低阶高灰煤泥浆分散调控与稳定机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着原煤入洗比例的增大,煤泥产量逐年增加,以煤泥为原料制备煤泥浆是大规模综合利用煤泥的理想途径。本论文针对低阶高灰煤泥的表面物理化学特征和矿物特性,设计并合成与之相匹配的水煤浆分散剂,重点从胶体化学和溶液化学角度研究煤泥中矿物质对其成浆作用的影响规律,考察分散剂与煤泥的吸附机理及动力学,从溶液环境、煤质因素和分散机理等方面对煤泥浆分散特性进行调控,开发了浓度高、稳定性好的低阶高灰煤泥水煤浆。
     低阶煤泥具有的丰富侧链、含氧官能团和发达的孔隙等特点,大量水分被吸附在其表面,造成水不能参与自由流动和润滑作用。此外,矿物质含量高也会对浆体分散产生一定影响。针对低阶高灰煤泥的成浆特性,结合量子化学计算模拟,对煤泥制浆用分散剂进行了分子结构设计,筛选并成功合成了羧酸盐类阴离子型分散剂(SAF-A),研究了SAF-A分散剂对低阶煤泥的制浆效果。研究表明,SAF-A分散剂中引入脂肪族大分子长链和羧酸基团,可与低阶煤中的侧链、含氧官能团有效的结合,引入酰胺基团抑制矿物离子对浆体性能的不利影响。同时,SAF-A分散剂具有较长的支链,在体系中易于形成稳定的网格结构,既能够提供足够的空间位阻,也可以减缓煤粒的沉降速度,使浆体具有更好的稳定性。在用量为传统萘系(NSF)和木系(LS)分散剂60%条件下,制浆浓度可提高2.5%左右,并表现出良好的流动性和稳定性。
     利用胶体化学基础理论与方法研究了煤泥中矿物对其成浆作用的影响规律,并运用扩展的DLVO理论计算了煤颗粒间以及煤与矿物颗粒间的相互作用。研究表明,单位质量矿物颗粒对SAF-A分散剂的饱和吸附量远大于煤颗粒的饱和吸附量,矿物和煤颗粒在吸附分散剂后,电负性增强,水化膜厚度增加,浆体的稳定性和流动性提高。煤颗粒间以及煤与矿物颗粒的总作用能UT存在能垒和临界距离,当颗粒间距离大于临界距离时,主要存在静电斥力作用;当颗粒间距离小于临界距离时,界面极性作用占主导作用。与煤和矿物颗粒间相比,煤颗粒间UT的临界距离最大且能垒最低;在相同距离时,矿物颗粒的存在能够使UT趋于正值,有利于抑制颗粒凝聚,提高浆体的分散稳定性。
     研究了体系中高价金属阳离子对煤颗粒吸附分散剂的影响规律,考察了矿物离子对煤表面电性、双电层厚度的影响及对分散剂的配位作用。结果表明,高价金属阳离子的存在会消耗分散体系中的分散剂,SAF-A分散剂可抑制此类消耗,表现出较强的抗矿物离子能力。高价金属阳离子易与SAF-A分散剂发生配位效应,形成稳定的配位络合物,减弱SAF-A分散剂的分散效果;矿物离子可压缩煤颗粒表面双电层结构,削弱静电斥力作用,使煤颗粒容易凝聚,增加浆体的粘度。与单独作用相比,高价金属阳离子的共同作用对SAF-A分散剂的吸附量及颗粒双电层厚度影响均不明显,而对矿物离子与分散剂的配位效应影响显著,更容易形成稳定的配位络合物。
     研究了SAF-A分散剂在煤泥浆分散体系固/液界面的吸附机理及动力学,确定了SAF-A分散剂在煤泥表面的吸附类别、吸附作用力类型和吸附形态。研究表明SAF-A分散剂在煤泥表面的吸附等温线呈L型,SAF-A分子以平躺状态单层吸附在煤粒表面,该吸附行为既符合Langmuir又符合Freundlich方程,且为放热的自发吸附过程。SAF-A在煤泥表面的吸附存在静电吸附作用、疏水吸附作用和氢键吸附作用。SAF-A在煤泥表面的饱和吸附浓度为0.8g·L~(-1),饱和吸附浓度下,动力学方程拟合表明,不同温度、pH值、离子强度下吸附过程符合二级动力学方程,表面活化能Ea=8.50kJ·mol~(-1)。温度升高,吸附速率增加,pH值和离子强度增加,吸附速率降低。
     考察了SAF-A分散剂、溶液环境、煤质改性条件等因素对煤泥制浆的影响规律,建立了适用于低阶高灰煤泥制浆的分散调控机制和浆体性能预测模型。结果表明,随SAF-A/LS复配比例降低,浆体成浆浓度呈先增加后降低趋势,复配比例为7:3时,浆体成浆性能最佳。成浆温度升高改变SAF-A分散剂与煤泥颗粒间氢键作用,浆体成浆性能先增加后降低;煤泥表面电负性随溶液pH值升高而降低,颗粒间静电斥力增大,有利于高性能煤泥水煤浆的制备。煤泥浮选降灰可提高煤泥浆中可燃体浓度,降低矿物离子浓度,增加SAF-A分散剂有效作用量,浆体稳定性升高;小于400℃的低温短时改性可有效降低氧含量和内水含量,使煤泥成浆浓度显著提高。煤泥中的表面含氧官能团、内水含量和矿物质是影响煤泥制浆的关键因素,建立了基于煤质因子的煤泥成浆浓度BP神经网络预测模型。
The thesis aims at designing and synthesizing dispersan for slime of low-rank,high ash, and fine granularity. From the view of solution and interface chemistry, theeffect and mechanisms of the minerals on the slurry properties were studied.Adsorption kinetics and thermodynamics characteristics of dispersant and slime areinvestigated, and the surface adsorption mechanism of action of prepared dispersantson slime is analysed. According to the factors of dispersant, solution environment,coal to regulate coal slurry dispersed system, and to improve the performance of thecoal slime water slurry(CSWS).
