磺胺类药物环境行为及相关热力学基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集约化畜牧业的发展,畜禽疾病越来越复杂,兽药种类及用量也与日俱增,由此引发生态环境的不良反应,对人类健康所造成的危害越来越严重。我国对兽药在水生和陆生环境中的蓄积、分布、转移、渗透、吸收、降解、消除、归宿等环境行为以及对生态环境和人类社会影响的研究,尚处在竟相研究阶段。作为河南省自然科学基金项目(No.0611033400)和河南省教育厅自然科学基金项目(No.2006610002),本文以磺胺类药物为对象,进行水溶解度及溶解过程热力学、正辛醇/水分配系数及热力学分配行为、土壤中含量分析、土壤中迁移性和吸附性、微生物降解性等基础研究,具有重要的学术理论意义和工程应用前景。
     用氢氧化钠溶液作提取液,建立了测定土壤环境中磺胺嘧啶等八种磺胺类药物含量的紫外分光光度定量分析方法。
     正辛醇/水分配系数K_(ow)是药物与生物膜间相互作用评价系统研究的定量参数,是决定药物分子转移、渗透、吸收、分布、消除的关键数据,而有关不同温度下磺胺类药物正辛醇/水分配系数及热力学分配行为研究甚少。运用传统摇瓶法和紫外分光光度法,实验测定了298.15-333.15K温度范围内七种常见磺胺类药物八个温度下的正辛醇/水分配系数K_(ow)。根据流体相平衡理论,建立了正辛醇/水分配系数随温度变化的热力学模型,计算了308.15K下七种常见磺胺类药物在正辛醇/水体系中分配过程的△H_(w→1)、△S_(w→1)、△G_(w→1)数据以及K_(ow)的温度效应系数。探讨了磺胺类药物在正辛醇/水系统中的热力学分配行为。磺胺类药物分子向正辛醇相的分配过程主要为焓变驱动过程,向外界放热,正辛醇分子比水分子能更好地将磺胺类药物分子溶剂化。磺胺类药物分子向正辛醇相分配过程的熵变均为负值,体系的有序度增加。
     药物的水溶解度数据及溶解过程热力学是药物水环境迁移、传递、降解、归宿行为研究的基础。本文采用平衡法测定了298.15-333.15K温度范围内七种磺胺类药物在水中的溶解度数据。采用差示扫描量热技术测定了四种磺胺类药物的熔点和熔化热。运用基于流体相平衡分子热力学的λh方程和改进Apelblat方程成功关联了溶解度实验数据。根据溶解过程热力学,由溶解度实验数据计算出六组磺胺类药物水溶液的超额焓H~E和七种磺胺类药物在水中的溶解焓变△H_s、溶解熵变△S_s。H~E>0,表明磺胺类药物分子与水分子之间的交互作用弱于水分子间的缔合作用,磺胺类药物溶于水的过程中缔合键的断裂占主导地位,表现为吸热过程。△H_s、△S_s均为正值,说明磺胺类药物在水中的溶解为熵变驱动过程。溶解过程的熵增加,表明磺胺类药物分子进入水中时扰乱了水分子的排列,使体系的有序度降低,混乱度增加,熵增加。溶解过程的吸热效应,表明磺胺类药物分子与水分子间的作用强度较水分子的弱,从而新产生的磺胺类药物分子与水分子间作用键的能量不足以弥补水分子原有缔合键断裂所需要的能量,使体系需要向外界吸收热量,表现为焓增加。磺胺类药物在水中的溶解焓变数值与其熔化热数值相差不大,说明溶解过程中磺胺类药物分子与水分子之间的络合、缔合等特殊交互作用弱。还建立了磺胺类药物水溶解度与分子价键连接性指数间的定量相关模型,确定了模型参数,为磺胺类药物水溶解度的预测奠定了基础。
     通过静态吸附实验测得磺胺嘧啶在砂土、壤土、粘土中的平衡吸附数据,其吸附等温线均较好地符合Freundlich吸附等温方程。据此求得吸附系数、吸附过程Gibbs自由能变△G′。按吸附等温方程和吸附等量方程算得磺胺嘧啶在粘土中的等量吸附焓变△H、等量吸附熵变△S与等量吸附自由能变△G。△H<0,表明吸附为放热过程。△S<0,表明吸附过程中体系的有序度增加。△G>0,表明吸附为非自发过程,△G<40kJ·mol~(-1),表明吸附过程为物理吸附。溶液pH值过高或过低均不利于磺胺嘧啶的吸附,最大吸附量点为pH=8。
     通过动态土柱淋溶实验研究了磺胺嘧啶在土壤环境中的纵向迁移行为。实验结果表明,磺胺嘧啶在不同土壤中的迁移状况差异较大,其迁移能力为:砂土>粘土>壤土,并指出土壤质地和有机质含量是影响磺胺嘧啶在土壤中淋溶向下迁移能力的重要因素。
     通过室内模拟降解,实验测得磺胺嘧啶在湖水和猪场废水环境中好氧和厌氧降解动力学数据,建立了降解动力模型,确定了降解速率常数和半衰期等动力学参数。磺胺嘧啶在湖水和猪场废水环境中好氧和厌氧降解均服从生物降解一级动力学规律。磺胺嘧啶在猪场废水中厌氧微生物降解速率高于其好氧组,而磺胺嘧啶在湖水中厌氧微生物降解速率低于其好氧组。磺胺嘧啶对湖水和猪场废水中细菌的生长具有一定的刺激作用,而对真菌和放线菌的生长影响不明显。
     通过室内模拟降解,实验测得六种磺胺类药物在土壤环境中的降解动力学数据,建立了降解动力模型,确定了降解速率常数和半衰期等动力学参数。六种磺胺类药物在土壤环境中降解均遵从生物降解一级动力学规律。实验范围内磺胺嘧啶在土壤中降解的较佳条件为:砂土、308.15K和25mg·kg~(-1)。六种磺胺类药物在砂土中的微生物降解均较慢,其微生物降解速率常数按磺胺对甲氧嘧啶、磺胺甲恶唑、磺胺二甲氧嘧啶、磺胺间甲氧嘧啶、磺胺嘧啶和磺胺二甲基嘧啶的顺序依次减小。
With the booming of intensive stockbreeding, poultry diseases have became complex and difficult, and more and more species and quantities of veterinary drugs are used for solving the problem. Subsequently, the impact of contaminated ecological environmental on human being's health has been aggrandized dramatically. Some measures revealed that most of the veterinary drugs used in China are of the category of drugs for food animals in which antimicrobial drugs, especially sulfonamides, macrolides and quinolones, are predominant and their market share over 60%. Nowadays, systematic studies on the accumulation, transportation, and transformation of veterinary drugs in aquatic and terrestrial environment, as well their effects on various organisms are still scarce, especially compared to that of developed countries. Consequently, it is critically to conduct researches to investigate the environmental behavior of veterinary drugs, which would be helpful for accessing the security of veterinary drugs utilization in aquatic and terrestrial environment and modifying the contaminated soil. This research was financed by the Natural Science Fund (No.0611033400) of Henan Provincial Department of Science and Technology in 2006, and by the Natural Science Fund (No.2006610002) of Henan Provincial Education Department in 2006 for basic research.
     A method of UV spectrophotometry was established to determine the concentration of sulfadiazine in soil by using sodium hydroxide solution as extractant. It was shown in the tests that the linear range of standard carve was 2-10mg·L~(-1) and the correlation coefficient was 0.9999 (RSD=1.74%); the average recovery was 98.9%. Compared with method of titration dead-stop, results for two methods were identical approximately. This method had many advantages, such as convenience, speed, and accurate.
     A shake-flask method was used to determine the 1-octanol/water partition coefficients of sulfamethazine, sulfadimethoxine, sulfamethoxydiazine, sulfamonomethoxine, sulfamethoxazole, sulfaquinoxaline and sulfachloropyrazine from (298.15 to 333.15) K. The results showed that the 1-octanol/water partition coefficient of each sulfonamide decreased with the increase of temperature. Based on the fluid phase equilibrium theory, the thermodynamic relationship of 1-octanol/water partition coefficient depending on the temperature is proposed, and the changes of enthalpy, entropy, and the Gibbs free energy function for sulfonamides partitioning in 1-octanol/water are determined, respectively. Sulfonamides molecules partitioning in 1-octanol/water is mainly an enthalpy driving process, during which the order degrees of system increased. The temperature effect coefficient of 1-octanol/water partition coefficient is discussed. The results show that its magnitude is the same as that of values in the literature. However, from the viewpoint of the fluid phase equilibrium theory, the effect on 1-octanol/water partition coefficient cannot be ignored when temperature varies drastically. It is necessary that the temperature should be controlled exactly on determining the 1-octanol/water partition coefficient.
