经茉莉酸、茉莉酸甲酯诱导处理后,应用数字基因表达谱分析抗病虫基因的差异表达变化,抽芽后60天喷施茉莉酸和茉莉酸甲酯均可使抗病虫基因显著差异表达,而抽芽后120天茉莉酸甲酯对抗病虫基因诱导效果优于茉莉酸;为生产实践中植物抗虫诱导剂的选择及诱导剂的作用机理研究提供理论依据。
Larix gmelinii is one of the most economically and ecologically important tree species in Northeast China, however, little is understood about its genes involved in growth, development, and resistance of the species. In this study, we performed the de novo assembly of Larix gmelinii transcriptome using a short read sequencing technology (Illumina) and analyzed the transcript differences between Larix gmelinii of different phase induced by jasmonic acid and by methyl jasmonate respectively for6h using a tag-based digital gene expression system. Sample seedlings were treated non in vitro with0.1mM jasmonic acid,0.1mM methyl jasmonate, or0.1%aqueous acetone solution (as control) separately using a handheld sprayer. Tree needles from upper part of the seedling (circa30cm from the top) were sampled for total RNA isolation6h after being sprayed, total RNA isolation following the CTAB method protocol. The following are the results of this study.
     In a single run,25,977,782short reads were produced, which were assembled into545,211contigs assembled further into92,511scaffolds. After filling gaps in scaffolds by using paired-end reads,51,157unigenes were obtained with mean unigene size being517nt, including many disease/insect-resistance related genes, such as lipoxygenase (LOX) gene, phenylalanine ammonialyase (PAL) gene, serine protease inhibitor (serpin) gene, cysteine protease inhibitor (cystatin) gene and chitinase gene. We matched unigene sequences against Nr protein databases obtaining32,445unigenes from which9,920sequences had a COG classification and were divided into25COG categories. Further, we obtained the Gene Ontology (GO) functional annotation with Nr annotation. Based on the sequence homology,13,317sequences were categorized into44functional groups. We assigned14,462sequences to119KEGG pathways,36.76%of these unigenes involving in metabolic pathways and the biosynthesis of secondary metabolites. In total,32,047unigenes were predicted by using Blastx based on sequencing results and we use blast results information to extract CDS from Unigene sequences and translate them into peptide sequencs, providing a lot of fundamental data for further researching related genes functions.
     We sequenced5digital gene expression libraries and generated between3.5and5.9million raw tags for each of the5samples, obtained52,040reference genes after removal of redundancy and found that less than30%of the differentially expressed genes are orphan sequences. We found that oxidoreductase activity is the most significantly enriched GO-term of molecular functions in5digital gene expression libraries. The mRNA expression changes at different growth phase of Larix gmelinii inducing by different elicitors in general. The number of differentially expressed genes in the tree needles induced by jasmonic acid and methyl jasmonate is similar, with the majority are down-regulated. The number of differentially expressed genes,whether up-regulated or down-regulated, induced by elicitors in the120-day needles of Larix gmelinii are more than in the60-day needles.
     The number of differentially expressed genes of metabolism-related is twice as much as secondary metabolism-related in Larix gmelinii induced by jasmonic acid and methyl jasmonate. The differentially expressed genes of Larix gmelinii in one growth phase induced by different elicitors and in different growth phases induced by the same elicitor were analyzed putting emphasis on the analysis of differentially expressed about the disease/insect-resistance related key enzyme genes in the pathways of phenylalanine, tyrosine and tryptophan biosynthesis, phenylpropanoid biosynthesis, glucosinolate biosynthesis and alpha-Linolenic acid metabolism.
     Among the samples of Larix gmelinii sprout after60days, the expression of aspartate transaminase gene, phenylalanine ammonialyase gene, trans-cinnamate4-monooxygenase gene, coniferyl-aldehyde dehydrogenase gene, transferase activity gene, glucosyl transferase gene and lipoxygenase gene which treated by jasmonic acid or methyl jasmonate was significantly higher than the control. The expression of3-dehydroquinate dehydratase gene, shikimate dehydrogenase gene and coumarate3-hydroxylase gene was significantly different, and the result showed that the gene expression was down-regulated among jasmonic acid treatment samples, whereas up-regulated among methyl jasmonate samples.
     Among the samples of120-day needles, treated by jasmonic acid or methyl jasmonate, the expression of3-dehydroquinate dehydratase gene, shikimate dehydrogenase gene, aspartate transaminase gene, coumarate3-hydroxylase gene, coniferyl-aldehyde dehydrogenase gene, transferase activity gene, glucosyl transferase gene and lipoxygenase gene was significantly higher than the control. The expression of phenylalanine ammonialyase gene and trans-cinnamate4-monooxygenase gene was significantly different, showing that the gene expression was up-regulated among jasmonic acid treatment samples, whereas down-regulated among methyl jasmonate samples.
     The analysis of differentially expressed genes was conducted by the same elicitor treatment to the needles of different growth phases. The result showed that the120-day needles induced by jasmonic acid were focused on energy synthesis and metabolism more than the60-day needles that, induced by methyl jasmonate, however, were more focused on plant chemical defense. Whether the samples were induced by jasmonic acid or methyl jasmonate, the expression of phenylalanine ammonialyase gene and lipoxygenase gene for the120-day needles were significantly higher than that of60-day needles.
     The analysis was conducted for the differentially expressed resistance related genes, such as serine protease inhibitor gene, cysteine protease inhibitor gene, pathogenesis-related protein gene and chitinase gene, indicating that serine protease inhibitor gene, treated by jasmonic acid or methyl jasmonate, was significantly changed than the control, but cysteine protease inhibitor gene and sulfotransferase gene were not significantly changed.