     According to quantum chemical computational simulation, CSWS dispersant ismolecular structure designed, anionic dispersing agent of the carboxylic acid salts(SAF-A) is screened and consequently synthesized. The effect of SAF-Adispersant onlow-rank coal is studied. The results showed that SAF-A dispersant can effectivelycombined with low-rank coal and the adverse effects of mineral ions to the slurry caneffectively inhibited. The pulping concentration can increase by2.5%and exhibitgood fluidity and stability under the condition that the weight of the dispersant in thereaction all accounting60%of the weight of traditional naphthalene-based(NLS) andwood-based(LS) dispersant.
     Based on theories and methods of colloid and solution chemistry, the principalsof insoluble minerals and mineral ion pulp on CSWS are researched. The resultsshowed that when the insoluble minerals and slime adsorbed the dispersant, theelectronegativity will be greatly enhanced. The thickness of hydration film willincreased and the slurry were more stabile and liquidity. With DLVO theory adopted,the electrostatic interaction of coal particles and the electrostatic interaction of coalwith calcite, quartz increases with grain spacing, the coal particles and the interfacebetween the coal and various minerals are attractive polarity role; in the same distance,the minerals in coal can improve the total interaction between the particles in thedispersion system, appearing mutual repulsion, helping to restrain particle aggregationand can improve stability of the slurry. The presence of a mineral ion is able toconsume the dispersant in the dispersion system. Under the condition of the samemineral ions concentration, the consumption of SAF-A dispersant by the mineral ionsin dispersion system reduced about10%of the original quantity comparing with theconsumption of lignin sulfonate, with showing the strong anti-mineral ion capacity. Mineral ions are easy to occur complex effects with SAF-A dispersant, weakening theeffect of the SAF-A; they can also compress coal particles in the surface electric doublelayer structure, agglomerating the coal particles easily, increasing the viscosity of theslurry. The mineral ion interactions has a little effect on the consumption of thedispersant and the thickness of the electrical double layer of the coal particles while agreat influence on the coordination between mineral ions and dispersant.
     The SAF-A dispersant in the solid/liquid interface of the coal slurry were studiedon the adsorption kinetic, adsorption thermodynamics and determined category, actingforce and form of adsorption. The studies found that adsorption was in line withsecond-order equation in different temperature, pH and ionic strength, the adsorptionrate is increased with temperature, while the pH value and ionic strength increases, theadsorption rate decreases. The adsorption behavior is in line with the Langmuir andthe Freundlich equation and is also the spontaneous exothermic process. There areelectrostatic, hydrophobic and hydrogen adsorption in this process.
     SAF-A dispersant, solution environment, coal quality modification conditionswere studied to establish the suitable prediction model for low-rank high ash slimepulp and pulping performance. The results showed that, with the complex ratio ofSAF-A/LS decreasing, slurry concentration was first increased and then decreased.The slurry performance was best at the complex ratio of7:3. The hydrogen bondinginteraction between SAF-A and coal particles was changed with slurry temperature.The slurry performance first increased and then decreased when the slurrytemperature increased. The slime surface electronegativity decreased with solution pHvalue increased and the electrostatic repulsion between particles increased conducingto the preparation of high performance slime CSWS. Oxygen-containing functionalgroups, internal water content and minerals onthe surface of slime are the key factorsto affect the slime pulp. Temperature less than400℃can effectively reduce theoxygen content and the inner water content in a short time, significantly increasingslurry concentration. Coal slime flotation dropping ash can enhance the combustibleconcentration in the coal slurry, reduce mineral ions concentration, increase theeffective action of SAF-Adispersant and improve the stability of the slurry.
引文
[1]国家发展改革委.煤炭工业发展“十二五”规划[Z].2012-3-18.
    [2]王文.“十一五”末我国原煤入洗率达到50.9%[J].煤炭加工与综合利用,2011(2):6.
    [3]莫晓兰,孙春宝,徐承焱.低灰高热值煤泥制备水煤浆试验研究[J].洁净煤技术,2009,16(2):45-48.
    [4]黄洪文.煤泥节能环保综合利用,中国新技术新产品,2012(3):190-191.
    [5]杨国军.煤泥制备煤泥浆代煤燃烧用的技术经济分析[J].中国煤炭,2008,34(10):76-77.
    [6]王柱勇.矿区煤泥洁净利用的新途径-煤泥水煤浆的制备与燃烧[J].选煤技术,1995,(4):45-48.
    [7]黄光许,谌伦建,申义青.煤泥无废排放综合利用模式[J].洁净煤技术,2005,11(2):59-62.
    [8] Gutierrez-Rodriguez J. A., Pucell R. J., Aplan F. F. Estimating the hydrobicity of coal[J].Colliods Surf.,1984,12:1-25.
