质子交换膜燃料电池电催化剂Pt-Ru合金系的系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)具有高能量密度、运行温度低和稳定性能好等优点,在航天领域、潜艇、电动车、飞船等领域具有广泛的应用前景,但由于催化材料价格昂贵,制约其商品化,本文在系统合金科学理论(SSA)框架的指导下,运用纯单质系统理论系统研究了金属Pt、Ru和Pd的的电子结构,物理性质和热力学性质随温度的变化,和特征晶体理论对Pt-Ru合金系进行了系统研究,为电催化剂在SSA框架指导下设计提供完整的数据资料。
     本文主要对金属Pt、Ru和Pd和Pt-Ru合金系进行了以下几个方面的研究:(1)以MATLAB(MATrix LABoratory)为工具,对单原子状态自洽法的算法进行研究;(2)应用纯单质系统理论中的单原子(OA)方法和能带理论中单电子(OE)方法,即第一原理(FP)方法分别计算了金属Pt、Ru和Pd的fcc,hcp,bcc和liquid初态特征晶体电子结构,并相互进行比较,分析金属Pt、Ru和Pd的电子结构与晶体结构的关系,及金属Pt的电子结构与电阻率和化学活性的关系;(3)应用纯单质系统理论,计算了金属Pt、Ru和Pd的物理性质和热力学性质随温度的变化,得到OK至熔点T_m的温度范围内纯金属单质的完整信息,并与SGTE数据库的结果、FP方法的计算结果及JANAF实验数据进行了比较;(4)应用特征晶体理论对Pt-Ru合金系进行系统分析,选择Pt-Ru合金系的体积和能量相互作用方程,确定Pt-Ru合金系的特征原子序列和特征晶体序列的基本信息;(5)开拓系统合金科学框架应用于催化材料设计,揭示电催化剂的电子结构与催化活性的关系,并对其进行结构表征,为电催化剂的设计指明了方向;(6)应用特征原子排列设计和特征晶体相加定律研究了Pt-Ru合金催化剂的催化性能和稳定性,并拟定其成分的配比方案;(7)以金属Ni为例,阐明OA方法与FP方法的差异,并探讨金属Ni,Pd,Pt的电子结构与物理性质的差异的原因。
     本文着重研究了电子结构—晶体结构—物理性质和热力学性质及催化性能之间的内在联系,取得了以下几个方面的创新成果:(1)运用数值功能运算极强的MATLAB为工具,能快速、准确地确定金属晶体的电子结构,进一步完善了单原子状态自洽法;(2)用OA方法和FP方法分别计算了金属Pt、Ru和Pd的fcc,hcp,bcc和liquid态的电子结构,并相互进行了比较,金属Pt的计算结果符合较好,而金属Ru、Pd的结果相差较大;分析了金属Pt、Ru和Pd的电子结构与晶体结构的关系,及金属Pt的电子结构与电阻率和化学活性的关系,由于s_f电子最少,所以电阻率最大,也是化学活性最低的原因;(3)计算了金属Pt、Ru和Pd从OK到熔点温度T_m的物理性质(包括势能曲线、热膨胀系数、体弹性模量、晶格振动能、晶格常数和单键半径),和热力学性质(包括恒容和恒压比热、熵、焓和Gibbs能等),与FP方法计算结果、SGTE数据库和JANAF实验数据都符合较好。(4)应用特征晶体理论对Pt-Ru合金系进行系统分析,选择了第九方程为Pt-Ru合金系的体积和能量相互作用方程,确定了Pt-Ru合金系的特征原子序列和特征晶体序列的基本信息;(5)开拓了系统合金科学框架应用于催化材料的设计,近似地用体相的电子结构来代替表面Pt原子的电子结构,揭示了电子结构与催化活性的关系,主要是由于Pt原子聚合时,有0.5个d电子转化为s电子,增加了d空穴,对催化活性有利;及FP方法计算的态密度和能带结构解释了催化活性,并与XRD表征的结果一致;合金元素的加入,增加了Pt的d空穴,晶格常数也随之减小,对催化活性有利,为电催化剂的设计指明了方向;(6)应用特征原子排列设计和特征晶体相加定律研究了Pt-Ru合金催化剂的催化活性、稳定性及成分配比,计算了Pt-Ru有序合金中Pt和Ru原子个数之比分别为3:1,1:1和1:3的势能和晶格常数,并分析了组元Pt的组态变化,即ψ_4~(Pt)→ψ_8~(Pt)→ψ_(12)~(Pt);计算了无序合金的性质和组元Pt的电子结构,随着Ru含量的增加,势能降低,稳定性升高,晶格常数减小,Pt的d带空穴增加,使催化活性增强,但随着Ru含量超过50%后,d空穴增加得非常缓慢,催化活性增加不大。综合考虑稳定性、d空穴增加的快慢、成本及抗CO的能力,确定Pt-Ru合金催化剂成分的最佳配比约为1:1;(7)以金属Ni为例,阐明了OA方法与FP方法的差异,并探讨了金属Ni,Pd,Pt的电子结构与物理性质的差异,除了电子结构的影响外,还有4f电子的屏蔽作用。
The proton exchange membrane fuel cell(PEMFC)is a highly attractive power source for mobile and stationary applications due to its high power density at lower temperatures and its compact design.At present,the electrocatalyst costs of PEMFC is of high cost that hinder the commercialization of PEMFC.In this paper,we systematically study the electronic structure,physical properties and thermodynamic properties as a function of temperature.And we adopt the characteristic crystal of theory to systematically research on Pt-Ru alloy system.That supply electrocatalyst with complete datum for scientific designation in the light of SSA framework.