     The data of transcriptome and digital gene expression libraries obtained in this study provide important fundamental resources for further researching on growth, development, physiological metabolism and structures and functions of resistance related genes of Larix gmelinii. The analysis of differentially expressed disease/insect-resistance related genes was conducted using digital gene expression libraries sequencing for Larix gmelinii induced by jasmonic acid or methyl jasmonate. The result showed that the disease/insect-resistance related genes was significantly changed for the60-day needles than the control, and methyl jasmonate was better than jasmonic acid in induction of disease/insect-resistance related genes for the120-day needles. The results provide important theoretical foundations for selection of elicitors related to plant resistance to insects in industry practices and further research on mechanism of elicitors.
引文
[1]Yang, C. P. Study on Seed Provenances of Larix gmelinii (Rupr.) Rupr. Science Press: Beijing,2009; p vi,140 p.
    [2]Schlosser, W. E., Bassman, J. H., Wandschneider, P. R., Everett, R. L. A carbon balance assessment for containerized Larix gmelinii seedlings in the Russian Far East. Forest ecology and management,2003,173 (1-3):335-351.
    [3]李峰,周广胜,曹铭昌.兴安落叶松地理分布对气候变化响应的模拟.应用生态学报,2006,17(12):2255-2260.
    [4]Polezhaeva, M. A., Lascoux, M, Semerikov, V. L. Cytoplasmic DNA variation and biogeography of Larix Mill, in Northeast Asia. Molecular Ecology,2010,19 (6):1239-1252.
    [5]毛子军,赵溪竹,刘林馨,姜海凤.3种落叶松幼苗对CO2升高的光合生理响应.生态学报,2010,20(2):317-323.
    [6]赵溪竹,姜海凤,毛子军.长白落叶松,日本落叶松和兴安落叶松幼苗光合作用特性比较研究.植物研究,2007,27(3):361-366.
    [7]王翠,王传宽,孙慧珍,张彦群,张全智.移栽自不同纬度的兴安落叶松(Larix gmedinu Rupr)的树干液流特征Acta Ecologies Sinica,2008,28 (1):0136-0144.
    [8]王文杰,李雪莹,祖元刚.兴安落叶松不同器官中的黄酮含量的动态变化(英文).Journal of Forestry Research,2005,16(2):89-92.
    [9]冷文芳,贺红士,布仁仓,胡远满.中国东北落叶松属3种植物潜在分布对气候变化的敏感性分析.植物生态学报,2007,31(5):825-833.
    [10]张慧东,李军,赵俊卉,海龙,赵鹏武,李良,周梅.寒温带非生长季环境气象要素对兴安落叶松影响分析.内蒙古农业大学学报:自然科学版,2008,28(4):79-84.
    [11]任书杰,于贵瑞,陶波,官丽莉,方华军,姜春明.兴安落叶松(Larix gmelinii Rupr.)叶片养分的空间分布格局.生态学报,2009,29(004):1899-1906.
    [12]曲丽娜,王秋玉,杨传平.兴安,长白及华北落叶松RAPD分子标记的物种特异性鉴定.植物学通报,2007,24(4):498-504.
    [13]杨书文,杨传平,张世英,彭宏梅,李俊涛,夏德安,刘桂丰,王会仁.中国兴安落叶松分布区外种源试验研究(Ⅰ)——地理变异规律与最佳种源的选择.东北林业大学学报,1990,18(2):1-8.
    [14]杨传平,秦泗华,张维,于秉君,张鹏,张培果.中国兴安落叶松种源试验研究(Ⅱ)——种源初步区划.东北林业大学学报,1990,18(2):25-33.
    [15]那冬晨,杨传平,姜静,夏德安,王会仁.兴安落叶松种源区划及优良种源选择.林业科技,2005,30(04):1-4.
    [16]李莉,杨传平,刘玉喜,齐立志.兴安落叶松种内的过氧化物同工酶地理变异研究.东北林业大学学报,1991,19(2):84-89.
    [17]Wenwen, Z., Xiaofei, L., Wenbo, Z., Yueying, X., Hiroyoshi, T.兴安落叶松肌动蛋白基因的分离与序列分析.生物技术通报,2011,(7):95-100.
    [18]Katyshev, A., Konstantinov, Y. M., Kobzev, V. Characterization of Mn-and Cu/Zn-containing superoxide dismutase gene transcripts in Larix gmelinii. Molecular Biology, 2006,40 (2):327-329.
    [19]Lin, X., Minamisawa, N., Takechi, K., Zhang, W., Sato, H., Takio, S., Tsukaya, H., Takano, H. Isolation and characterization of the Larix gmelinii ANGUSTIFOLIA (LgAN) gene. Planta,2008,228 (4):601-608.
    [20]岳书奎,王志英,方宏,王春强,王福来.黑龙江省三种落叶松尺蠖的研究.东北林业大学学报,1994,22(06):1-6.
    [21]严善春,徐伟,袁红娥,王琪,卢丹.不同诱导因子对落叶松毛虫嗅觉和产卵选择的影响.应用生态学报,2007,18(07):1583-1588.
    [22]袁菲,骆有庆,石娟.落叶松八齿小蠹坑道在落叶松立木上的垂直分布特征.应用昆虫学报,2011,48(4):1011-1016.
    [23]Yuan, F., Luo, Y., Shi, J., Keliovaara, K., Qi, G., Li, X., Han, Y., Chen,C.Invasive sequence and ecological niche of main insect borers of Larix gmelinii forest in Aershan, Inner Mongolia. Forestry Studies in China,2008,10 (1):9-13.
    [24]冯春富,严善春,鲁艺芳,胡晓.兴安落叶松诱导抗性对舞毒蛾幼虫解毒酶活性的影响.林业科学,2011,47(08):102-107.
    [25]严善春,姜兴林,徐芳玲,魏婧,孙凡.两种不同颜色杯形诱捕器对落叶松球果花蝇诱捕效果的比较.东北林业大学学报,2002,30(01):30-32.
    [26]Xu, W. Study on the induced resistance of Larix gmelinii to insects. Northeast Forestry University, Harbin,2006.
    [27]Meng, Z. J. Study on the induced resistance of two larch species treated with exogenous jasmonates to insects. Northeast Forestry University, Harbin,2008.