    [9] Perry D. L, Grint A. Application of XPS to coal characterization[J]. Fuel Process. Technol.,1983,62(9):1024-1033.
    [10] Barton S. S., Harrison B. H. Surface studies on graphite: Immersional engergetics[J].Carbohydr. Chem.,1982,10(2):245-251.
    [11] Kaji R., Muranaka Y., Otsuka K. Proc.5th Int. Symp. on coal slurry Combustion andTechnology[J]. Top. Fluoresc. Spectrosc.,1983.
    [12] Allardic D. J., Evans, D. G. The brown-coal/water system: Part2. Water sorption isothermson bed-moist Yalloum brown coal[J]. Fuel Process. Technol.,1971,50(3):236-253.
    [13] Thomas J. Hr., Damburger H. H. Illinosis State Grol Survey Circular[R],1976, No.493.
    [14]吴家珊,宋永纬,张春媛.煤的性质对水煤浆特性的影响[J].燃料化学学报,1987,15(4):298-299.
    [15]张利合,王伟,周同心,等.煤中矿物对水煤浆性质的影响[J].煤炭加工与综合利用,2006(1):26-28.
    [16] Crawforda R.J., Mainwaringb D.E.. The influence of surfactant adsorption on the surfacecharacterization of Australian coals[J]. Fuel Process. Technol.,2001,80:313-320.
    [17] Meikap B. C, Purohit NK, Mahadevan V. Effect of microwave pretreatment of coal forimprovement of rheological characteristics of coal–water slurries[J]. Colloid. Polym. Sci,2005,281(1):225–35.
    [18] Turian RM, Attal JF, Sung DJ, Wedgewood LE. Properties and rheology of coal–watermixtures using different coals[J]. Fuel Process. Technol.,2002,81:19–33.
    [19] Osasere Orumwense F.. Estimation of the wettability of coal from contact angles usingcoagulants and flocculants[J]. Fuel Process. Technol.,1998,77:1107-1111.
    [20]张荣曾.水煤浆制浆技术[M].北京:科技出版社1996.
    [21] Dincer H, Boylu F, Sirkeci A A, et a1. The effect of chemicals on the viscosity and stabilityof coal water slurries[J]. Int. J. Miner. Process.,2003,70:41-51.
    [22] Tiwari K K, Basu S K, Bitetal K C. High-concentration Coal-water Slurry from Indian CoalsUsing Newly Developed Additives. Fuel Process. Technol.,2003,85:31-42.
    [23]周明松,邱学青,王卫星.水煤浆分散剂的研究进展[J].化工进展,2004,23(8):846-851
    [24] Saeki T., Usui H. National Conference Publication-Institutuion of Engineers[J]. Int. J. Miner.Process.,1992,1(92):159-162.
    [25] Dincger H, Boylu F, Sirkecietal A A. The Effect of Chemicals on the Viscosity and Stabilityof Coal Water Slurries. Int. J. Miner. Process.,2003,70:41-51.
    [26]李淑琴,朱书全,李凤起.木钠接枝丙烯酸添加剂在水煤浆制备中的应用[J].煤炭加工与综合利用,2001,(2):24-25.
    [27] Yoshihara, Haruyuki. Graft Copolymers as Dispersants for CWM[J]. Coal Prep.,1999,21(1):93-103.
    [28] Kaushal K, Sibendra K B,Kumaresh C B, et a1.High-concentration coal-water slurry fromIndian coals using newly developed additives[J].Fuel Process. Technol.,2003,85:3l-42.
    [29] Rongcan Zhou, Yu qi Jiang, Yong Liang,et a1. Dispersion behavior of laser-synthesizedSi3N4nanopowders in NN-dimethylformamide[J]. Ceram. Int.,2002,28:847-853.
    [30] Papachristodoulou G., Trass O.. Coal slurry fuel technology[J]. Can. J. Chem. Eng.,1987,65(2):177-201.
    [31] Gahlot V. K., Seshadri V., Malhotra, R. C. A method for the experimental determination ofthe rheological parameters of multisized course particulate slurries. Intl. Symp. on hydraulictransportation of coal and other minerals[J]. IIT Delhi.,1988, March4-6,283-295.
    [32] Kjell Magne Askvik, Svein Hetlesaether, Johan Sjoblom et a1. Properties of thelignosulfonate-surfactant complex phase [J]. Colloids Surf., A,2001,182:175-189.
    [33] Panda d., Parida A., Murthy J.S., Mitra, A.K. Transportation of coarse coal in a finemedium[J]. Int. J.Multiphase Flow,1994,20(1):171-177.
    [34] Mingsong Zhou. High-performance dispersant of coal–water slurry synthesized from wheatstraw alkali lignin[J]. Fuel Process. Technol.,2007(88):375–382.
    [35] Parida A, Pagda D. Mishra.R. N. Transportation of fly ash slurry International conference onfly ash management[J]. Russ. J. Gen. Chem.,1990:51-63.
    [36] Guo Zhao Bing,Wu Guo Guang, et al. Research on Synthesizing Disperser with Fraction ofAnthracene Oil for Coal Water Slurry[J]. J. C. U. M. Technol.,2003,13(2):145-150.
    [37] Tadros Th F, Taylor P, Bgnolo G. Influence of addition of a polyelectrolyte, nonionicpolymers, and their mixtures on the rheology of coal/water suspensions[J]. Laser Chem.,1995,11(12):4678-4684.