     In this paper,the following researches on Pt,Ru and Pd metals and Pt-Ru alloy system have been performed:(1)By means of MATLAB(MATrix LABoratory), algorithms of single-atom self-consistency method was studied;(2)The electronic structure of Pt,Ru and Pd metals with fcc,hcp,bcc and liquid structure were calculated by using one-atom(OA)method in theory of pure element and one-electron (OE)method that is called first-principle(FP)method.The results were compared each other.The relationship between the crystal structure and electronic structure of Pt, Ru and Pd metals has been analysed.The relationship between the resistivity and chemical activity and the electronic structure of Pt metal has also been analysed.(3) To adopt the theory of pure elements to calculate physical properties and thermodynamic properties as a function of temperature of Pt,Ru and Pd metals,and to get integrate information in the range of OK to melting points Tm.These results were compared with the results of SGTE data,the calculation results by the first principle method and JANAF experimental value.(4)Pt-Ru alloy system was systematically studied by characteristic crystal theory.The atomic volume interacting function and energy interacting function between atoms in Pt-Ru alloy system were determined.The basic information of characteristic atom sequences and characteristic crystal sequence in Pt-Ru alloy system were obtained.(5)We further develop the application of the framework of systematic science of alloys.We brought to light the relationship between the catalytic activity and electronic structure of electrocatalyst, and characterized the structure of electrocatalyst.This will point out the direction of electrocatalyst designation.(6)We apply characteristic atom arranging designing technique and additive law of characteristic crystal to study the catalytic performance and stability of Pt-Ru alloy catalyst,and determine the program about their gradient. (7)We delude the difference between OA method and FP method such as Ni metal and discuss the relationship between the electronic structure and physical properties of Ni,Pd and Pt metal.
     In this paper,we focused on the research of the relationship among the electronic structure,crystal structure,physical properties,thermodynamic properties and catalytic performance,the results of this paper show that(1)The MATLAB(MATrix LABoratory)software aggregated the strongest value calculation as a tool.The electronic structure of crystal can be determined fast and accurately and consummate single-atom self-consistency method further;(2)The electronic structure of Pt,Ru and Pd metals with fcc,hcp,bcc and liquid structure by OA method and FP method.The results were compared with each other.The result of Pt metal is good agreement with each other,but the results of Ru,Pd metals have great difference.The relationship between the crystal structure and electronic structure of Pt,Ru and Pd metals has been analysed.The relationship between the resistivity and chemical activity and the electronic structure of Pt metal has also been analysed.Due to the least s_f electron,the electricity resistance of Pt is biggest,and the chemical activity is the lowest.