    [28]张军生,徐鹤忠,韩志坚,王鹏,王耀国,滕文霞,邹元平.飞机超低量喷洒生物农药 防治兴安落叶松鞘蛾的效果.东北林业大学学报,2011,39(01):92-94.
    [29]张贵有,田子强,程风君,李永权.利用寄生蜂大面积防治兴安落叶松鞘蛾的研究.森林病虫通讯,1994,(01):18-19.
    [30]Farmer, E. E., Ryan, C. A. Interplant communication:airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proceedings of the National Academy of Sciences,1990,87(19):7713-7716.
    [31]Halitschke, R., Baldwin, I. Jasmonates and related compounds in plant-insect interactions. Journal of Plant Growth Regulation,2004,23 (3):238-245.
    [32]Howe, G. A. Jasmonates as Signals in the Wound Response. Journal of Plant Growth Regulation,2004,23 (3):223-237.
    [33]Meyer, A., Miersch, O., Buttner, C, Dathe, W., Sembdner, G. Occurrence of the plant growth regulator jasmonic acid in plants. Journal of Plant Growth Regulation,1984,3 (1): 1-8.
    [34]Mithofer, A., Maitrejean, M., Boland, W. Structural and biological diversity of cyclic octadecanoids, jasmonates, and mimetics. Journal of Plant Growth Regulation,2004,23 (3):170-178.
    [35]Moreira, X., Sampedro, L., Zas, R. Defensive responses of Pinus pinaster seedlings to exogenous application of methyl jasmonate:Concentration effect and systemic response. Environmental and Experimental Botany,2009,67 (1):94-100.
    [36]Reymond, P., Farmer, E. E. Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology,1998,1(5):404-411.
    [37]Schaller; F., Schaller. A., Stintzi. A. Biosynthesis and metabolism of jasmonates. Journal of Plant Growth Regulation,2004,23 (3):179-199.
    [38]Chen, H., Wilkerson, C. G, Kuchar, J. A., Phinney, B. S., Howe, G. A. Jasmonate-inducible plant enzymes degrade essential amino acids in the herbivore midgut. Proceedings of the National Academy of Sciences of the United States of America,2005,102 (52):19237-19242.
    [39]Thaler, J. S. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature,1999,399 (6737):686-688.
    [40]Kang, J.-H., Baldwin, I. T. Isolation and characterization of the threonine deaminase promoter in Nicotiana attenuata. Plant Science,2006,171 (4):435-440.
    |41]De Rosa Jr., V. E., Nogueira, F. T. S., Menossi, M., Ulian, E. C, Arruda, P. Identification of methyl jasmonate-responsive genes in sugarcane using cDNA arrays. Brazilian Journal of Plant Physiology,2005,17:173-180.
    [42]Faldt, J., Martin, D., Miller, B., Rawat, S., Bohlmann, J. Traumatic resin defense in Norway spruce (<i>Picea abies</i>):Methyl jasmonate-induced terpene synthase gene expression, and cDNA cloning and functional characterization of (+)-3-carene synthase. Plant Molecular Biology,2003,51 (1):119-133.
    [43]Fujimoto, T., Tomitaka, Y., Abe, H., Tsuda, S., Futai, K., Mizukubo, T. Expression profile of jasmonic acid-induced genes and the induced resistance against the root-knot nematode (Meloidogyne incognita) in tomato plants(Solanum lycopersicum) after foliar treatment with methyl jasmonate. Journal of Plant Physiology,2011,168 (10):1084-1097.
    [44]Nahar, K., Kyndt, T., De Vleesschauwer, D., Hofte, M., Gheysen, G. The Jasmonate Pathway Is a Key Player in Systemically Induced Defense against Root Knot Nematodes in Rice. Plant Physiology,2011,157 (1):305-316.
    [45]Pauwels, L., Morreel, K., De Witte, E., Lammertyn, F., Van Montagu, M., Boerjan, W., Inze, D., Goossens, A. Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells. Proceedings ofthe National Academy of Sciences,2008,105 (4):1380-1385.
    [46]Sasaki, Y., Asamizu, E., Shibata, D., Nakamura, Y, Kaneko, T., Awai, K., Amagai, M., Kuwata, C, Tsugane, T., Masuda, T., Shimada, H., Takamiya, K.-i., Ohta, H., Tabata, S. Monitoring of Methyl Jasmonate-responsive Genes in Arabidopsis by cDNA Macroarray: Self-activation of Jasmonic Acid Biosynthesis and Crosstalk with Other Phytohormone Signaling Pathways. DNA Research,2001,8 (4):153-161.
    [47]Schenk, P. M., Kazan, K., Wilson, I., Anderson, J. P., Richmond, T., Somerville, S. C, Manners, J. M. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proceedings of the National Academy of Sciences,2000,97 (21):11655-11660.
    [48]冯春富,严善春,毛洪波,房玮,李霜雯.落叶松诱导抗性对舞毒蛾生长发育的影响.东北林业大学学报,2010,38(05):136-137.
    [49]严善春,杨慧,高璐璐,王志波,毛洪波.兴安落叶松鞘蛾对寄主挥发物的反应.林业科学,2009,45(05):94-101.
    [50]Costa, V., Angelini, C, De Feis, I., Ciccodicola, A. Uncovering the complexity of transcriptomes with RNA-Seq. Journal of Biomedicine and Biotechnology,2010,853916.
    [51]Wang, Z., Gerstein, M., Snyder, M. RNA-Seq:a revolutionary tool for transcriptomics. Nature Reviews Genetics,2009,10 (1):57-63.
    [52]Adams, M. D., Kelley, J. M., Gocayne, J. D., Dubnick, M., Polymeropoulos, M. H., Xiao, H., Merril, C. R., Wu, A., Olde, B., Moreno, R. F. Complementary DNA sequencing: expressed sequence tags and human genome project. Science,1991,252 (5013):1651-1656.
    [53]Datson, N., Van der Perk-de Jong, J., Van den Berg, M., De Kloet, E., Vreugdenhil, E. MicroSAGE:a modified procedure for serial analysis of gene expression in limited amounts of tissue. Nucleic acids research,1999,27 (5):1300-1307.