    [38]罗秋良,曾凡,张荣曾.水煤浆添加剂分子结构与成浆性能的研究[J].煤炭学报,1993,18(2):89-92.
    [39] Zeki Aktas, E.Ted Woodburn.Effect of addition of surface active agent on the viscosity of ahigh concentration slurry of a low-rank British coal in water[J]. Fuel Process. Technol.,2000,62:1-15.
    [40] Boylu F., Dincer H., Atesok G.. Effect of coal particle size distribution, volume fraction andrank on the rheology of coal–water slurrie[J]. Fuel Process. Technol.,2004,85:241-250.
    [41] Nam-Sun Roh, et al. Rheological behaviour of coal-water mixtures1. Effects of coal typeloading and particle size [J]. Fuel Process. Technol.,1995,74:1220-1225.
    [42]孙成功,吴家珊,李保庆.水煤浆分散体系中阴离子型分散剂的吸附特性和降粘效应[J].燃料化学学报,1995,23(3):248.
    [43]谢亚雄.煤中矿物质对水煤浆性质的影响[D].太原:中国科学院山西煤化所,1995.
    [44] Gandhi R.L,“The Samarco Iron concentrate Pipeline-Update on system operation”, the16thInternational Conference on Coal&Slurry Technology, April22,Coal&Slurry TransportAssociation, Washington, D.C.1991:409.
    [45] Dowd T.J.“La Perla/Hercules Iron Concentrate Pipeline Operation and Status Report andEscondida copper concentrate pipeline start-up and oprations report”, the16th InternationalConference on Coal&Slurry Technology, April22,Coal&Slurry Transport Association,Washington, D. C.1991:516.
    [46] Toshiyuki Ukigai. IEA-CLM wokshop’94on CWM for advanced coal utilization to ward theenvironmentally friendly system.1994:58.
    [47] Hitoshi S. The Proceedings of the15th International Conference on Coal&SlurryTechnology.1990:409.
    [48]李寒旭,汤永新.复配添加剂对水煤浆性能的影响[J].淮南工业学院学报,2000,20(4):37.
    [49] Kazuo Yamada, Tomoo Takahashi, Shunsuke Hanehara. Effects of the chemical structure onthe properties of polycarboxylate-type superplasticizer[J]. Cem. Concr. Res.,2000,30(2):197-207.
    [50]王子明,郑付营,李桃安.聚羧酸减水剂合成过程能量变化[M].北京理工大学出版社,2011,33-38.
    [51]高桂波,鲁统卫,王勇威,等.泥土降低聚羧酸减水效果的机理及其抑制措施的思考
    [M].北京理工大学出版社,2011,33-38.
    [52]王友奎,赵帆,王洛礼.低坍损聚羧酸系高效减水剂的合成[J].混凝土,2005(9):79-82.
    [53]魏辉,张光华,云飞,等.新型聚羧酸水煤浆分散剂对制浆性能的影响[J].煤炭科学技术,2010,28(8):122-124,128.
    [54]尉迟唯,李保庆,李文,等.中国不同变质程度煤制备水煤浆的性质研究[J].燃料化学学报,2005,33(2):155-160.
    [55]李寒旭,纪明俊,李军,等.配合煤对水煤浆性能的影响[J].选煤技术,2001,(3):54-56
    [56]尉迟唯,李保庆,李文,等.煤孔结构特性对水煤浆性质的影响分析[J].燃料化学学报,2006,34(1):5-9.
    [57] ROH N S, SHIN D H, KIM D C, et al. Rheological Behaviour of Coal-water Mixtures,l.Effects of Coal Type, Loading and Partiele Size[J]. Fuel Process. Technol.,1995,74(8):1220-1225.
    [58]吴国光,李建亮,孟献梁,等.煤岩组成与水煤浆成浆性能的关系研究[J].中国矿业大学学报,2009,38(2):209-213.
    [59]陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社,2001:458.
    [60]刘新兵.我国若干煤中矿物质的研究[J].中国矿业大学学报,1994,23(4):111-113.
    [61] Ward C R. Review of mineral matter in coal. Aust, Coal Geol,1986,6:87-110.
    [62]朱书全,刘红缨,刘力,等.3种难溶性矿物对煤成浆性的影响[J].中国矿业大学学报,2003,32(2):115-117.
    [63]刘红缨,朱书全,赵银容,等.矿物密度与水煤浆的黏度[J].煤,2006,15(4):5-8.
    [64]朱书全,王祖讷.煤中的矿物与水煤浆流变性的关系研究[J].中国矿业大学学报,1991,20(3):23-26.
    [65]刘红缨,朱书全,王奇.矿物对水煤浆稳定性的影响研究[J].中国矿业大学学报,2004,33(3):284-286.
    [66]曾凡.矿物加工颗粒学[M].徐州:中国矿业大学出版社,1995.
    [67]朱书全.水煤浆用煤的结构特性与CWS流变的关系研究[D].北京:中国矿业大学,1990.
    [68] Shuquan Zhu, Hongying Liu. Influence of seven-primary minerals in coal on slurry ability ofthe coal water slurry[A]. The28th internatiorr al technical conference on coal utilization&fuel systems[C]. ISBN No.0-932066-28-4, Library of Congress Card Catalog No.86-06147,2003.
    [69]尉迟唯,李保庆,李文,等.煤质因素对水煤浆性质的影响[J].燃料化学学报,2007,35(2):147-150.