     Using a static equilibrium method, the solubilities of sulfadiazine, sulfamethazine, sulfadimethoxine, sulfamethoxydiazine, sulfamonomethoxine and sulfamethoxazole in water have been determined experimentally from (298.15 to 333.15) K. The melting points and heats of fusion for 4 sulfonamides have been determined experimentally through DSC. According to Scatchard-Hildebrand theory and solubility parameters, the solubility change law for sulfonamides in water and its probable causes were discussed. The experimental data were correlated withλh equation and modified Apelblat equation; the constants of equations were obtained. Based on relationship between the parameter h inλh equation and excess enthalpies H~E, the excess enthalpies for six systems, the solution enthalpies△H_s and solution entropies△S_s for seven sulfonamides in water, were calculated using experimental data. Their variation law for sulfonamides aqueous solution and probable causes were discussed in terms of molecular interaction. Mathematical models for the molecular valance connectivity indexes and aqueous solubilities of sulfonamides were established; the constants of equations were obtained; the aqueous solubilities for 12 sulfonamides were predicted successfully. A study of 12 sulfonamides showed high correlations (r=0.9103) between their aqueous solubilities and molecular connectivity indexes, making possible the prediction of the partition behaviors of sulfonamides on the basis of their connectivity.
     Static experiments for sorption behavior of sulfadiazine in soils were carried out to investigate the influence of temperature, and pH on adsorption. The results indicated that the adsorption isotherms of sulfadiazine in three kinds of soils were well described by the Freundlich type, adsorption constant of organic mater of sulfadiazine averaged 0.103, and the Gibbs free energy function variations for sulfadiazine adsorption were 4.771-6.440kJ·mol~(-1) at 298.15K. Adsorption of sulfadiazine decreases with increasing temperature and its maximum adsorption is noticed at pH=8.
     Leaching experiments of dynamic soil column were conducted to study the transport of sulfadiazine in soils. Sulfadiazine showed different ability to be transported downward with moving water in three kinds of soil column. The transportation sequence of sulfadiazine in the tested soils was sand>clay>loam. Soil texture and soil organic matter content are two important influencing factors.
     Through indoor simulation degradation experiments, microbial degradation for sulfadiazine in lake water and piggery wastewater were carried out to investigate the influence of oxygen supply mode and organic matter content in water on microbial degradation for sulfadiazine. The results indicated that the anaerobic degradation rate of sulfadiazine in piggery wastewater was more rapid than that for aerobic degradation; the anaerobic degradation rate of sulfadiazine in lake water was slower than that for aerobic degradation. Moreover, the study also showed that the number of bacteria except fungi and actinomycete grew significantly.
     Through indoor simulation degradation experiments, microbial degradations for six sulfonamides in sandy soil were carried out to investigate the influence of soil types, concentrations and temperatures on degradation for sulfadiazine. The results indicated that the microbial degradations of six sulfonamides in sandy soil were slow, which their rate constants order was SMD=SMX>SDM>SMM>SD>SM_2. Their degradations were mainly caused by non-biological degradations, rather than by microbial degradation, which was mostly related to their strong antibacterial activities.
引文
[1]路甬祥总主编.中国可持续发展总纲(国家卷)[M].北京:科学出版社,2007,2.
    [2]李俊锁,李西旺,魏广智,沈建中,张素霞.鸡肝组织中磺胺类药物多残留分析法[J].畜牧兽医学报,2002,33,468-472.
    [3]Martinez, F.; Gomez, A. Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents[J]. Journal of Solution Chemistry, 2001, 30, 909-923.
    [4]巢磊.磺胺类药物在水产养殖中的应用[J].水利渔业,2002,22(3),50-51.
    [5]朱忠模.兽药手册[M].北京:化学工业出版社,现代生物技术与医药科技出版中心,2002,90-99.
    [6]张伦.磺胺类药物产销现状及趋势[J].中国药房,2005,16(8),571-573.
    [7]Furusawa, N.; Kishida, K. Transfer and distribution profiles of dietary sulphonamides in the tissues of the laying hen[J]. Food Addit. Contain., 2002, 19(4), 368-372.
    [8]Roudaut, B.; Gamier, M. Sulphonamide residues in eggs following drug administ ration via the drinking water[J]. Food Addit. Contam., 2002, 19(4), 373-378.
    [9]王云龙,闵红岩.磺胺类药物在养猪生产中的正确使用[J].中国兽药杂志,2004,38(9),52.
    [10]贺亮,李继昌.磺胺类药物残留及检测技术[J].黑龙江畜牧兽医,2006,3,18-19.
    [11]Sarmah, A. K.; Meyer, M. T.; Boxall, A. B. A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65, 725-759.
    [1]陈杖榴.兽用化学药物研发动向[J].中国兽药杂志,2005,39(7),1-6.
    [2]陈杖榴,杨桂香,孙永学等.兽药残留的毒性与生态毒理研究进展[J].华南农业大学学报,2001,22(1),88-91.
    [3]Migliore, L.; Brambilla, G.; Cozzolino, S.; et al. Effects on plants of sulfphadimethoxine used in intensive farming[J]. Agric. Ecosyst. Environ., 1995, 52, 103-110.
    [4]Batchelder, A. R. Chlonetracycline and oxytetracycline effects on plant growth and development in soil systems[J]. Journal of Environment Quality, 1982, 11(4), 675-678.
    [5]Heise, J.; Holtge, S.; Schrader, S.; Kreuzig, R. Chemical and biological characterization of non-extractable sulfonamide residues in soils[J]. Chemosphere, 2006, 65, 2352-2357.
    [6]Dijck, P. V.; Van de Voorde, H. Sensitivity of environmental microorganism to antimicrobial agents[J]. Appl. Environ. Microbiol, 1976, 31(3), 332-336.
    [7]杨居荣,任燕,刘虹.砷对土壤微生物及土壤生化活性的影响[J].土壤,1996,28(2),101-104.
    [8]张跃华,罗志文,赵永勋.阿维菌素对土壤微生物的活性影响[J].佳木斯大学 学报(自然版),2002,20(1),49-51.
    [9]Backhaus Grimme, L. H. The toxicity of antibiotic agents to the luminescent bacterium vibrio fischeri[J]. Chemosphere, 1999, 38(14), 3291-3301.
    [10]Hamscher, G.; Sczesny, S.; Hoper, H.; Nau, H. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[J]. Anal. Chem., 2002, 74(7), 1509-1518.
    [11]Backhaus Froehner, K.; Altenburger, R.; Grimme, L. H. Toxicity testing with Vibrio Fischeri: A comparison between the long term(24h) and the short term(30min) bioassay[J]. Chemosphere, 1997, 35(12), 2925-2938.
    [12]Thiele-Bruhn, S.; Beck, I. C. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass[J]. Chemosphere, 2005, 59, 457-465.
    [13]刁晓平,孙振钧,沈建忠.兽药的生态毒理及其对环境影响的研究进展[J].应用生态学报,2004,15(2),321-325.
    [14]张学飞,张继红,符玉娟,兽药残留的危害[J].新疆畜牧业,2004,3,23-24.
    [15]Jemba, P. K. The potential impact of veterinary and human therapeutic agents in manure and biosolid on plant grow on arable land: A review[J]. Agric. Ecosyst. Environ., 2002, 93,267-278.
    [16]Addison, J. B. Antibiotics in sediments and run-off water from feedlots[J]. Residu Reviews, 1984, 92, 1-28.
    [17]Kroker, R. Aspekte zur ausscheidung antimikrobiell wirksamer substanzen nach der chemoterapeutischen behandlung von nutztieren[J]. Wissenschaft and Umwelt, 1983, 4, 305-308.
    [18]Stumpf, M.; Ternes, T. A.; Wilken, R. D.; Rodrigues, S. V.; Baumann, W. Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil[J]. Sci. Total Environ., 1999, 12, 225(1-2), 135-141.
    [19]于晓章,Stefan T.植物的不同组织对氰化物降解的可行性研究[J].生态科学,2003,22(1),6-8.
    [20]Vallack, H. W.; Bakker, D. J.; Brandt, I.; et al. Controlling persistent organic pollutants-what next?[J]. Environmental Toxicology and Pharmacology, 1998, 6(3), 143-175.