    [54]Velculescu, V. E., Zhang, L., Vogelstein, B., Kinzler, K. W. Serial analysis of gene expression. Science,1995,270 (5235):484-487.
    [55]Boheler, K. R., Tarasov, K. V. SAGE analysis to identify embryonic stem cell-predominant transcripts. Methods In Molecular Biology-Clifton Then Totowa-,2006,329,195.
    [56]谢卡斌,张建伟,向勇,冯旗,韩斌,储昭晖,王石平,张启发,熊立仲.10828条籼稻全长cDNA的分离和注释.中国科学C辑,2005,35(1):6-12.
    [57]Brenner, S., Johnson, M., Bridgham, J., Golda, G, Lloyd, D. H., Johnson, D., Luo, S., McCurdy, S., Foy, M., Ewan, M. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nature biotechnology,2000,18 (6):630-634.
    [58]Lemieux, B., Aharoni, A., Schena, M. Overview of DNA chip technology. Molecular Breeding,1998,4 (4):277-289.
    [59]Ramsay, G. DNA chips:state-of-the art. Nature biotechnology,1998,16(1):40-44.
    [60]Scherf, U., Ross, D. T., Waltham, M., Smith, L. H., Lee, J. K., Tanabe, L., Kohn, K. W., Reinhold, W. C, Myers, T. G, Andrews, D. T. A gene expression database for the molecular pharmacology of cancer, nature genetics,2000,24 (3):236-244.
    [61]Skradski, S. L, Clark, A. M., Jiang, H., White, H. S., Fu, Y. H., Ptacek, L. J. A novel gene causing a mendelian audiogenic mouse epilepsy. Neuron,2001,31 (4):537-544.
    [62]Rifkin, S. A., Kim, J., White, K. P. Evolution of gene expression in the Drosophila melanogaster subgroup, nature genetics,2003,33 (2):138-144.
    |63]Passador-Gurgel, G, Hsieh, W. P., Hunt, P., Deighton, N., Gibson, G. Quantitative trait transcripts for nicotine resistance in Drosophila melanogaster. nature genetics,2007,39 (2):264-268.
    [64]Szameit, S., Weber, E., Noehammer, C. DNA microarrays provide new options for allergen testing. Expert Review of Molecular Diagnostics,2009,9 (8):843-850.
    [65]Kocabas, A. M., Crosby, J., Ross, P. J., Otu, H. H., Beyhan, Z., Can, H., Tam, W. L., Rosa, G. J. M., Halgren, R. G, Lim, B. The transcriptome of human oocytes. Proceedings of the National Academy of Sciences,2006,103 (38):14027-14032.
    [66]Schena, M., Shalon, D., Davis, R. W., Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science,1995,270 (5235): 467-470.
    [67]Schena, M. Genome analysis with gene expression microarrays. Bioessays,1996,18 (5): 427-431.
    [68]DeRisi, J., Penland, L, Brown, P. O., Bittner, M. L., Meltzer, P. S., Ray, M., Chen, Y., Su, Y. A., Trent, J. M. Use of a cDNA microarray to analyse gene expression patterns in human cancer, nature genetics,1996,14 (4):457-460.
    [69]Heller, R. A., Schena, M, Chai, A., Shalon, D., Bedilion, T., Gilmore, J., Woolley, D. E., Davis, R. W. Discovery and analysis of inflammatory disease-related genes using cDNA microarrays. Proceedings of the National Academy of Sciences,1997,94 (6):2150.
    [70]Okoniewski, M, Miller, C. Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations. BMC bioinformatics,2006,7 (1):276.
    [71]Royce, T. E., Rozowsky, J. S., Gerstein, M. B. Assessing the need for sequence-based normalization in tiling microarray experiments. Bioinformatics,2007,23 (8):988-997.
    [72]Velculescu, V. E. Tantalizing transcriptomes-SAGE and its use in global gene expression analysis. Science,1999,286 (5444):1491.
    [73]Tuteja, R., Tuteja, N. Serial analysis of gene expression (SAGE):unraveling the bioinformatics tools. Bioessays,2004,26 (8):916-922.
    [74]Yasui, W., Oue, N., Ito, R., Kuraoka, K., Nakayama, H. Search for new biomarkers of gastric cancer through serial analysis of gene expression and its clinical implications. Cancer science,2004,95 (5):385-392.
    [75]Cloonan, N., Forrest, A. R. R., Kolle, G, Gardiner, B. B. A., Faulkner, G. J., Brown, M. K., Taylor, D. F., Steptoe, A. L., Wani, S., Bethel, G. Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nature methods,2008,5 (7):613-619.
    [76]Morin, R. D., O'Connor, M. D., Griffith, M., Kuchenbauer, F., Delaney, A., Prabhu, A. L., Zhao, Y., McDonald, H., Zeng, T., Hirst, M. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome research, 2008,18(4):610-621.
    [77]Margulies, M., Egholm, M, et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature,2005,437 (7057):376-380.
    [78]Bennett, S. T., Barnes, C, Cox, A., Davies, L., Brown, C. Toward the$1000 human genome. Pharmacogenomics,2005,6 (4):373-382.
    [79]Blow, N. Transcriptomics:The digital generation. Nature,2009,458 (7235):239-242,
    [80]Cui, P., Zhang, L., Lin, Q., Ding, F., Xin, C, Fang, X., Hu, S., Yu, J. A novel mechanism of epigenetic regulation:Nucleosome-space occupancy. Biochemical and Biophysical Research Communications,2010,391 (1):884-889.
    [81]Gilad, Y., Pritchard, J. K., Thornton, K. Characterizing natural variation using next-generation sequencing technologies. Trends in Genetics,2009,25 (10):463-471.
    [82]Marioni, J. C, Mason, C. E., Mane, S. M., Stephens, M., Gilad, Y. RNA-seq:An assessment of technical reproducibility and comparison with gene expression arrays. Genome research,2008,18(9):1509-1517.