(3)To adopt the theory of pure elements to calculate physical properties including potential energy curve,thermal linear expansion coefficient,bulk modulus,vibrating energies of lattice,lattice constants and single bond radius and thermodynamic properties including isometric and isobaric heat capacity,enthalpy,entropy and Gibbs energy as a function of temperature of Pt,Ru and Pd metals in the range of OK to melting points Tm.These results were good agreement with the results of SGTE data,the calculation results by first principle method and JANAF experimental value;(4)Pt-Ru alloy system was systematically studied by characteristic crystal theory.The ninth atomic volume interacting function and ninth energy interacting function between atoms in Pt-Ru alloy system were determined.The basic information of characteristic atom sequences and characteristic crystal sequences of Pt-Ru alloy system were obtained. (5)We open up the application of the framework of systematic science of alloys to designation in catalytic material.The electronic structure of phase is approximately substituted to that on the surface.We brought to light the relationship between the catalytic activity and electronic structure of electrocatalyst,When Pt atoms get together,there are 0.5 d electrons transform into s electrons,the number of d-electrons decreases,so increase d-orbital vacancy.It is advantageous to catalytic reaction. Density of state and energy band structure were also used to interpret the catalytic activity by FP method.The result is agreement with the result is characterized by XRD.After addition of another metal,the d electrons of Pt metal transfer to another metal,empty d-orbitals of Pt atom increase,and the lattice constant of alloy decreases, so it is more advantageous to catalytic reaction.This will point out the right direction of electrocatalyst designation.(6)We apply characteristic atom arranging designing technique and additive law of characteristic crystal to study the stability,catalytic performance and gradient composition of Pt-Ru alloy catalyst.The potential energies and lattice constants of Pt-Ru ordered alloy that the ratio of Pt to Ru is respectively 3:1,1:1 and1:3 were calculated.The configuration of component-Pt also had great change which isψ_4~(Pt)→ψ_8~(Pt)→ψ_(12)~(Pt).The properties of Pt-Ru disordered alloy and the electronic structure of component-Pt were calculated.As the content of Ru increasing, the potential energies decreases,the stability increase,the lattice constants decrease, and the d-orbital vacancy enlarged,this is advantageous to reaction.But the percentage of Ru surpasses 50%,the d-orbital vacancy enlarged very slowly,this lead to have little influence on reaction.We conclude that the most proper ratio of Pt to Ru is 1:1 from stability,the d-orbital vacancy enlarging value,cost and carbon monoxide tolerant capacity.(7)We delude the difference between OA method and FP method such as Ni metal and discuss the relationship between the electronic structure and physical properties of Ni,Pd and Pt metals,main cause is shield effect of 4f electrons besides influence on electronic structure.
引文
[1]衣宝廉.燃料电池-高效、环境友好的发电方式.北京:化学工业出版社,2000
    [2]衣宝廉.燃料电池-原理技术运用.北京:化学工业出版社,2003
    [3]为何将质子交换膜燃料电池列为目前燃料电池的重点.2002.10.11,http://www.fuelcell.com.cn/link/zzzd.htm
    [4]Kordesch K V,Olivera J C.Fuel cells.Ulmann's Encyclopedia of Industry Chemistry,Fifth
    [5]鲍德佑.氢能技术的最新发展.全国第二届氢能学术会议论文集.北京:1992,11
    [6]EG&G.Technical Service Inc..Science Application International Service.Fuel Cell Handbook(Sixth Edition),U.S.Department of energy(DOE).2002.11
    [7]陈延禧.聚合物电解质燃料电池的研究进展.电源技术,1996,20(1):21-27
    [8]章文.燃料电池的发展及应用,润滑油与燃料,2003,13:7-9
    [9]刘润茹,王德军.燃料电池工作原理及性能研究.长春大学学报,2004,14(2):72-74