    [21]Sarmah, A. K.; Meyer, M. T.; Boxall, A. B. A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere, 2006, 65, 725-759.
    [22]Halling-Sφrensen, B.; Nielsen, N.; Lansky, P. F.; et al. Occurrence, fate and effects of pharmaceuticals in the environment-A review[J]. Chemosphere, 1998, 36, 357-394.
    [23]Boxall, A. B. A.; Fogg, L. A.; Kay, P.; Blackwell, P. A.; Pemberton, E. J.; Croxford, A. Veterinary medicines in the environment[J]. Reviews in Environmental Contamination and Toxicology, 2004, 180, 1-92.
    [24]Rabolle, M.; Spliid, N. H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil[J]. Chemosphere, 2000, 40, 712-715.
    [25]Loke, M. T.; Tjornelund, J.; Halling-Sφrensen, B. Determination of the distribution coefficient(logKd) of oxytetracycline, tylosine A, olaquindox and metronidazole in manure[J]. Chemosphere, 2002, 48, 351-361.
    [26]Heberer, T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data[J]. Toxicol Letter, 2002, 131, 5-17.
    [27]Ying, G. G.; Kookana, R. S.; Ru, Y. J. Occurence and fate of hormone steroids in the environment[J]. Environment International, 2002, 28(6), 545-551.
    [28]Rabolle, M.; Spliid, N. H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil[J]. Chemosphere, 2000, 40(7), 715-722.
    [29]Boxall, A. B. A.; Blackwell, P.; Kay, E. The sorption and transport of a sulphonamide antibiotic in soil systems[J]. Toxicology Letters, 2002, 131(1-2), 19-28.
    [30]Kay, P.; Blackwell, P. A.; Boxall, A. B. A. A lysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data[J]. Environmental Pollution, 2005, 134, 333-341.
    [31]Kay, P.; Blackwell, P. A.; Boxall, A. B. A. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land[J]. Chemosphere, 2005, 60, 497-507.
    [32]Aboul-Kassim, T. A. T.; Simoneit, B. R. The handbook of environmental chemistry Vol.5 Part E, Pollutant-solid phase interactions: Mechanism, chemistry and modeling[M]. Berlin Heidelberg: Springer-Verlag, 2001, 141-159.
    [33]卞永荣,蒋新,王代长,赵振华,孙磊,陈亮,周道斌.五氯酚在酸性土壤表面的吸附-解吸特征研究[J].土壤,2004,36(2),181-186.
    [34]梁重山,党志,刘丛强,黄伟林.菲在土壤/沉积物上的吸附-解吸过程及滞后现象的研究[J].土壤学报,2004,41(3),329-335.
    [35]罗雪梅,杨志峰,何孟常,刘昌明.土壤/沉积物中天然有机质对疏水性有机污染物的吸附作用[J].土壤,2005,37(1),25-31.
    [36]Jia, L. Q.; Ou, Z. Q.; Ouyang, Z. Y. Ecological behavior of linear alkylbenzene sulfonate(LAS) in soil-plant system[J]. Pedosphere, 2005, 15(2), 216-224.
    [37]张劲强,董元华,安琼,刘新程.兽药抗生素在土壤环境中的行为[J].土壤, 2005, 37(4), 353-361.
    [38]Wehrhan, A.; Kasteel, R.; Simunek, J.; Groeneweg, J.; Vereecken, H. Transport of sulfadiazine in soil columns-experiments and modeling approaches[J]. Journal of Contaminant Hydrology, 2006, doi: 10.1016/j.jconhyd.2006.08002.
    [39]孔繁翔主编.环境生物学[M].北京:高等教育出版社,2000.
    [40]Berger, K.; Petersen, B.; Buening-Pfaue, H. Persistence of drugs occurring in liquid manure in the food chain[J]. Archivfuer Lehensmittelhygiene, 1986, 37, 99-102.
    [41]Richardson, M. L.; Bowron, J. M. The fate of pharmaceutical chemicals in the aquatic environment[J]. J. Pharm. Pharmacol., 1985, 37(1), 1-12.
    [42]Ingerslev, F.; Halling-Sφrensen, B. Biodegradability properties of sulfonamides in activated sludge[J]. Environ. Toxicol. Chem., 2000, 19(10), 2467-2473.
    [43]Halling-Sφrensen, B.; Lykkeberg, A; Ingerslev, F.; Blackwell, P.; Tφrnelund, J. Characterisation of the abiotic degradation pathways of oxytetracyclines in soil interstitial water using LC-MS-MS [J]. Chemosphere, 2003, 50(10), 1331-1342.
    [44]Thiele-Bruhn, S.; Peters, D.; Halling-Sφrensen, B.; Leinweber, P. Photodegradation and ageing of antibiotic pharmaceutical on soil[C]. Lyon: Presentation of project results on Envirpharma European conference, 2003, 14-16.
    [45]Baran, W.; Sochacka, J.; Wardas, W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions[J]. Chemosphere, 2006, 65, 12951-1299.
    [46]王福安等.分子热力学与色谱保留[M].北京:气象出版社,2001,88.
    [47]张锡辉.高等环境化学与微生物学原理及应用[M].北京:化学工业出版社,2001,88-99.
    [48]李军红,颜慧,宋文华.磺酰脲类除草剂动态定量结构-生物降解性研究[J].农业环境科学学报,2004,23(6),1128-1132.
    [49]Agrawal, V. K.; Srivastava, R.; Khadikar, P. V. QSAR studies on some antimalarial sulfanamides[J]. Bioorganic & Medicinal Chemistry, 2001, 3287-3293.
    [50]Peng, X.; Wang, Z.; Kuang, W.; Tan, J.; Li, K. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China[J]. Science of the Total Environment, 2006, 371, 314-322.
    [51]Kuramochi, H.; Ohsako, M.; Maeda, K.; Sakai, S. Prediction of physico-chemical properties for PCDDs/DFs using the UNIFAC model with an alternative approximation for group assignment[J]. Chemosphere, 2002, 49, 135-142.
    [1]Marek, J. Farmakoterapie Vnitrnich Nemoci (Pharmacotherapy of Internal Diseases)[M]. Prague: Grada Publishing, 1998, 159.
    [2]王彦华.农药残留速测技术研究进展[J].世界农药,2004,26,30-32.
    [3]张志洁.磺胺类药物残留分析方法[J].山东食品发酵,2004,2,43-45.
    [4]Gausepohl, C.; Blaschke, G. Stereoselective determination of clenbuterol in human urine by capillary electrophoresis[J]. J. Chromatogr. B. Biomed Sci. Appl., 1998, 713, 443-446.
    [5]Ribone, M. E.; Pagani, A. P.; Olivieri, A. C. Simultaneous multivariate spectrophotometric analysis of binary and ternary mixtures of sulfamethoxazole, trimethoprim and phenazopyridine in tablets[J]. Anal. Lett., 1999, 32(7), 1389-1401.
    [6]常雪君,李艳.紫外法测定磺胺嘧啶钠注射液的含量[J].黑龙江医药科学,2002,25(3),23.
    [7]尚尔宁,沈惠明,樊祥.分光光度法测定磺咳合剂中磺胺嘧啶胺的含量[J].抗感染药学,2004,1(2),84-85.
    [8]Msagati, T. A. M.; Ngila, J. C. Voltammetric detection of sulphonamides at a poly (3-methylthiophene) electrode[J]. Talanta, 2002, 58(3), 605-610.
    [9]Jen, J. F.; Lee, H. L.; Lee, B. N. Simultaneous determination of seven sulfonamide residues in swine wastewater by high-performance liquid chromatography[J]. J. Chromatogr. A., 1998, 793(2), 378-382.
    [10]Yang, S.; Cha, J.; Carlson, K. Simultaneous extraction and analysis of 11 tetracycline and suifonamide antibiotics in influent and effluent domestic wastewater by solid-phase extraction and liquid chromatography-electrospray ionization tandem mass spectrometry[J]. J. Chromatogr. A., 2005, 1097(1), 40-53.
    [11]Babic, S.; Asperger, D.; Mutavdzic, D. Solid phase extraction and HPLC determination of veterinary pharmaceuticals in wastewater[J]. Talanta, 2006, 70, 732-738.
    [12]罗金文,张孙玮,陈恒武.复方新诺明片剂中有效成分的毛细管区带电泳快速测定法[J].分析科学学报,2000,16(2),123-125.
    [13]耿新,李井会,高礼让等.稳健回归解析紫外光度法同时测定磺胺甲噁唑和甲氧苄啶[J].分析化学,2001,29(9),1036-1038.