    [83]Wilhelm, B. T., Landry, J.-R. RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods,2009,48 (3):249-257.
    [84]Zhao, T., Li, G, Mi, S., Li, S., Hannon, G. J., Wang, X. J., Qi, Y. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes& development,2007,21 (10):1190-1203.
    [85]Burnside, J., Bernberg, E., Anderson, A., Lu, C, Meyers, B. C, Green, P. J., Jain, N., Isaacs, G, Morgan, R. W. Marek's disease virus encodes microRNAs that map to meq and the latency-associated transcript. Journal of virology,2006,80 (17):8778-8786.
    [86]Yao, Y, Guo, G, Ni, Z., Sunkar, R., Du, J., Zhu, J. K., Sun, Q. Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biol,2007,8 (6):R96.
    [87]Berezikov, E., Thuemmler, F., Van Laake, L. W., Kondova, I., Bontrop, R., Cuppen, E., Plasterk, R. H. A. Diversity of microRNAs in human and chimpanzee brain, nature genetics,2006,38 (12):1375-1377.
    [88]Nagalakshmi, U., Wang, Z., Waern, K., Shou, C, Raha, D., Gerstein, M., Snyder, M. The transcriptional landscape of the yeast genome defined by RN A sequencing. Science,2008, 320(5881):1344-1349.
    [89]Wilhelm, B. T., Marguerat, S., Watt, S., Schubert, R, Wood, V., Goodhead, I., Penkett, C. J., Rogers, J.,Bahler, J. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature,2008,453 (7199):1239-1243.
    [90]Zhang, G, Guo, G, Hu, X., Zhang, Y, Li, Q., Li, R., Zhuang, R., Lu, Z., He, Z., Fang, X. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome research,2010,20 (5):646-654.
    [91]Lu, T., Lu, G, Fan, D., Zhu, C, Li, W., Zhao, Q., Feng, Q., Zhao, Y, Guo, Y. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome research,2010,20 (9):1238-1249.
    [92]Sultan, M., Schulz, M. H., Richard, H, Magen, A., Klingenhoff, A., Scherf, M., Seifert, M., Borodina, T., Soldatov, A., Parkhomchuk, D. A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science,2008,321 (5891):956-960.
    [93]Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., Delaney, A. Gelmon, K., Guliany, R., Senz, J. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature,2009,461 (7265):809-813.
    [94]Sugarbaker, D. J., Richards, W. G, Gordon, G. J., Dong, L., De Rienzo, A., Maulik, G, Glickman, J. N., Chirieac, L. R., Hartman, M. L., Taillon, B. E. Transcriptome sequencing of malignant pleural mesothelioma tumors. Proceedings of the National Academy of Sciences,2008,105 (9):3521.
    [95]Chepelev, I., Wei, G, Tang, Q., Zhao, K. Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq. Nucleic acids research,2009,37 (16):e106-e106.
    [96]Wang, X.-W., Luan, J.-B., Li, J.-M., Bao, Y.-Y., Zhang, C.-X., Liu, S.-S. De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics,2010,11 (1):400.
    [97]Vera, J. C, Wheat, C. W., Fescemyer, H. W., Frilander, M. J., Crawford, D. L, Hanski, I., Marden, J. H. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Molecular ecology,2008,17 (7):1636-1647.
    [98]Morin, R. D., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T. J., McDonald, H., Varhol, R., Jones, S. J. M., Marra, M. A. Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques, 2008,45(1):81-94.
    [99]Ossowski, S., Schneeberger, K., Clark, R. M., Lanz, C, Warthmann, N., Weigel, D. Sequencing of natural strains of Arabidopsis thaliana with short reads. Genome research, 2008,18 (12):2024-2033.
    [100]Hillier, L. W., Reinke, V, Green, P., Hirst, M., Marra, M. A., Waterston, R. H. Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. Genome research, 2009,19 (4):657-666.
    [101]Daines, B., Wang, H., Li, Y., Han, Y, Gibbs, R., Chen, R. High-Throughput Multiplex Sequencing to Discover Copy Number Variants in Drosophila. Genetics,2009,182 (4): 935-941.
    [102]Smith, D. R.. Quinlan, A. R.. et al. Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome research,2008,18 (10):1638-1642.
    [103]Doniger, S. W., Kim, H. S., Swain, D., Corcuera, D., Williams, M., Yang, S.-P., Fay, J. C. A Catalog of Neutral and Deleterious Polymorphism in Yeast. PLoS Genet,2008,4 (8): e1000183.
    [104]Bentley, D. R., Balasubramanian, S., et al.. Accurate whole human genome sequencing using reversible terminator chemistry. Nature,2008,456 (7218):53-59.
    [105]Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G, Kristiansen, K., Li, S., Yang, H., Wang, J., Wang, J. De novo assembly of human genomes with massively parallel short read sequencing. Genome research,2010,20 (2):265-272.
    [106]Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth,2008,5 (7):621-628.
    [107]Sultan, M., Schulz, M. H., et al.. A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome. Science,2008,321 (5891): 956-960.
    [108]Wang, J., Wang, W., Li, R., et al.. The diploid genome sequence of an Asian individual. Nature,2008,456 (7218):60-65.
    [109]Buggs, R. J. A., Chamala, S., Wu, W. E. I., Gao, L. U., May, G D., Schnable, P. S., Soltis, D. E., Soltis, P. S., Barbazuk, W. B. Characterization of duplicate gene evolution in the recent natural allopolyploid Tragopogon miscellus by next-generation sequencing and Sequenom iPLEX MassARRAY genotyping. Molecular Ecology,2010,19 (1):132-146.
    [110]Chen, S., Yang, P., Jiang, F, Wei, Y, Ma, Z., Kang, L. De Novo Analysis of Transcriptome Dynamics in the Migratory Locust during the Development of Phase Traits. PLoS ONE,2010,5 (12):e15633.