    [70]刘红缨,朱书全,李新晖,等.水煤浆的粘度与煤粒表面动电电位关系的研究[J].煤炭科学技术,2004,32(3):12-14.
    [71]邹立壮,朱书全,王晓玲,等.不同水煤浆分散剂与煤之间的相互作用规律研究Ⅹ分散剂在煤粒表面上的吸附作用特征[J].燃料化学学报,2006,34(1):10-14.
    [72]戴少涛.微细粒锡石的凝聚与分散-理论与实践[J].有色金属,1998,50(1):33-34.
    [73]胡岳华,邱冠周,王淀佐.细粒浮选体系中扩展的DLVO理论及应用[J].中南矿冶学院学报,1994,25(3):310-311.
    [74] DURANJDG, RAMOS-TEJADA MM, ARROYO F J, et al. Rheological and elect rokineticproperties of sodium montmorillonite suspensions[J]. J. Colloid Interface Sci.,2000,22:107-114.
    [75] CHURAEV N V. Inclusion of structural forces in the theory of stability of colloids andfilms[J]. J. Colloid Interface Sci.,1985,103(2):542-553.
    [76] PASHLEY R M. Mloecular layering of water in thin films between micasurfaces and itsrelation to hydration forces[J]. J. Colloid Interface Sci.,1984,101(2):511-523.
    [77]胡岳华,徐竞,邱冠周,等.细粒浮选体系中颗粒间静电及范德华相互作用[J].有色矿冶,1994,2:16-184.
    [78]张明青,刘炯天,王永田.煤变质程度对煤泥水沉降性能的影响[J].煤炭科学技术,2008,36(11):102-104.
    [79]张明青,刘炯天,刘汉湖,等.水质硬度对煤和蒙脱石颗粒分散行为的影响[J].中国矿业大学学报,2009,38(1):114-118.
    [80]刘炯天,张明青,曾艳.不同类型粘土对煤泥水中颗粒分散行为的影响[J].中国矿业大学学报,2010,39(1):59-62.
    [81]孙成功,李保庆,尉迟唯,等.煤中无机矿物组分的溶出性及其对水煤浆流变特性的影响[J].燃料化学学报,1996,24(3):240-243.
    [82]孙成功,谢亚雄,李保庆.外加无机电解质对煤浆性质调控作用的研究[J].燃料化学学报,1997,25(2):131-134.
    [83]谢亚雄,李保庆,孙成功,等.煤中矿物质对水煤浆性质的影响[J].洁净煤技术,1996,2(1):41-43.
    [84]肖宝清,张荣曾.煤中矿物质对水煤浆流变性影响及其解决措施[J].北京矿冶研究总院学报,1993,2(4):81-85.
    [85]谢华.中国矿业大学北京研究生部硕士学位论文[D].1990.
    [86]朱书全.煤的性质对其成浆性影响的研究综述[J].煤炭加工与综合利用,1996,(2):5.
    [87]朱书全,王祖讷.煤浸出液中的阴阳离子测定及其与水煤浆成浆性的关系[J].燃料化学学报,1992,20(1):45-50.
    [88]邹立壮,朱书全,王晓玲,等.水煤浆分散剂与煤之间的互相作用Ⅷ木质素磺酸钠对煤的成浆性与水煤浆流变特性的影响[J].应用化学,2005,22(5):479-483.
    [89]魏世勇,谭文峰,刘凡.土壤腐殖质—矿物质交互作用的机制及研究进展[J].中国土壤与肥料,2009,(1):1-6.
    [90]王翠苹,徐伟昌.生物吸附剂在含重金属的废水处理的研究进展,南华大学学报(理工版).2002,16(3):46-50.
    [91] Qiming Yu, Jose T. Matheical. Heavy Metal uptake capacities of common marine macroalgal biomass[J]. Water Res.,1999,33(6):1534-1537.
    [92] Stumm W, Huang C P, Jenkins S R. Specific chemical interaction affecting the stability ofdispersed systems[J]. Croat. Chem. Acta,1970,42:223-224.
    [93] Schindler P W, Gamsjager H. Acid-base reactions of TiO2(anatase)-water interface and thepoint of zero of TiO2suspensions[J]. Kolloidn Zh.,1972,259:759-763.
    [94] Dubois M., A. Gilles, J.K. Hamilton, et al. Chem.1956,28(1):350-361.
    [95] Cannon D.W., in: S.G., Malghan (Ed.). Electroacoustics for Characterization of Particulatesand Suspensions[M]. National Institute of Standards and Technology (NIST) SpecialPublication,1993.
    [96]赵晴,闵凡飞,刘令云,等.原煤密度对泥化及煤泥颗粒表面电位的影响[J].煤炭科学技术,2011,39(6):115-118.
    [97] Zeng Fan, Xiao Baoqing. Application of promoter in coal slurrying process[A]. Proceedingof15thICCST, US Department of Energy,1990:356.
    [98]张力,何秋学,王恩元,等.煤吸附特性的研究[J].太原理工大学学报.2001,32(5):449-451
    [99] Rosen M. J.. Surfactants and Interfacial Phenomena[M]. New York,1978.
    [100] Ding Y, Jing D B, Zhou L B, et al. Study on the adsorption of aquatic cadmium (Ⅱ) bychestnut inner shell[J]. Acta Chem. Scand.,2011,31(9):1933-1941.
    [101] Ekrem Lutfi Aksakal, Ilker Angin b, Taskin Oztas. Effects of diatomite on soil physicalproperties[J]. Cat. Rev.-Sci. Eng.,2012,8:1-5.