    [14]聂斌,武力,陈宝妮,卓曲.紫外分光光度法和永停滴定法测定复方磺胺氯达嗪钠粉的含量[J].中国兽药杂志,2006,40(4),52-54
    [15]王维忠,钱南萍.紫外分光光度法测定磺胺醋酰钠滴眼液的含量[J].现代医药卫生,2005,21(3),258-259.
    [16]Ni, Y. N.; Qi, Z. B.; Kokot, S. Simultaneous ultraviolet-spectrophotometric determination of suifonamides by multivariate calibration approaches[J]. Chemometrics and Intelligent Laboratory Systems, 2006, 82, 241-247.
    [17]齐正保,倪永年.多元校正紫外光度法同时测定磺胺甲基异噁唑和甲氧苄啶[J].南昌大学学报(理科版),2005,29(1),77-79.
    [18]徐昆龙,肖蓉.饲料中磺胺二甲基嘧啶的测定[J].中国饲料,2005,14,22-24.
    [19]沈春生.差示分光光度法测定复方磺胺合剂中两种磺胺的含量[J].海峡药学,2005,17(3),72-73.
    [20]国家药典委员会.中华人民共和国药典(2000,二部)[M].北京:化学工业出版社,2000,1048.
    [1]Ong, S.; Liu, H.; Pidgeon, C. Immobilized-artificial-membrane chromatography: measurements of membrane partition coefficient and predicting drug membrane permeability[J]. J. Chromatogr., 1996, 728, 113-128.
    [2]孙进,王淑君,程刚,陈济民.磷脂膜色谱及其在生物药剂学中的应用[J].药学学报,2003,38,475-480.
    [3]孙进,张天虹,李洁,毛晶晶,何仲贵.溶质在磷脂膜色谱与正辛醇/水系统 中的热力学分配行为[J].高等学校化学学报,2006,27,349-351.
    [4]朱吉钦,于燕梅,陈健,费维扬.有机物在离子液体中无限稀释活度因子及液液界面张力的定量结构-性质关系[J].化工学报,2006,57,1835-1840.
    [5]Milne, G. W. A.; Wang, S.; Nicklaus, M. C. J. Chem. Int. Comput. Sci., 1996, 36, 726-730.
    [6]王福安,蒋元力.分子热力学与包谱保留[M].北京:气象出版社,2001.
    [7]王福安,马金星,杨炎锋,任保增.芳香化合物的疏水常数测定及其温度效应[J].郑州工业大学学报,1999,20(3),1-3.
    [8]Sangster, J. Octanol-water partition coefficients of simple organic compounds[J]. J Phys. Chem. Ref. Data, 1989, 18(3), 1111-1229.
    [9]陈红萍,刘永新,梁英华.正辛醇/水分配系数的测定及估算方法[J].安全与环境学报,2004,4,82-86.
    [10]Martinez, F.; Gomez, A. Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents[J]. Journal of Solution Chemistry, 2001, 30, 909-923.
    [11]Martinez, F.; Avila, C. M.; Gomez, A. Thermodynamic study of the solubility of some sulfonamides in cyclohexane[J]. J. Braz. Chem. Soc., 2003, 14, 803-808.
    [12]Brooke, D. N.; Dobbs, A. J.; Williams, N. Octanol-water partition coefficient (P) measurement, estimation and interpretation particularly for chemicals with P<10~5[J]. Ecotoxicol Environ Safety, 1986, 11, 251-260.
    [13]Brooke, D. N.; Nielsen, I.; Bruijin, J. An intedaboratory evaluation of the stir-flask method for the determination of octanol-water partition coefficient[J]. Chemosphere, 1990, 21, 119-133.
    [14]Danielsson, L. G. and Zhang, Y. H. Methods for determining n-oetanol-water partition contants[J]. Trends in analytical chemistry, 1996, 15(4), 188-195.
    [15]Carlsson, K. and Karlberg, B. Determination of octanol-water partition coefficients using a micro-volume liquid-liquid flow extraction system[J]. Analytica Chimica Acta, 2000, 42, 137-144.
    [16]张从良,文春波,王岩,王福安.紫外分光光度法测定土壤中磺胺嘧啶的含量[J].分析科学学报,2007,已录用.
    [17]Martinez, F.; Gomez, A. Estimation of the solubility of sulfonamides in aqueous media from partition coefficients and entropies of fusion[J]. Phys. Chem. Liq., 2002, 40, 411-420.
    [18]Jain, N.; Yalkowsky, S. H. Estimation of the aqueous solubility Ⅰ: application to organic nonelectrolytes[J]. J. Pharm. Sci., 2001, 90, 234-252.
    [19]Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria[M], 3rd ed.; Prentice Hall: Upper Saddle River, NJ, 1999; pp645-647.
    [20]Barton, A. F. M. CRC Handbook of Solubility Parameters and Other Cohesion Parameters[M], 2nd ed.; CRC Press: Boca Raton, FL, 1991; pp99-148.
    [21]Hancock, B. C.; York, P.; Rowe, R. C. The use of solubility parameters in pharmaceutical dosage form design[J]. Inter. J. of Pharm., 1997, 148, 1-21.
    [22]Hanaee, J.; Jouyban, A.; Dastrnalchi, S.; Adibkia, K.; Mirzazadeh, A.; Barzegarjalali, M. Solubility prediction of sulfonamides at various temperatures using a single determination[J]. DARU, 2005, 13, 37-45.
    [23]Zhang, C. L.; Wang, F. A.; Wang, Y. Determination and temperature dependence of n-octanol/water partition coefficients for seven sulfonamides from (298.15 to 333.15) K[J]. Bull. Korean Chem. Soc., 2007, 已录用.
    [24]Wang, L. C.; Wang, F. A. Solubilities of niacin in sulfuric acid + water and 3-picoline + sulfuric acid + water from (292.65-361.35) K[J]. Fluid Phase Equilibria, 2004, 226, 289-293.
    [25]Bahadur, N. P.; Shiu, W.; Macka, Y. D. Temperature dependence of octanol-water partition coefficients for selected chlorobenzenes[J]. J. Chem. Eng. Data, 1997, 42, 685-688.
    [26]Lyman,W.J.;Reehi,W.F.等著,许志宏等译.化学性质估算方法手册(有机化合物的环境性质)[M].北京:化学工业出版社,1991.
    [1]Marek, J. Farmakoterapie Vnitrnich Nemoci (Pharmacotherapy of Internal Diseases)[M]. Prague: Grada Publishing, 1998, 159.
    [2]陈杖榴,杨桂香,孙永学等.兽药残留的毒性与生态毒理研究进展[J].华南农业大学学报,2001,22(1),88-91.
    [3]Martinez, F.; Gomez, A. Thermodynamic study of the solubility of some sulfonamides in octanol, water, and the mutually saturated solvents[J]. Journal of Solution Chemistry, 2001, 30, 909-923.
    [4]Martinez, F.; Gomez, A. Estimation of the solubility of sulfonamides in aqueous madia from partition coefficients and entropies of fusion[J]. Phys. Chem. Liq., 2002, 40, 411-420.
    [5]Hanaee, J.; Jouyban, A.; Dastmalchi, S.; Adibkia, K.; Mirzazadeh, A.; Barzegarjalali, M. Solubility prediction of sulfonamides at various temperatures using a single determination[J]. DARU, 2005, 13, 37-45.
    [6]Vatanara, A.; Najafabadi, A. R.; Khajeh, M.; Yamini, Y. Solubility of some inhaled glucocorticoids in supercritical carbon dioxide[J]. Journal of Supercritical Fluids, 2005, 33(1), 21-25.
    [7]Valtz, A.; Heqarty, M.; Richon, D. Experimental determination of the solubility of aromatic compounds in aqueous solutions of various amines[J]. Fluid Phase Equilibria, 2003, 210(2), 257-276.
    [8]魏东炜,姜浩锡,井欣,袁继堂.4-羟基苯甲醛及其溴代物在氯仿中溶解度测定和关联[J].化工学报,2004,55(7),1192-1195.
    [9]Wang, F. A.; Wang, L. C.; Song, J. C.; Wang, L.; Chen, H. S. Solubilities of bis(2,2,6,6-tetramethyl-4-piperidinyl) maleate in hexane, heptane, octane, m-xylene, and tetrahydrofuran from (253.15 to 310.15) K[J]. J. Chem. Eng. Data, 2004, 49(6), 1539-1541.