    [10]Dyer C K.Fuel cells for portable applications.J.Powder Source,2002,106:31-34
    [11]林维明.燃料电池系统.北京:化学工业出版社,1996
    [12]Rodatz P,Buchi.F,Onder F,et al.Operational aspects of a large PEFC stack under practical conditions.J.Powder Source,2004,128:208-217
    [13]于景荣,邢丹敏,刘富强等.燃料电池用质子交换膜的研究进展.电化学,2001,7(4):385-395
    [14]Mehta V,Cooper J S.Review and analysis of PEM fuel cell design and manufracturing.J.Powder Source,2003,114:32-53
    [15]M S Willson.PEM Fuel Cells for Transportation and Stationery Power Generation Applications.Int.J.Hydrogen Energy,1997,22(12):1137-1144
    [16]Angelo,U Dufour.Fuel Cells-A new Contributor to Stationery Power.J.Power Sources,1998,71:15-19
    [17]Appleby A J,Issue in Fuel cell Commerciation.J.Power Sources,1996,69:153-176
    [18]Charles S,Anne E M.From curiosity to "Power to Change the world".Solid State Ionics,2002,152:1-13
    [19]Francesco M D,Arato E.Star-up Analysis for Automotive PEMFC Systems.J.Power Sources,2002,108:41-52
    [20]Zobel M,Polymer A.Electrolyte Membrane Fuel Cell System for Powering Portable computers.J.Power Sources,2003,122:1-8
    [21]胡桂林.质子交换膜燃料电池内传递现象的数值模拟.[博士学位论文].杭州:浙江大学,2003
    [22]李国欣.新型化学电源导论.上海:复旦大学出版社,1992
    [23]Savadogo O.Emerging membranes for electrochemical systems:(Ⅰ)solid polymer electrolyte membranes for fuel cell system.J.New Mat.For electrochem.Systems,1998,1:47-66
    [24]Beattie P D,Orifnol F P,Basura V I,et al.Ionic conductivity of proton exchange membranes.J.Electroanal.Chem.,2001,503:45-56
    [25]Kerres J A.Development of ionomer membranes for fuel cells.J.Membrane Science,2001,185:3-27
    [26]Kawahara M,Morita J,Rikukawa M,et al.Synthesis and proton conductivity of thermally stable polymer electrolyte:poly(benzimidazole)complexes with strong acid molecules.Electrochim.Acta,2000,45:1395-1398
    [27]Antolini E.Recent developments in polymer electrolyte fuel cell electrodes.J.Appl.Electrochem.,2004,34:563-576
    [28]Prater K.The renaissance of the solid polymer fuel cell.J.Power Sources,1990,29:239-250
    [29]朱科.质子交换膜燃料电池Pt/C电催化剂和膜电极的研究:[博士学位论文].天津:天津大学,2005
    [30]Oshitani M,Takayama T.A study on the swelling ofa sintered nickel hyolroxida electrode.J Appl.Electrochem.,1986,16:403-408
    [31]Wilson M S,Gottesfeld S.Thin-film catalyst layers for polymer electrolyte fuel cell electrodes.J.Appl.Electrochem.,1992,22:1-7
    [32]Taylor E J,Anderson E B,Vilambi N R K.Preparation of high-platinumutilization gas diffusion electrodes for proton exchange membrane fuel cells.J.Electrochem Soc,1992,139:145-146
    [33]Kumar G.S,Raja M,Parthasarathy S.High performance electrodes with very low platinum loading for polymer electrolyte fuel cells.Electrochim.Acta,1995,40(3):285-290
    [34]M Maloto,F Fukuoka,Y Suquwara,Improved preparation process of very low platinum loading electrodes for polymer electrolyte fuel cell.J.Electrochem.Soc.,1998,145(1):3708-3717
    [35]K F Bluton,P Greenburg,G H Oswin,et al.,J.Electrochem.Sot.,1972,119:489-495
    [36]王玉江,于春波,华凯峰等.全氟磺酸离子交换膜电极的制备方法.中国专利,1306206A,2001-08-01
    [37]邢巍,李旭光,刘晶华等.聚合物电解质膜燃料电池电极制备方法.中国专利,1387257A,2002-12-25
    [38]王诚,毛宗强,徐景明等.阳极封闭式自增湿质子交换膜燃料电池-水分布及其性能.电源技术,2003,27(5):413-418
    [39]王诚,毛宗强,徐景明等.PEM燃料电池的自增湿膜电极制备及其性能分析.中国科学(G辑),2003,33(2):132-137
    [40]Giorgi L,Antolini E,Pozio A,et al.Influence of the PTFE content in the 外diffusion layer of low-Pt loading electrodes for polymer electrolyte fuel cells.Electrochim.Acta,1998,43(24):3675-3680
    [41]李长志,文钢要,盖云天等.燃料电池Pt-Mn/C-Nafion膜氧电极的研究.第23届全国化学与物理电源学术会议论文集.中国新乡,1998,10