    [111]Coppe, A., Pujolar, J., Maes, G, Larsen, P., Hansen, M., Bernatchez, L., Zane, L. Bortoluzzi, S. Sequencing, de novo annotation and analysis of the first Anguilla anguilla transcriptome:EeelBase opens new perspectives for the study of the critically endangered european eel. BMC Genomics,2010,11 (1):635.
    [112]Cui, P., Lin, Q., Ding, F, Xin, C, Gong, W., Zhang, L., Geng, J., Zhang, B., Yu, X., Yang, J., Hu, S., Yu, J. A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing. Genomics,2010,96 (5):259-265.
    [113]Feldmeyer, B., Wheat, C, Krezdorn, N., Rotter, B., Pfenninger, M. Short read Illumina data for the de novo assembly of a non-model snail species transcriptome(Radix balthica, Basommatophora, Pulmonata), and a comparison of assembler performance. BMC Genomics,2011, 12(1):317.
    [114]Nobuta, K., McCormick, K., Nakano, M., Meyers, B. C. Bioinformatics Analysis of Small RNAs in Plants Using Next Generation Sequencing Technologies Plant MicroRNAs. Meyers, B. C. Green, P. J., Eds. Humana Press:2010; Vol.592, pp 89-106.
    [115]Schwartz, T., Tae, H., Yang, Y., Mockaitis, K., Van Hemert, J., Proulx, S., Choi, J.-H., Bronikowski, A. A garter snake transcriptome:pyrosequencing, de novo assembly, and sex-specific differences. BMC Genomics,2010,11 (1):694.
    [116]Sun, C, Li, Y, Wu, Q., Luo, H., Sun, Y, Song, J., Lui, E., Chen, S. De novo sequencing and analysis of the American ginseng root transcriptome using a GS FLX Titanium platform to discover putative genes involved in ginsenoside biosynthesis. BMC Genomics, 2010,11 (1):262.
    [117]Wang, Z., Fang, B., Chen, J., Zhang, X., Luo, Z., Huang, L., Chen, X., Li, Y. De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics, 2010,11 (1):726.
    [118]Mizrachi, E., Hefer, C, Ranik, M., Joubert, F., Myburg, A. De novo assembled expressed gene catalog of a fast-growing Eucalyptus tree produced by Illumina mRNA-Seq. BMC Genomics,2010,11 (1):681.
    [119]Natarajan, P., Parani, M. De novo assembly and transcriptome analysis of five major tissues of Jatropha curcas L. using GS FLX titanium platform of 454 pyrosequencing. BMC Genomics,2011,12(1):191.
    [120]Garg, R., Patel, R. K., Tyagi, A. K., Jain, M. De Novo Assembly of Chickpea Transcriptome Using Short Reads for Gene Discovery and Marker Identification. DNA Research,2011,18(1):53-63.
    [121]Fu, C.-H., Chen, Y.-W., Hsiao, Y-Y, Pan, Z.-J., Liu, Z.-J., Huang, Y.-M., Tsai, W.-C, Chen, H.-H. OrchidBase:A Collection of Sequences of the Transcriptome Derived from Orchids. Plant and Cell Physiology,2011,52 (2):238-243.
    [122]Logacheva, M., Kasianov, A., Vinogradov, D., Samigullin, T., Gelfand, M., Makeev, V, Penin, A. De novo sequencing and characterization of floral transcriptome in two species of buckwheat (Fagopyrum). BMC Genomics,2011,12 (1):30.
    [123]Wong, M., Cannon, C, Wickneswari, R. Identification of lignin genes and regulatory sequences involved in secondary cell wall formation in Acacia auriculiformis and Acacia mangium via de novo transcriptome sequencing. BMC Genomics,2011,12(1):342.
    [124]Der, J., Barker, M., Wickett, N., dePamphilis, C, Wolf, P. De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum. BMC Genomics,2011, 12(1):99.
    [125]Sanger, F., Nicklen, S., Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences,1977,74 (12):5463.
    [126]Maxam, A. M., Gilbert, W. A new method for sequencing DNA. Proceedings of the National Academy of Sciences,1977,74 (2):560.
    [127]Sanger, F, Air, G., Barrell, B., Brown, N., Coulson, A., Fiddes, C., Hutchison, C., Slocombe, P., Smith, M. Nucleotide sequence of bacteriophage phi X174 DNA. Nature, 1977,265 (5596):687-695.
    [128]Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H., Roe, B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology, 1980,143(2):161-178.
    [129]Smith, L. M., Fung, S., Hunkapiller, M. W., Hunkapiller, T. J., Hood, L. E. The synthesis of oligonucleotides containing an aliphatic amino group at the 5'terminus:synthesis of fluorescent DNA primers for use in DNA sequence analysis. Nucleic acids research,1985, 13 (7):2399-2412.
    [130]Jongeneel, C. V., Iseli, C., Stevenson, B. J., Riggins, G. J., Lal, A., Mackay, A., Harris, R. A., O'Hare, M. J., Neville, A. M., Simpson, A. J. G. Comprehensive sampling of gene expression in human cell lines with massively parallel signature sequencing. Proceedings of the National Academy of Sciences,2003,100 (8):4702.
    [131]Hoth, S., Ikeda, Y., Morgante, M., Wang, X., Zuo, J., Hanafey, M. K., Gaasterland, T., Tingey, S. V., Chua, N. H. Monitoring genome-wide changes in gene expression in response to endogenous cytokinin reveals targets in Arabidopsis thaliana. FEBS letters, 2003,554 (3):373-380.
    [132]Potschka, H., Krupp, E., Ebert, U., Gumbel, C., Leichtlein, C., Lorch, B., Pickert, A., Kramps, S., Young, K., Grune, U. Kindling-induced overexpression of Homer 1A and its functional implications for epileptogenesis. European Journal of Neuroscience,2002,16 (11):2157-2165.
    [133]Hoth, S., Morgante, M., Sanchez, J. P., Hanafey, M. K., Tingey, S. V., Chua, N. H. Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi 1-1 mutant. Journal of Cell Science,2002,115 (24):4891-4900.