    [102]邱学青,杨东杰,欧阳新平.木素磺酸盐在固体颗粒表面的吸附性能[J].化工学报,2003,54,(8):1154-1159.
    [103]李志礼.木质素磺酸盐对烯酰吗啉水分散粒剂性能的影响及其分散稳定机理研究[D].华南理工大学博士论文.2009.
    [104] Nezahat Ediz, Smail Bentli, Lknur Tatar. Improvement in filtration characteristics ofdiatomite by calcinations. Int. J. Miner. Process.,2010,94:129-134.
    [105] Gorman-Lewis D, Shvareva T, Kubatko KA, et al. Thermodynamic Properties of autunite,uranyl hydrogen phosphate, and uranyl orthophosphate from solubility and calorimetricmeasurements. Environ. Sci. Technol.,2009,43:7416-7422.
    [106] Jiang DH, Huang QY, Cai P, et al. Adsorption of pseudomonas putida on clay minerals andiron oxide[J]. Colloids Surf., B,2007,54:217-221.
    [107]赵国玺.表面活性剂物理化学[M].北京:北京大学出版社.1991.4.
    [108] Kwon KD, Vadillo-Rodriguez V, Logan BE, et al. Interactions of biopolymers with silicasurfaces: Force measurements and electronic structure calculation studies[J]. Geochim,Cosmochim. Acta,2006,70:3803-3819.
    [109]周明松,邱学青,杨东杰.木质素系和萘系分散剂在煤水界面的吸附性能[J]高等学校化学学报,2005,5(29):987-992.
    [110] Osmanan, Ali maretli. Preparation and filtration testing of diatomite filtering layer by Acidleaching[J]. Ceram. Int.,2011,(37):73-78.
    [111]杨东杰,邱学青,陈焕钦.木素磺酸盐系表面活性剂[J].化学通报,2001(7):416-420
    [112] Dincer H, Boylu F, Sirkeci AA, et al. The effect of chemicals on the viscosity and stability ofcoal water slurries[J]. Int. J. Miner. Process.,2003,70:41-51.
    [113]赵振国.氨基酸在固/液界面的吸附作用[J].化学研究与应用,2001,13(6):599-604
    [114] Wen-Tien Tsai, Chi-Wei Lai, Kuo-Jong Hsien. Characterization and adsorption properties ofdiatomaceous earth modified by hydrofluoric acid etching[J]. J. Colloid Interface Sci.,2006,297:749-754.
    [115] Xiaohu Tang, Zhenze Li, Yunmin Chen. Adsorption behavior of Zn(Ⅱ)on calcinatedChinese loess[J]. J. Hazard. Mater.,2009,161:824-834.
    [116] E.H..卢开森-闰德斯.阴离子表面活性剂-表面活性剂作用的物理化学[M].轻工业出版社,1988:156
    [117] Ams DA, Fein JB, Dong H, et al. Experimental measurements of the adsorption of bacillussubtilis and pseudomonas mendocina onto Fe-oxyhydroxide-coated and uncoated quartzgrains[J]. Geomicrobiol. J,2004,21:511-519.
    [118] Chojnaeka K, Chojnaeki A, Goreeka H. Biosorption of Cr3+, Cd2+and Cu2+ions byblue-green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the Process[J].Chem. Senses,2005,59:75-84.
    [119] Chen WY, Liu ZC, Lin PH, et al. Yamamotob5.The hydrophobic interactions of theion-exchanger resin ligands with proteins at high salt concentrations by adsorption isothermsand isothermal titration calorimetry[J]. Sep. Purif. Technol.,2007,54:212-219.
    [120]张延霖.木质素磺酸盐用作水煤浆添加剂的性能及其分散稳定机理研究[D].华南理工大学,2005.
    [121]邱学青,周明松,王卫星,等.不同分子量木质素磺酸钠对煤粉的分散作用研究[J].燃料化学学报,2005,33(2):179-183.
    [122]敖先权,周素华,曾祥钦.木质素表面活性剂在水煤浆制备中的应用[J].煤炭转化,2004,27(3):45-48.
    [123]邹立壮,朱书全,王晓玲,等.水煤浆分散剂与煤之间的互相作用Ⅷ木质素磺酸钠对煤的成浆性与水煤浆流变特性的影响[J].应用化学,2005,22(5):479-483.
    [124] Ratinac K.R., Stand O.C., Bryant P.J.. Lignosulfonate adsorption on and stabilization of leadzironate titanate in aqueous suspension[J]. Colloid. Inter. Sci.,2004,273:442-454.
    [125] Manceau A., Matynia A. The nature of Cu bonding to natural organic matter[J]. Geochim.Cosmochim. Acta,2010,74:2556-2580.
    [126]吴国光,王晓春,李启辉,等.水煤浆添加剂与煤分子结构匹配性能的研究[J].中国矿业大学学报,2006,35(4):454-457.
    [127] Bake MG, Lalonde SV, Konhauser KO, et al. Role of extracellular polymeric substances inthe surface chemical reactivity of hymenobacter aerophilus, a psychrotolerant bacterium[J].Appl. Environ. Microbiol.,2010,76:102-109.
    [128] Borrok D, Fein JB, Kulpa CF. Proton and Cd adsorption onto natural bacterial consortia:testing universal adsorption behavior[J]. Geochim. Cosmochim. Acta,2004,15:3231-3238.