    [10]Domanska, U.; Mazurowska, L. Solubility of 1,3-dialkylimidazolium chloride or hexafluorophosphate or methylsulfonate in organic solvents: effect of the anions on solubility[J]. Fluid Phase Equilibria, 2004, 221(1-2), 73-82.
    [11]Sidi-Boumedine, R.; Horstmann, S.; Fischer, K. Experimental determination of hydrogen sulfide solubility data in aqueous alkanolamine solutions[J]. Fluid Phase Equilibria, 2004, 218(1), 149-155.
    [12]Wang, L. C.; Wang, F. A. Solubility of niacin in 3-picoline + water from (287.65 to 359.15) K[J]. J. Chem. Eng. Data, 2004, 49(1), 155-156.
    [13]韩佳宾,王静康.咖啡因在水和乙醇中的溶解度及其关联[J].化工学报,2004,55(1),125-128.
    [14]Li, D. Q.; Liu, D. Z.; Wang, F. A. Solubilities of terephthalaldehydic, p-toluic, benzoic, terephthalic, and isophthalic acids in N-methyl-2-pyrrolidone from 295.65 K to 371.35 K[J]. J. Chem. Eng. Data, 2001, 46(1), 172-173.
    [15]任保增,李晨,袁晓亮,王福安.三聚氰胺溶解度的测定与关联[J].化工学报,2003,54(7),1001-1004.
    [16]Wang, L. C.; Wang, F. A. Solubilities of niacin in sulfuric acid + water and 3-picoline + sulfuric acid + water from (292.65 to 361.35) K[J]. Fluid Phase Equilibria, 2004, 226 (1-2), 289-293.
    [17]Teodorescu, M.; Wichterle, I. Modeling of nitrogen and carbon dioxide solubility in alternative fuels at high pressures using the Soave-Redlich-Kwong equation of state[J]. Chemical Engineering and Technology, 2003, 26(9), 992-995.
    [18]Save, G. S. Application of the Redlich Kwong equation of solid-liquid equilibria calculation[J]. Chem. Eng. Sci., 1997, 34(2), 225-229.
    [19]Prausnitz, J. M.; Lichtenthaler, R. N.; Azevedo, E. G. Molecular Thermodynamics of Fluid-Phase Equilibria[M]. 3rd ed. Prentice-Hall PTR, Upper Saddle River, New Jersey, 1999.
    [20]王福安,蒋元力.分子热力学与色谱保留[M].北京:气象出版社,2001.
    [21]Wilson, G. M. Vapor-liquid Equilibrium Ⅺ. A new expression for the excess free energy of mixing[J]. J. Am. Chem. Soc., 1964, 86, 127-130.
    [22]Null, H. R. Application of the Wilson equation to solid-liquid equilibria[J]. A. I. Ch. E. Symoposium Series 63, 1967, 13, 52-56.
    [23]Domanska, U. Solubility of acetyl-substituted naphthols in binary solvent mixtures[J]. Fluid Phase Equilibria, 1990, 55(1-2), 125-145.
    [24]Roy, L. E.; Hernandez, C. E.; Reddy, G. D.; et al. Solubility of anthracene in binary alkane + 2-ethyl-1-hexanol and alkane + 1-pentanol solvent mixtures at 298.2 K[J]. J. Chem. Eng. Data, 1998, 43(3), 493-495.
    [25]Pauly, J.; Dauphin, C.; Daridon, J.L. Liquid-solid equilibria in a decane + multiparaffins system[J]. Fluid Phase Equilibria, 1998, 149(1-2), 191-207.
    [26]Renon, H.; Prausnitz, J. M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE J., 1968, 14, 135-144.
    [27]Domanska, U.; Lachwa, J.; Morawski, P.; Malanowski, S. K. Phase equilibria and volumetric properties in binary mixtures containing branched chain ethers[J]. J. Chem. Eng. Data, 1999, 44(5), 974-984.
    [28]Lee, M. J.; Chen, C. H.; Lin, H. M. Solid-liquid equilibria for binary mixtures composed of acenaphthene, dibenzofuran, fluorene, phenanthrene, and diphenylmethane [J]. J. Chem. Eng. Data, 1999, 44(5), 1058-1062.
    [29]Abrams, D. S.; Prausnitz, J. M. Statistical thermodynamics of liquid mixture: A new expression for the excess Gibbs energy of partly or completely miscible systems[J]. AIChE J., 1975, 21(1), 116-128.
    [30]Coutinho, J. A. P. Predictive UNIQUAC: A new model for the description of multiphase solid-liquid equilibria in complex hydrocarbon mixtures[J]. Ind. Eng. Chem. Res., 1998, 37(12), 4870-4875.
    [31]Domanska, U.; Venkatesu, P. Measurement and correlation of solid-liquid equilibria of 18-crown-6 in alcohols[J]. J. Chem. Eng. Data, 1998, 43(6), 919-924.
    [32]Fredenslund, A.; Jones, R. L.; Prausnitz, J. M. Group-contribution estimation of activity coefficients in nonideal liquid mixtures[J]. AIChE J., 1975, 21(6), 1086-1099.
    [33]Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-liquid Equilibria Using UNIFAC[M]. Elsevier Scientific Publishing Co., 1977.
    [34]Gmehling, J. G.; Anderson, T. F.; Prausnitz, J. M. Solid-liquid equilibria using UNIFAC[J]. Ind. Eng. Chem. Fundam, 1978, 17(4), 269-273.
    [35]Jakob, A.; Joh, R.; Rose, C.; Gmehling, J. Solid-liquid equilibria in binary mixtures of organic compounds[J]. Fluid Phase Equilibria, 1995, 113 (1-2), 117-126.
    [36]夏清.2,6-萘二甲酸提纯方法研究[D].天津大学博士学位论文,1998.
    [37]王静康,朱向前,任宝山,何予基.芳烃衍生物同分异构体低共熔物系固液相平衡研究[J].化学工程,1999,27(2),41-45.
    [38]李殿卿.混合苯羧酸分离与利用工程基础研究[D].天津大学博士学位论文,2001.
    [39]Gmehling, J; Li, J. D.; Schiller, M. Modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties[J]. Ind. Eng. Chem. Res., 1993, 32(1), 178-193.
    [40]Buchowski, H.; Ksiazcak, A.; Pietrzyk, S.; et al. Solvent activity along a saturation line and solubility of hydrogen bonding solids[J], J. Phys. Chem., 1980, 84, 975-979.
    [41]Buchowski, H.; Mhiat, A. Solubility of solids in liquids: one-parameter solubility equation[J]. Fluid Phase Equilibria, 1986, 25(3), 273-278.
    [42]魏东炜,姜浩锡,袁继堂,井欣.4-羟基苯甲醛及其溴代物固液平衡数据测定与关联[J].化工学报,2003,54(10),1459-1462.
    [43]刘春雪,米镇涛,王莅,王亚权.2-戊基蒽醌和2-乙基蒽醌在混合溶剂中溶解度的测定及关联[J].化工学报,2006,57(5),1069-1072.
    [44]刘国柱,程淑颖,王莅,米镇涛,常贺英.2-戊基蒽醌在TMB/TOP中溶解度的测定与关联[J].化工学报,2004,55(4),640-642.
    [45]Apetblat, A.; Manzurola, E. Solubility of oxalic, malonic, succinic, adipic, maleic, malic, citric, and tartaric acids in water from 278.15 to 338.15 K[J]. J. Chem. Thermodyn., 1987, 19(3), 317-320.
    [46]Wang, L. C.; Wang, F. A. Solubilities of niacin in sulfuric acid + water and 3-picoline + sulfuric acid + water from (292.65-361.35) K[J]. Fluid Phase Equilib., 2004, 226, 289-293.
    [47]Zhao, J. H.; Wang, L. C.; Wang, F. A. Solubilities of p-aminophenol in sulfuric acid + water + (methanol, ethanol, 1-propanol, 2-propanol, 1,2-propanediol, and glycerin, respectively) from (292.35 to 348.10) K[J]. J. Chem. Eng. Data, 2006, 51(2), 376-381.
    [48]Barton, A. F. M. CRC Handbook of Solubility Parameters and Other Cohesion Parameters[M]. 2nd ed. CRC Press, Floride, 1991.
    [49]Hancock, B. C.; York, P.; Rowe, R. C. The use of solubility parameters in pharmaceutical dosage form design[J]. Inter. J. of Pharm., 1997, 148, 1-21.
    [50]Chen, H. P.; Wagner, J. Mutual Solubilities of alkylbenzene + water systems at temperatures from 303 to 373 K[J]. J. Chem. Eng. Data, 1994, 39, 679-684.