    [134]Mitra, R. D., Shendure, J., Olejnik, J., Church, G. M. Fluorescent in situ sequencing on polymerase colonies. Analytical biochemistry,2003,320 (1):55-65.
    [135]Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P., Rosenbaum, A. M., Wang, M. D., Zhang, K., Mitra, R. D., Church, G. M. Accurate multiplex polony sequencing of an evolved bacterial genome. Science,2005,309 (5741):1728-1732.
    [136]Zhou, X. G, Ren, L. F., Li, Y. T., Zhang, M., Yu, Y. D., Yu, J. The next-generation sequencing technology:A technology review and future perspective. SCIENCE CHINA Life Sciences,2010,53 (1):44-57.
    [137]Ng, P., Wei, C. L., Sung, W. K., Chiu, K. P., Lipovich, L., Ang, C. C, Gupta, S., Shahab, A., Ridwan, A., Wong, C. H. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nature methods,2005,2 (2):105-111.
    [138]Tanaka, H., Kawai, T. Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. Nature nanotechnology,2009,4 (8):518-522.
    [139]Postma, H. W. C. Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano letters,2010,10 (2):420-425.
    [140]Albertorio, R, Hughes, M. E., Golovchenko, J. A., Branton, D. Base dependent DNA-carbon nanotube interactions:activation enthalpies and assembly-disassembly control. Nanotechnology,2009,20:395101.
    [141]Gigliotti, B., Sakizzie, B., Bethune, D. S., Shelby, R. M., Cha, J. N. Sequence-independent helical wrapping of single-walled carbon nanotubes by long genomic DNA. Nano letters,2006,6 (2):159-164.
    [142]Meng, S., Maragakis, P., Papaloukas, C, Kaxiras, E. DNA nucleoside interaction and identification with carbon nanotubes. Nano letters,2007,7(1):45-50.
    [143]Butler, T. Z., Pavlenok, M, Derrington, I. M., Niederweis, M., Gundlach, J. H. Single-molecule DNA detection with an engineered MspA protein nanopore. Proceedings of the National Academy of Sciences,2008,105 (52):20647-20652.
    [144]Wu, H. C, Astier, Y., Maglia, G., Mikhailova, E., Bayley, H. Protein nanopores with covalently attached molecular adapters. Journal of the American Chemical Society,2007, 129(51):16142-16148.
    [145]Clarke, J., Wu, H. C, Jayasinghe, L., Patel, A., Reid, S., Bayley, H. Continuous base identification for single-molecule nanopore DNA sequencing. Nature nanotechnology, 2009,4 (4):265-270.
    [146]Lagerqvist, J., Zwolak, M., Di Ventra, M. Fast DNA sequencing via transverse electronic transport. Nano letters,2006,6 (4):779-782.
    [147]Farmer, E. E., Ryan, C. A. Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors. The Plant Cell Online,1992,4 (2): 129-134.
    [148]Kolomiets, M. V, Chen, H., Gladon, R. J., Braun, E. J., Hannapel, D. J. A Leaf Lipoxygenase of Potato Induced Specifically by Pathogen Infection. Plant Physiology, 2000,124(3):1121-1130.
    [149]Jaakola, L., Pirttila, A., Halonen, M., Hohtola, A. Isolation of high quality RNA from bilberry(Vaccinium myrtillus L.) fruit. Molecular Biotechnology,2001,19 (2):201-203.
    [150]王玉成,薄海侠,杨传平.胡杨、柽柳总RNA提取方法的建立.东北林业大学学报,2003,31(05):99-100.
    [151]周波,张旸,李玉花.富含多糖草莓果实总RNA提取方法的改进.生物技术通讯,2004,15(01):48-50.
    [152]张燕梅,周文钊,李俊峰.剑麻不同组织RNA提取方法比较分析.分子植物育种,2010,8(01):201-208.
    [153]Iseli, C., Jongeneel, C. V., Bucher, P. ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proceedings. ISMB. International Conference on Intelligent Systems for Molecular Biology,1999:138-148.
    [154]Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., Robles, M. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics,2005,21 (18):3674-3676.
    [155]Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., Wang, J., Li, S., Li, R., Bolund, L., Wang, J. WEGO:a web tool for plotting GO annotations. Nucleic Acids Research,2006,34 (suppl 2):W293-W297.
    [156]'t Hoen, P. A. C., Ariyurek, Y., Thygesen, H. H., Vreugdenhil, E., Vossen, R. H. A. M., de Menezes, R. X., Boer, J. M., van Ommen, G.-J. B., den Dunnen, J. T. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Research.2008.36 (21):el 41.
    [157]Morrissy, A. S., Morin, R. D., Delaney, A., Zeng, T., McDonald, H., Jones, S., Zhao, Y, Hirst, M., Marra, M. A. Next-generation tag sequencing for cancer gene expression profiling. Genome research,2009,19(10):1825-1835.
    [158]Audic, S., Claverie, J.-M. The Significance of Digital Gene Expression Profiles. Genome research,1997,7 (10):986-995.
    [159]Benjamini, Y., Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Annals of statistics,2001:1165-1188.
    [160]Eisen, M. B., Spellman, P. T., Brown, P. O., Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences,1998, 95 (25):14863.
    [161]La Camera, S., Gouzerh, G., Dhondt, S., Hoffmann, L., Fritig, B., Legrand, M., Heitz, T. Metabolic reprogramming in plant innate immunity:the contributions of phenylpropanoid and oxylipin pathways. Immunological Reviews,2004,198 (1):267-284.
    [162]Yu, O., Jez, J. M. Nature's assembly line:biosynthesis of simple phenylpropanoids and polyketides. The Plant Journal,2008,54 (4):750-762.
    [163]Arimura, G, Ozawa, R., Shimoda, T., Nishioka, T., Boland, W., Takabayashi, J. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature,2000,406 (6795):512-515.
    [164]Chen, Y. C, Chang, H. S., Lai, H. M, Jeng, S. T. Characterization of the wound-inducible protein ipomoelin from sweet potato. Plant, Cell& Environment,2005, 28 (2):251-259.