    [129] Cagnasso M, Boero V, Franehini MA, et al. ATR-FTIR studies of phospholipid vesicleinteractions withα-FeOOH andα-Fe2O3surfaces[J]. Colloids. Surf, B,2010,76:456-467.
    [130] Reid B. Grigg, Baojun Bai. Calcium lignosulfonate adsorption and desorption on Bereasandstone[J]. J. Colloid Interface Sci.,279(2004):36-45.
    [131] Mishra S.K., S.B. Kanungo, Rajeev. Adsorption of sodium dodecyl benzenesulfonate ontocoal[J]. Int. J. Miner. Process.,267(2003):42-48.
    [132] Pavan P.C., Gilmardc A. G, Vallm J.B. Adsorption of sodium dodecyl sulfate on layereddouble hydroxides[J]. Microporous Mesoporous Mater.,1998,21:659-665.
    [133]赵国华,王秋粉,陈良勇,等.温度对高浓度水煤浆流变特性的影响[J].锅炉技术,2007,38(6):74-78.
    [134]支献华.水煤浆稳定性的影响因素及评定方法[J]煤炭加工与综合利用,2000(1):38-39.
    [135] Antelo J, Avena M, Fiol S, et al. Effects of PH and ionic strength on the adsorption ofPhosphate and arsenate at the goethite-water interface [J]. J. Colloid Interface Sci.,2005,285:476-486.
    [136] Colnte S, GuibaudG, Baudu M. Biosorption. Properties of extracellular polymeric substances(EPS) towards Cd, Cu and Pb for different PH values[J]. J. Hazard. Mater,2008,151:185-193.
    [137] Ratinac K.R., Stand O.C., P.J.Bryant. Lignosulfonate adsorption on and stabilization of leadzironate titanate in aqueous suspension[J]. Colloid Inter. Sci.,2004,273:442-454.
    [138]袁善录,戴爱军.制备高浓度水煤浆的影响因素探讨[J].应用化工,2007,36(12):1242-1251.
    [139]朱宗军,邓成刚,李方柱,等. pH值对水煤浆静态稳定性的影响[J].洁净煤技术,2001,7(2):22-23.
    [140]周德悟,张桂安,李德智,等.水煤浆流变特性影响因素的研究[J].煤气与热力,1989(3):9-13.
    [141] Er Li, Xiangyin Zeng, Yuehua Fan. Removal of chromium ion (III) from aqueous solution bymanganese oxide and microemulsion modified diatomite[J]. Dent. Mater.,2009(238):158-165.
    [142] Guodong Sheng, Jun Hu, Xiangke Wang. Sorption properties of Th(IV) on the rawdiatomite-Effects of contact time, pH, ionic strength and temperature[J]. Appl. Radiat. Isot.,2008,66:1313-1320.
    [143] ljivi M., Smiiklas I., Pejanovi S., et al. Comparative study of Cu(Ⅱ) adsorption on a zeolite,a clay and a diatomite from Serbia[J]. Appl. Catal., A,2009,43:33-40.
    [144] Terhi Saarinen, Monika O Sterberg, Janne Laine. Adsorption of polyelectrolyte multilayersand complexes on silica and cellulose surfaces studied by QCM-D[J]. Colloids Surf, A.330(2008):134-142.
    [145] Bai BJ, Wu YF, Grigg RB. Adsorption and desorption kinetics and equilibrium of calciumLignosulfonate on dolomite porous media[J]. J. Phys. Chem. C,2009,113(31):13772-13779.
    [146] Yang Dongjie, Qiu Xueqing, Zhou Mingsong, et al. Properties of sodium lignosulfonate asdispersant of coal water slurry[J]. Energy Convers. Manage.,2007,48(9):2433-2438.
    [147]周国江,王彦彪.焦化废水制备的煤泥水煤浆的成浆性[J].黑龙江科技学院学报,2010,20(1):18-20.
    [148]孙健.以氢氧化钠为滴定剂的恒电位滴定法测定金属离子[D].同济大学,2007.
    [149]左启阳.非对称双电层对薄膜润滑性能影响的研究[D].华南理工大学,2012.
    [150] GB/T18856.2水煤浆质量试验部分.第二部分:水煤浆浓度测定方法[S].
    [151] GB/T18856.4-2008水煤浆试验方法.第4部分:表观粘度测定[S].
    [152]谢克昌.煤的结构与反应性[M].科学出版社.
    [153]刘勇健.物理化学实验[M].中国矿业大学出版社,110.
    [154]顾全荣.水煤浆分散剂助剂作用机理及其效能提高的研究[D].中国矿业大学北京研究生部,1993.
    [155]李保庆,谢亚雄,孙成功,等.煤中矿物质对水煤浆性质的影响[J].洁净煤技术,1996,2(1):40-44.
    [156]孙成功,谢亚雄,李保庆.分散剂分子结构特征对煤浆流变特性的影响[J].燃料化学学报,1997,25(3):213-216.
    [157]胡岳华,徐竞,邱冠周,等.异凝聚理论及应用研究-异类颗粒间相互作用及异类矿粒的凝聚[J].矿冶工程,1994,14(3):23-26.
    [158]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选[C].长沙:中南工业大学出版社,1993:1-122.
    [159]欧阳坚.微细粒矿物分散和疏水聚团理论与应用研究[D].长沙:中南工业大学,1995:7-10.