    [51]Saraswat, I. P.; Kumar, R. Solution behavior of heavy-metal soaps. 1. solubilities of mercury(Ⅱ) octadecanoate in water, formamide, N,N-dimethylformamide, and cyclohexanone at various temperatures[J], J. Chem. Eng. Data, 1984, 29, 200-202.
    [52]Nagata, I.; Gotoh, K.; Tamura, K. Association model of fluids. Phase equilibria and excess enthalpies in acid mixtures. Fluid Phase Equilib. 1996, 124, 31-54.
    [53]Nath, A.; Bender, E. On the thermodynamics of associated solutions. Ⅰ. An analytical method for determining the enthalpy and entropy of association and equilibrium constant for pure liquid substances. Fluid Phase Equilib. 1981, 7, 275-287.
    [54]王福安,蒋登高.化工数据导引[M].北京:化学工业出版社,1995.
    [55]王连生,韩朔睽.有机污染环境进展[M].北京:化学工业出版社,1998.
    [56]余训爽,李爱国,黄建平.量子化参数和分子价连接性指数对脂肪醇的QSPR/QSAR的相关性研究[J].安徽师范大学学报(自然科学版),2006,29(3),249-254
    [57]Kier, L. B.; Hall, H. Molecular Connectivity in Chemistry and Drug Research[M]. New York: Academic Press, 1976.
    [58]高德霖.分子连接性方法及其在结构-活性相关中的应用[J].江苏化工,1998,26(4),37-40.
    [59]张锡辉.高等环境化学与微生物学物学原理及应用[M].北京:化学工业出版社,2001.
    [60]李俊锁,李西旺,魏广智,沈建中,张素霞.鸡肝组织中磺胺类药物多残留分析法[J].畜牧兽医学报,2002,33,468-472.
    [61]Jain, N.; Yalkowsky, S. H. Estimation of the aqueous solubility Ⅰ: application to organic nonelectrolytes[J]. J. Pharm. Sci., 2001, 90, 234-252.
    [1]陈杖榴.兽用化学药物研发动向[J].中国兽药杂志,2005,39(7),1-6.
    [2]佟恒敏,李涛,王振隆,丛霞,等.磺胺嘧啶在成羊体内的药物代谢动力学研究[J].东北农业大学学报,1994,25(1),38-41.
    [3]陈杖榴,杨桂香,孙永学,等.兽药残留的毒性与生态毒理研究进展[J].华南农业大学学报,2001,22(1),88-91.
    [4]李克斌,刘惠君,马云,等.不同类型表面活性剂在土壤上的吸附特征比较研究[J].应用生态学报,2004,15(11),2067-2071.
    [5]张卫,林匡飞,蔡兰坤,等.阿维菌素在不同类型土壤中的吸附研究[J].生态环境,2006,15(1),37-39.
    [6]李学垣.土壤化学及实验指导[M].北京:中国农业出版社,1995.
    [7]Thiele, S. Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized osess Chemozem[J]. J. Plant Nutu. Soil Sci., 2000, 163,589-594.
    [8]H.H.麦尔尼科夫,A.N.沃尔科夫,O.A.科罗特科娃著,李巍岷,姚家伟,龚著勤译.农药与环境[M].北京:化学工业出版社,1985.
    [9]王琪全,刘维屏.乙草胺和异丙甲草胺在土壤中吸附的研究[J].土壤学报,2000,6(4),423-427.
    [10]Gaboriau, H.; Saada, A. Influence of heavy organic pollutants of anthropic origin on PAH retention by kaolinite[J]. Chemosphere, 2001, 44, 1633-1639.
    [11]Bailey, G. W. and White, J. L. Factors influencing the adsorption, desorption, and movement of pesticides in soils[J]. Residue Rev., 1970, 32, 29-92.
    [12]Karickhoff, S. W.; Brown, D. S. and Scott, T. A. Sorption of hydrophobic pollutants on nature sediments[J]. Water Res., 1979, 13,241-248.
    [13]Chiou, C. T.; Peters, L. J. and Freed, V. H. A physical concept of soil-water equilibria for nonionic organic compounds[J]. Science, 1979, 206, 831-832.
    [14]Chiou, C. T.; Freed, V. H. et al. Partition coefficient and bioaccumulation of selected organic chemicals[J]. Environ. Sci. Technol., 1977, 11,475-478.
    [15]Mackey, D.; Bobra, A. et al. Relationships between aqueous solubility and octanol-water coefficients[J]. Chemosphere, 1980, 9, 701-711.
    [16]Chiou, C. T.; Schmedding, D. W.; Manes, M. Partition of organic compounds in octanol water systems[J]. Environ. Sci. Technol., 1982, 16, 4-10.
    [17]Miller, M. M.; Waslk, S. P.; et al. Relationships between octanol-water partition of partition coefficient and aqueous solubility[J]. Environ. Sci. Technol., 1985, 19, 522-529.
    [18]Chin, Y. P.; Weber, W. J.; Voiew, T. C. Determination of partition coefficient and aqueous solubilities by reverse phase chromatography[J]. Water Res., 1986, 20, 1443-1450.
    [19]Briggs, G. G. A simple relationship between soils sorption of organic chemicals and their octanol-water partition coefficients[C]. Proceeding of the 7th British Insecticide and Fungicide Conference, 1973, 11,475-478.
    [20]Schwarzenbach, R. P. and Westall, J. Transport of nonpolar organic compounds from water to groundwater, laboratory sorption studies[J]. Environ. Sci. Technol., 1981, 15, 1360-1367.
    [21]Fredeen, F. G. H.; Arnason, A. P. and Berek, B. Adsorption of DDT on suspended soils in river water and its role in black-fly control[J]. Nature, 1953, 171,700-701.
    [22]Leland, H. V.; Bruce, W. N. and Shimp, N. F. Chlorinated hydrocarbon insecticides in sediments if southern lake Michigan[J]. Environ. Sci. Technol., 1973, 7, 833-838.
    [23]Choi, W. W. and Chen, K. Y. Associations of chlorinated hydrocarbons with fine particles and humic substances in near shore surficial sediments[J]. Environ. Sci. Technol., 1976, 10, 782-786.
    [24]Yonug, J. L. and Spycher, G. Water dispersible soils organic-mineral particles: carbon and nitrogen distribution[J]. Soi. Sci. Soc. Am. J., 1979, 43, 324-328.
    [25]Means, J. C. and Wijayaratne, R. Role of natural colloids in the transports of hydrophobic pollutants[J]. Science, 1982, 215, 968-970.
    [26]Weber, W. J. J.; Voice, T. C.; et al. Sorption of hydrophobic compounds by sediments, soils and suspended soils sorbent evaluation studies[J]. Water Res., 1983, 17, 1443-1452.
    [27]Isaaeson, P. J. and Frink, C. R. Nonreversible sorption of phenolic compounds by sediments fractions: the role of sediment organic matter[J]. Environ. Sci. Technol., 1984, 18, 43-48.
    [28]Lambert, S. M. Functional relationship between sorption in soils and chemical structure[J], J. Agric. Food. Chem., 1967, 15, 572-576.
    [29]Chiou, C. T.; Porter, P. E.; et al. Partition equilibria of nonionic organic compounds between soils organic matter and water[j]. Environ. Sci. Technol., 1983, 17, 227-231.
    [30]Karickhoff, S. W. Organic pollutant sorption in aquatic systems[J], J. Hydraulic Engineering, 1984, 110, 707-735.
    [31]Migelgrin, V. and Gerstl, Z. Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soils[J], J. Environ. Qual., 1988, 12, 1-11.
    [32]Jury, W. A. and Fluhier, H. Transport of chemicals through soil: mechanisms, models, and fields applications[J]. Adv. Agron., 1992, 47, 141-201.
    [33]Bahnick, D. A. and Doucett, W. J. Use of molecular connectivity indices to estimate soils sorption coefficients for organic chemicals[J]. Chremosphere, 1988, 17, 1703-1715.
    [34]Samuel, W. and Karickhoff, S. W. Semi-empirical estimation of hydrophobic pollutants on natural sediments and soils[J]. J. Chemosphere, 1981, 10, 833-846.
    [35]Ball, W. P. and Roberts, P. V. Long-term sorption of halogenated organic chemicals by aquifer material: equilibrium[J]. Environ. Sci. Technol., 1991, 25, 1223-1237.
    [36]Ball, W. P. and Roberts, P. V. Long-term sorption of halogenated organic chemicals by aquifer material: intraparticle diffusion[J]. Environ. Sci. Technol., 1991, 25, 1237-1249.