    [165]Coruish, K. The separate roles of plant cis and trans prenyl transferases in cis-1, 4-polyisoprene biosynthesis. European Journal of Biochemistry,1993,218 (1):267-271.
    [166]Lange, B. M, Rujan, T., Martin, W., Croteau, R. Isoprenoid biosynthesis:the evolution of two ancient and distinct pathways across genomes. Proceedings of the National Academy of Sciences,2000,97 (24):13172.
    [167]Liao, Z. H., Chen, M., Gong, Y. F, Li, Z. G, Zuo, K. J., Wang, P., Tan, F, Sun, X. F, Tang, K. X. A new Farnesyl diphosphate synthase gene from Taxus media Rehder:cloning, characterization and functional complementation. Journal of Integrative Plant Biology, 2006,48 (6):692-699.
    [168]Delourme, D., Lacroute, F., Karst, F, Cloning of an Arabidopsis thaliana cDNA coding for farnesyl diphosphate synthase by functional complementation in yeast. Plant molecular biology,1994,26(6):1867-1873.
    [169]Chappell, J. Biochemistry and molecular biology of the isoprenoid biosynthetic pathway in plants. Annual Review of Plant Biology,1995,46 (1):521-547.
    [170]杜良成,王钧.病原相关蛋白及其在植物抗病中的作用.植物生理学通讯,1990,(4):1-6.
    [171]王义琴,张利明,李文彬,孙勇如.进展植物病原相关蛋白研究进展.生物工程进展,2000,20(5):36-38.
    [172]齐晓花,许学文,罗晶晶,高海洁,徐强,林肖剑,朱碧云,陈学好.黄瓜3-磷酸甘油醛脱氢酶基因CsGAPDH的克隆及其涝胁迫响应分析.园艺学报,2011,38(09):1693-1698.
    [173]刘志华,杨谦.球毛壳菌甘油醛-3-磷酸脱氢酶基因克隆及特性分析.微生物学报,2005,45(06):69-73.
    [174]崔润丽,王永芳,智慧,李伟,李海权,黄占景,刁现民.谷子3-磷酸甘油醛脱氢酶基因的克隆与结构分析.华北农学报,2009,24(03):10-14.
    [175]Pan, Q., Shai, O., Lee, L. J., Frey, B. J., Blencowe, B. J. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet, 2008,40(12):1413-1415.
    [176]Hegedus, Z., Zakrzewska, A., Agoston, V. C, Ordas, A., Racz, P., Mink, M., Spaink, H. P., Meijer, A. H. Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. Molecular Immunology,2009,46 (15):2918-2930.
    [177]Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y. KEGG for linking genomes to life and the environment. Nucleic Acids Research,2008,36 (suppl 1):D480-D484.
    [178]Hu, Z., Zhang, W., Shen, Y., Fu, H., Su, X., Zhang, Z. Activities of lipoxygenase and phenylalanine ammonia lyase in poplar leaves induced by insect herbivory and volatiles. Journal of Forestry Research,2009,20 (4):372-376.
    [179]Dixon, R. A., Paiva, N. L. Stress-induced phenylpropanoid metabolism. The Plant Cell, 1995,7(7):1085-1097.
    [180]Ritter, H., Schulz, G. E. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. The Plant Cell Online,2004,16 (12):3426-3436.
    [181]Hahlbrock, K., Scheel, D. Physiology and molecular biology of phenylpropanoid metabolism. Annual Review of Plant Biology,1989,40 (1):347-369.
    [182]Fenwick, G. R., Heaney, R. K., Mullin, W. J., VanEtten, C. H. Glucosinolates and their breakdown products in food and food plants. C R C Critical Reviews in Food Science and Nutrition,1982,18(2):123-201.
    [183]Kliebenstein, D. J. Secondary metabolites and plant/environment interactions:a view through Arabidopsis thaliana tinged glasses. Plant, Cell& Environment,2004,27 (6): 675-684.
    [184]Kliebenstein, D. J., Figuth, A., Mitchell-Olds, T. Genetic Architecture of Plastic Methyl Jasmonate Responses in Arabidopsis thaliana. Genetics,2002,161 (4):1685-1696.
    [185]Creelman, R. A., Mullet, J. E. Jasmonic acid distribution and action in plants:regulation during development and response to biotic and abiotic stress. Proceedings of the National Academy of Sciences,1995,92 (10):4114.
    [186]Titarenko, E., Rojo, E., Leon, J., Sanchez-Serrano, J. J. Jasmonic acid-dependent and-independent signaling pathways control wound-induced gene activation in Arabidopsis thaliana. Plant Physiology,1997,115 (2):817-826.
    [187]Wang, L., Allmann, S., Wu, J., Baldwin, I. T. Comparisons of LIPOXYGENASE3-and JASMONATE-RESISTANT4/6-silenced plants reveal that jasmonic acid and jasmonic acid-amino acid conjugates play different roles in herbivore resistance of Nicotiana attenuata. Plant Physiology,2008,146 (3):904-915.
    [188]Feussner, I., Wasternack, C. The lipoxygenase pathway. Annual Review of Plant Biology, 2002,53(1):275-297.
    [189]Turner, J. G., Ellis, C., Devoto, A. The jasmonate signal pathway. The Plant Cell Online, 2002,14 (suppl 1):S153-S164.
    [190]Jammes, R, Lecomte, P., Almeida-Engler, J., Bitton, F., Martin-Magniette, M. L. Renou, J. P., Abad, P., Favery, B. Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsisa. The Plant Journal,2005,44 (3):447-458.
    [191]Tian, Z., Liu, J., Wang, B., Xie, C. Screening and expression analysis of Phytophthora infestans induced genes in potato leaves with horizontal resistance. Plant cell reports,2006, 25(10):1094-1103.
    [192]Schwachtje, J., Baldwin, I. T. Why does herbivore attack reconfigure primary metabolism? Plant Physiology,2008,146 (3):845-851.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700