    [160]沈青.蒸煮液的物理化学特征及在制浆过程中的行为:木素对蒸煮液的黏度、密度及Hamaker常数的影响[J].纤维素科学与技术,2003,11(3):12-16.
    [161]刘峙嵘,周利民,李梅.镍离子在泥煤表面的吸附作用[J].煤炭学报,2006,31(3):371-372.
    [162]张明青,刘炯天,单爱琴,等.煤泥水中Ca2+在粘土矿物表面的作用[J].煤炭学报,2005,30(5):640-641.
    [163]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988:141-144.
    [164]宁开桂.无机及分析化学[M].北京:高等教育出版社,2003:334-338.
    [165]汤枫秋,黄校先,张玉峰,等.纳米氧化锆粉体流变性能的研究[J].材料科学与工程,1999,17(1):9-10.
    [166]姚彬,杨鸿鹰,陈明青,等. SAF-A和木质素磺酸钙对煤的成浆性研究[J].应用化工,2011,40(3):504-509.
    [167]朱书全,邹立壮,黄波,等.水煤浆添加剂与煤之间的相互作用规律研究[J].燃料化学学报,2003,31(6):519-524.
    [168]周明松.麦草碱木质素高效水煤浆分散剂GCL3S的研制及其分散将黏作用机理研究[D].华南理工大学,2007:63-66.
    [169]顾惕人,朱步瑶,李外郎,等.表面化学[M].北京:科学出版社.1994.6.
    [170] Zhao Guoxi, Zhu Buyao. Principles of Colloid and Surface Chemistry[M]. ChinaLightIndustry Press.2003.
    [171]李志礼.木质素磺酸盐对烯酰吗啉水分散粒剂性能的影响及其分散稳定机理研究[D].华南理工大学博士论文.2009.
    [172]章燕豪.吸附作用[M].上海:上海科学技术文献出版社.1989:14-120.
    [173] Mishra S.K., Kanungo S.B., Rajeev. Adsorption of sodium dodecyl benzenesulfonate ontocoal. Colloid and Interface Science[J]. J. Colloid Interface Sci.,267(2003):42-48.
    [174]胡文莉.木质素磺酸盐在固体颗粒表面的吸附性能研究[D].广东:广州,华南理工大学.
    [175]邱藤,唐黎明,庹新林,等.端基结构对超支化聚合物静电吸附自组装行为的影响[J].高等学校化学学报.2004,25(5):971-974.
    [176] J.王.古尔胶在固-液界面上的吸附机理[J].国外金属矿选矿.2006.4.
    [177] Lorenc-Grabowska E, Gryglewicz G. Adsorption of lignite-derived humicacids on coal-basedmesoporous activated carbons[J]. J. Colloid Interface Sci.,2005,284(2):416-423.
    [178]邹立壮,朱书全,王晓玲,等.不同水煤浆分散剂与煤之间的相互作用规律研究Ⅹ分散剂在煤粒表面上的吸附作用特征[J].燃料化学学报,2006,34(1):10-14.
    [179] BUCHTAM A, SHI Weiheg. Improved aqueous dispersion of silicon nitride withaminosilanes[J]. J. Am. Ceram. Soc.,1996,79(11):2940-2946.
    [180]吴国光,郭照冰.水煤浆制浆试验研究与制备因素分析[J].中国矿业大学学报,2001,30(6):543-546.
    [181] Turian RM, Attal JF, Sung DJ, et al. Properties andrheology of coal–water mixtures usingdifferent coals[J]. Fuel Process. Technol.,2002,81:19–33.
    [182]戴中蜀,郑昀晖,马立红.低煤化度煤低温热解脱氧后结构的变化[J].燃料化学学报,1999,27(3):256-261.
    [183]尉迟唯,李保庆,李文,等.煤质因素对水煤浆性质的影响[J].燃料化学学报,2007,35(2):146-154.
    [184]余学海,刘建忠,赵卫东,等.一种优化煤成浆特性的方法[J].热力发电,2009,38(4):14-21.
    [185] Mishra S.K., Senapati P.K., Panda D.. Rheological behavior of coal-water slurry[J]. EnergySources,2002,24(2):159-167.
    [186]孙佰清,潘启树,冯英浚,等.提高BP网络训练速度的研究[J].哈尔滨工业大学学报,2001,33(4):439-441.
    [187]韩立群,纪华.具有多普勒频率抑制功能的接收模块.中国电子科技集团公司第五十研究所,2006,10.
    [188]李艳昌.煤炭成浆特性的非线性理论和波能量改性机理的研究[J].硕士学位论文.杭州:浙江大学,2007(3).
    [189]洪楠,候军. SASforwindows统计分析系统教程.北京:电子工业出版社,2001,21-22.
    [190]曹晓哲.基于神经网络对配煤成浆性的预测研究[J].硕士学位论文,杭州:浙江大学,2010.
    [191]周俊虎,李艳昌,程军,等.人工神经网络预测煤炭成浆浓度的研究[J].燃料化学学报,2005,33(6):666-670.
    [192]高大启.自适应RBF-LBF串联神经网络结构与参数优化方法[J].计算机学报,2003(5).
    [193]韩立群.人工神经网络教程[M].北京:北京邮电大学出版社,2006,36.
    [194]高隽,杨静,徐小红,等.分层模拟最小-最大聚类算法[J].模拟识别与人工智能,2007,20(4):558-564.
    [195]朱凯,王正林.精通MATLAB神经网络[M].北京:电子工业出版社,2009,151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700