    [37]Huang, W. L. and Walter, J. W. A distributed reactivity model for sorption by soils and sediments: slow concentration-dependent sorption rates[J]. Environ. Sci. Technol., 1998, 32, 3549-3555.
    [38]Charles, J. W. and Reinhard, M. Effects of temperature on trichloroethylene desorption from silica gel and natural sediments: isotherms[J]. Environ. Sci. Technol., 1997, 31,689-696.
    [39]Zhou, J. L.; Rowland, S. J.; Mantoura, R. C. and Lane, M. G. Desorption of tefluthrin insecticide from soils in simulated rainfall runoff systems-kinetic studies and modeling[J]. Wat. Res., 1997, 31, 75-84.
    [40]Xia, G. S. and Pignatello, J. J. Detailed sorption isotherms of polar and apolar compounds in a high-organic soil[J]. Environ. Sci. Technol., 2001, 35, 84-94.
    [41]Xing, B. S. and Gigliotti, B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents[J]. Environ. Sci. Technol., 1996, 30, 2432-2440.
    [42]Weber, W.; McGlnley, P. and Katz, L. A distributed reactivity model for sorption by soils and sediments: conceptual basis and equilibrium assessments[J]. Environ. Sci. Technol., 1992, 26, 1955-1962.
    [43]Leboeuf, E. J. and Weber, W. J. A distributed reactivity model for sorption by soils and sediments: sorbent organic domains: discovery of humic acid glass transition and an argument for a polymer-based model[J]. Environ. Sci. Technol., 1997, 31, 697-1702.
    [44]Huang, W. L.; Young, T. M. and Weber, W. J. A distributed reactivity model for sorption by soils and sediments: general isotherms nonlinearity and applicability of the dual reactive domain model[J]. Environ. Sci. Technol., 1997, 31, 1703-1710.
    [45]Xing, B. and Pignatello, J. Competitive sorption between 1,3-dichlorobenzene or 2,4-dichlorophenol and natural aromatic acids in soils organic matter[J]. Environ. Sci. Technol., 1998, 32, 3919-3925.
    [46]Xing, B. S. and Pignatello, J. J. Dual-model sorption of low-polarity compounds in glassy poly (vinyl chloride) and soils organic matter[J]. Environ. Sci. Technol., 1997, 31,792-799.
    [47]Bajpai, A. K.; Ajpoot, M.; Mishra, D. D. Studies on the correlation between structure and adsorption of sulfonamide compounds[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2000, 168, 193-205.
    [48]中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [49]Kay, P.; Blackwell, P. A.; Boxall, A. B. A. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land[J]. Chemosphere, 2005, 60, 497-507.
    [50]M. Silvia Diaz-Cruz, Maria J. Lopez de Alda, Damia Barcelo. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge[J]. Analytical Chemistry, 2003, 22(6), 340-350.
    [51]张从良,文春波,王岩,王福安.紫外分光光度法测定土壤中磺胺嘧啶的含量[J].分析科学学报,2007,已录用.
    [52]徐晓白,戴树桂,黄玉瑶.典型化学污染物在环境中的变化及生态效应[M].北京:科学出版社,1998.
    [53]杨可武,安凤春,莫汉宏.单甲脒在土壤中的研究[J].环境化学,1995,14(5),431-435.
    [54]王福安等.分子热力学与色谱保留[M].北京:气象出版社,2001.
    [55]李倩,岳钦艳,高宝玉,刘莉莉.阳离子膨润土对分散染料的吸附动力学研究[J].高等学校化学学报,2006,27(6),1113-1117.
    [56]傅献彩,沈文霞,姚天扬.物理化学[M].北京:高等教育出版社,1990.
    [57]Garcla-Delgado, R. A.; Cotoueto-Minguez, L. M.; Rodfiguez, J. J. Equllibrum study of single-solute adsorption of anionic surfactants with polymeric XAD resins[J]. Sep. Sci. Technol., 1992, 27(7), 975-987.
    [58]李明愉,曾庆轩,冯长根,孙伟娜.离子交换纤维吸附儿茶素的热力学[J].化工学报,2005,56(7),1164-1168.
    [59]魏瑞霞,陈连龙,陈金龙.三种不同树脂对硫辛酸吸附行为的研究[J].环境化学,2004,23(4),387-392.
    [60]李爱民,张全兴,刘福强,费正皓,王学江,陈金龙.一种亲水的酚羟基修饰聚苯乙烯树脂对酚类化合物的吸附热力学[J].离子交换与吸附,2001,17(6),515-525.
    [61]孙越,陈金龙,李爱民,张全兴.复合功能超高交联树脂吸附邻苯二酚的热力学研究[J].环境污染与防治,2005,27(2),81-83.
    [1]陈杖榴,杨桂香,孙永学,等.兽药残留的毒性与生态毒理研究进展[J].华南农业大学学报,2001,22(1),88-91.
    [2]刁晓平,孙振钧,沈建忠.兽药的生态毒理及其对环境影响的研究进展[J].应用生态学报,2004,15(2),321-325.
    [3]张学飞,张继红,符玉娟.兽药残留的危害[J].新疆畜牧业,2004,3,23-24.
    [4]Wehrhan, A.; Kasteel, R.; Simunek, J.; Groeneweg, J.; Vereecken, H. Transport of sulfadiazine in soil columns-experiments and modeling approaches[J]. Journal of Contaminant Hydrology, 2006, doi: 10.1016/j.jconhyd.2006.08002.
    [5]Kay, P.; Blackwell, P. A.; Boxall, A. B. A. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land[J]. Chemosphere, 2005, 60, 497-507.
    [6]许秀元,陈同斌.土壤中溶质运移模拟的理论与应用[J].地理研究,1998,17(1),100-106.
    [7]Hirsch, R.; Ternes, T.; Haberer, K.; Kratz, K-L. Occurrence of antibiotics in the aquatic environment[J]. The Science of the Total Environment, 1999, 225, 109-118.
    [8]Giger, W. Occurrence and fate of Antibiotics as trace contaminants in wastewaters, sewage, sludge, and surface waters[J]. GHIMIA, 2003, 57(9), 340-350.
    [9]Pell, A. N. Manure and microbe: public and animal health problem[J]. J. Am. Vet. Med. ASSOC, 1997, 210(9), 1288-1289.
    [10]Louise, A. K.; Mike, A. T. and Marion, J. A. Estimating the predicted environmental concentration of the residues of veterinary medicines: should uncertainty and variability be ignored[J]? Risk Analysis, 2003, 23(3), 489-496.
    [11]李同杰,刘晶晶,刘春生,杨力.磷在棕壤中淋溶迁移特征研究[J].水土保持学报,2006,20(4),35-39.
    [12]戴树桂,刘广良,钱芸,孙玉宝.土壤多介质环境污染研究进展[J].土壤与环境,2001,10(1),1-5.
    [13]安凤春,莫汉宏,杨克武,刘晔,徐晓白,等.农药在土壤中迁移的研究方法[J].环境化学,1994,13(3),214-217.
    [14]吴春先,慕立义,吕潇,慕卫,陈子雷.灭线磷在3种土壤中移动性的研究[J].农药科学与管理,2003,24(4),9-13.
    [15]南京农业大学.土壤农化分析[M].北京:农业出版社,1996.
    [16]Kay, P.; Blackwell, P. A.; Boxall, A. B. A. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land[J]. Chemosphere, 2005, 60, 497-507.
    [17]Silvia Diaz-Cruz, M.; Maria J. Lopez de Alda; Damia Barcelo. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge[J]. Analytical Chemistry, 2003, 22(6), 340-350.
    [18]张从良,文春波,王岩,王福安.紫外分光光度法测定土壤中磺胺嘧啶的含量[J].分析科学学报,2007,已录用.
    [19]周启星.土壤环境中活性X23B红染料的淋溶行为与淹水释放模拟研究[J].环境科学学报,2001,21(1),50-54.
    [20]付美云,周立祥.垃圾渗滤液水溶性有机物在土壤中的吸附行为[J].农业环境科学学报,2006,25(4),964-968.
    [21]吴春先,慕立义,慕卫.灭线磷在3种土壤中移动性的研究[J].农药科学与管理,2003,24(4),9-13.
    [22]Michel Y. Haller, Stephan R. Mulet, Christa S. McArdell. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2002, 952, 111-120.
    [23]Migliore, L.; Brambilla, G.; Cozzolino, S. Effects on plants of sulphadimethoxine used in intensive farming[J]. Agric. Ecosyst. Environ, 1995, 52, 103-110.
    [24]李景印,高太忠,郭玉凤.磁河有机污染物在饱和土壤中迁移转化试验研究[J].环境科学研究,2002,15(3),49-52.
    [25]Thiele-Bruhn, S.; Peters, D.; Halling-Sφrensen, B.; Leinweber, P. Photodegradation and ageing of antibiotic pharmaceutical on soil[C]. Lyon: Presentation of Project Results on Envirpharma European Conference, 2003, 14-16.
    [26]Haller, M. Y.; Muler, S. R.; McArdell, C. S. Quantification of veterinary antibiotics (sulfonamides and trimethoprim) in animal manure by liquid chromatography-mass spectrometry[J]. Journal of Chromatography A, 2002, 952, 111-120.
    [1]陈杖榴.兽用化学药物研发动向[J].中国兽药杂志,2005,39(7),1-6.
    [2]佟恒敏,李涛,王振隆,丛霞,等.磺胺嘧啶在成羊体内的药物代谢动力学研究[J].东北农业大学学报,1994,25(1),38-41.
    [3]陈杖榴,杨桂香,孙永学,等.兽药残留的毒性与生态毒理研究进展[J].华南农业大学学报,2001,22(1),88-91.
    [4]洪铭媛,李清彪,邓旭.废水厌氧(水解)-好氧生物组合处理工艺研究进展[J].化工环保,2005,25(2),104-109.
    [5]张振家,朱琳,朱花,卜义惠.间歇活性污泥法处理磺胺废水及其动力学研究[J].中国给水排水,1999,15(7),52-54.
    [6]陈一中,朱敏,刘瑜.小诺霉素发酵废水好氧生物处理试验研究[J].上海环境科学,1997,16(4),26-29.
    [7]乔洪棋,毕东,揭成渝.四环素工业废水生化处理土艺的研究[J].重庆环境科学,1994,16(1),5-7.
    [8]Gobel, A.; McArdell, C. S.; Joss, A.; Siegrist, H.; Giger, W. Fate of sulfonamides, macrolides, and trimethoprim in different wastewater treatment technologies[J]. Science of the Total Environment, 2007, 372, 361-371.
    [9]Battaglin, W. A.; Furlong, E. T.; Burkhardt, M. R.; Peter, C. J. Occurrence of sulfonylurea, sulfonamide, imidazolinone, and other herbicides in rivers, reservoirs and ground water in the Midwestern United States, 1995[J]. The Science of the Total Environment, 2000, 248, 123-133.
    [10]陈玉,刘峰,王建晨,佟健萍,周大石,马汐平.上流式厌氧污泥床(UASB)处理制药废水的研究[J].环境科学,1994,15(1),50-52.
    [11]周平,钱易,苏诚艺,李炳伟.庆大霉素和金霉素废水的处理试验研究[J]. 环境科学,1995,16(1),45-47.
    [12]佘宗莲,田由芸.厌氧-好氧序列间歇式反应器处理生物制药废水的研究[J].环境科学研究,1998,11(1),49-52.
    [13]陆永生,华彬,施利毅.含制药残液废水的处理工艺研究[J].上海环境科学,1999,18(5),223-225.
    [14]肖伟,余丽萍,张卫.阿维菌素在水库中的微生物降解[J].江西农业大学学报,2005,27(4),501-504.
    [15]Baran, W.; Sochacka, J.; Wardas, W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions[J]. Chemosphere, 2006, 65, 1295-1299.
    [16]张承东,韩朔睽,卢颖.不同土壤中苯噻草胺的微生物降解[J].农业环境保护,2001,20(3),152-154.
    [17]Peng, X.; Wang, Z.; Kuang, W.; Tan, J.; Li, K. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China[J]. Science of the Total Environment, 2006, 371, 314-322.
    [18]Thiele-Bruhn, S.; Beck, I. C. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass[J]. Chemosphere, 2005, 59, 457-465.
    [19]Kay, P.; Blackwell, P. A.; Boxall, A. B. A. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land[J]. Chemosphere, 2005, 60, 497-507.
    [20]张从良,文春波,王岩,王福安.紫外分光光度法测定土壤中磺胺嘧啶的含量[J].分析科学学报,2007,已录用.
    [21]姚占芳,吴云汉.微生物学实验技术[M].北京:气象出版社,1998.
    [22]钱存柔,黄仪秀,林稚兰,等.微生物学试验[M].北京:北京大学出版社,1985.
    [23]叶常明,王杏君,弓爱君.阿特拉津在土壤中的生物降解研究[J].环境化学,2000,19(4),300-305.
    [1]陈杖榴.兽用化学药物研发动向[J].中国兽药杂志,2005,39(7),1-6.
    [2]佟恒敏,李涛,王振隆,丛霞,等.磺胺嘧啶在成羊体内的药物代谢动力学研究[J].东北农业大学学报,1994,25(1),38-41.
    [3]陈杖榴,杨桂香,孙永学,等.兽药残留的毒性与生态毒理研究进展[J].华南农业大学学报,2001,22(1),88-91.
    [4]任理,毛萌.阿特拉津在饱和砂质壤土中非平衡运移的模拟[J].土壤学报,2003,40(6),829-837.
    [5]Coats, J. R.; Metalf, R.; et al. Model ecosystem evalution of the environmental impacts of the veterinary drags phenothiazine, sulfamethazine, clopidol and diethylstilbestrol[J]. Environmental Health Perspectives, 1976, 18, 167-179.
    [6]Ingerslev, F.; Halling-Sorensen, B. Biodegradability properties of environmental chemistry-biodegradability properties of sulfonamides in activated sludge[J]. Environ. Toxicol. Chem., 2000, 19, 2467-2473.
    [7]Accinelli, C.; Hashim, M.; Epifani, R.; Schneider, R. J.; Vicari, A. Effects of the antimicrobial agent sulfamethazine on metolachlor persistence and sorption in soil[J]. Chemosphere, 2006, 63, 1539-1545.
    [8]段丽丽.磺胺二甲嘧啶及其主要代谢产物在砂质[D].中国农业大学硕士学位论文,2000,24.
    [9]肖伟,余丽萍,张卫.阿维菌素在水库中的微生物降解[J].江西农业大学学报,2005,27(4),501-504.
    [10]Baran, W.; Sochacka, J.; Wardas, W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions[J]. Chemosphere, 2006, 65, 1295-1299.
    [11]张承东,韩朔睽,卢颖.不同土壤中苯噻草胺的微生物降解[J].农业环境保护,2001,20(3),152-154.
    [12]Peng, X.; Wang, Z.; Kuang, W.; Tan, J.; Li, K. A preliminary study on the occurrence and behavior of sulfonamides, ofloxacin and chloramphenicol antimicrobials in wastewaters of two sewage treatment plants in Guangzhou, China[J]. Science of the Total Environment, 2006, 371, 314-322.
    [13]Thiele-Bruhn, S.; Beck, I. C. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass[J]. Chemosphere, 2005, 59, 457-465.
    [14]Baran, W.; Sochacka, J.; Wardas, W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions[J]. Chemosphere, 2006, 65, 1295-1299.
    [15]Sukul, P.; Spiteller, M. Sulfonamides in the environment as veterinary drugs[J]. Rev. Environ. Contam. Toxicol., 2006, 187, 67-101.
    [16]中国土壤学会.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [17]Kay, P.; Blackwell, P. A.; Boxall, A. B. A. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land[J]. Chemosphere, 2005, 60, 497-507.
    [18]张从良,文春波,王岩,王福安.紫外分光光度法测定土壤中磺胺嘧啶的含量[J].分析科学学报,2007,已录用.
    [19]Boxall, A. B. A.; Blackwell, P. A.; Cavallo, R.; Kay, P.; Tolls, J. The sorption and transport of a sulfonamide antibiotic in soil systems[J]. Toxicol. Lett., 2002, 131(1-2), 19-28.
    [20]Wang, Q.; Guo, M.; Yates, S. R. Degradation kinetics of mamtre-dedved sulfadimethoxine in amended soil[J]. J. Agric. Food Chem., 2006, 54 (1): 157-163.
    [21]魏瑞霞,陈连龙,陈金龙.三种不同树脂对硫辛酸吸附行为的研究[J].环境化学,2004,23(4),387-392.
    [22]薛琦.土壤微生物和农药[J].世界农药,1994,16(4),51-55.
    [23]叶常明,王杏君,弓爱君.阿特拉津在土壤中的生物降解研究[J].环境化学,2000,19(4),300-305.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700