    [42]李长志,文钢要,张颖等.Pt-Cr/C-Nafion膜氧电极的电催化活性.电源技术,1998,22(5):201-203
    [43]李长志,张颖.质子交换膜燃料电池中氢电极和氧电极性能的研究.电源技术,1996,20(3):93-98
    [44]Watanabe M,Uchida H,Emori M.Analyses of self-humidification and suppression of gas crossover in Pt-dispered polymer electrolyte membranes for fuel cells.J.Electrochem.Soc.,1998,145(4):1137-1141
    [45]李士贤,姚建,林定浩.石墨.北京:化学工业出版社,1991,10
    [46]王正樵,吴幼林.不锈钢.北京:化学工业出版社,1991,100
    [47]朱祖芳.有色金属的耐腐蚀性及其应用.北京:化学工业出版社,1991,75
    [48]Nguyen T Y,Mack W K.A liquid water management strategy for PEM fuel cell stacks.Journal of Power Sources,2003,114:70-79
    [49]Okada T,Ratkje S O.Membrane characteristic and water management in poly merelectrolyte fuel cells.Fuel Cell Seminer,1995:339
    [50]Springer T E,Wilson M S,Gottesfeld S.Modeling and experimental diagnostics in polymer electrolyte fuel cell.Electrochem.Soc.,1993,14(12):3513-3527
    [51]秦敬玉,徐鹏.质子交换膜燃料电池(PEMFC)发动机循环水管理模型.太阳能学,2001,22(4):385-389
    [52]Chang-Hyeong Lee,Chi-woo Lee,Dong-Il Kim,et al.Characteristics of methanol oxidation on Pt-Ru catalysts supported by HOPG in sulfuric acid,Hydrogen energy,2002,27:445-450
    [53]B Ren,X Xu,X Q Li,et al.Extending surface Raman spectroscopic studies to transition metals for practical applications Ⅱ.Hydrogen adsorption at platinum electrodes.Surface Science,1999,427:157-161
    [54]Goodenough J B,Harnnett A,Kennedy B J,et al.Methanol oxidation on unsupported and carbon supported Pt+Ru anodes.J.Electroanal.Chem.,1998,240:133-145
    [55]A kabbabi,R Faure,R Durand,et al.In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum-ruthenium bulk alloy electrodes.Journal of Electroanalytical Chemistry,1998,444:41-53
    [56]No.06-0075(r-NiOOH).Version 2.02,PDF-2 Database.JCPDS-ICDD,Joint Committee on Power Diffraction Stadards(JCPDS)-International Center for Diffraction Data(ICDD)Cards.USA:Newtown Square PA
    [57]Mcewen R S,Crystallographic studies on nickel hydroxide and the higher nickel oxides.The Journal of Physical Chemistry,1971,75(12):1782-1789
    [58]Ogrady W E,Pandya K I,Swider K E,et al.In situ X-ray absorption near- edge structure evidence for quadrivalent nickel in nickel battery electrodes.J.Electro chem.Soc.,1996,143:1613-1622
    [59]张云河,李新海,吴显明等.合金化提高铂在PEMFC氧还原反应中的催化活性.电源技术,2004,28(8):491-494
    [60]Cecilia Bracchini,Valerio Indovina,Sergio De Rossi,et al.Anodic catalyst for polymer electrolyte fuel cells:the catalytic activity ofPt/C,Ru/C and Pt-Ru/C in oxidation of CO by O_2.Catalysis Today,2000,55:45-49
    [61]Jong-Ho Choi,Kyung-Won Park,Boo-Kil Kwon,et al.Methanol oxidation on Pt/Ru,Pt/Ni and Pt/Ru/Ni anode electrocatalysts at different temperatures for DMFCs.Electrochemical Society,2003,150(7):A973-A978
    [62]Won Choon Choi,Seong Ihl woo.Bimetallic Pt-Ru nanowire network for anode material in a direct-methanol fuel cell.Joural of Power Sources,2003,124:420-425
    [63]Shawn D L,Ting-chou H,Jen-Ray C,et al.Morphology of carbon supported Pt-Ru Electrocatalyst and the CO tolerance of anodes for PEM fuel cells.J.Powder Sources,1999,44:3283-3295
    [64]Kadirgan F,Beden B,Leger J M,et al.Synergistic effect in the electrocatalytic oxidation of methanol on platinum alloy electrodes.J.Electroanal.Chem.,1981,125:89-103
    [65]Qiao H,Kunimatsu M,Okada T.Pt catalyst cofiguration by a new plating porcess for a micro tubular DMFC cathode.J.Powder Sources,2005,139:30-34
    [66]Hayre R O,Lee S J,Cha S W,et al.A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading.J.Powder Sources,2002,109:483-493
    [67]Zen J M,Kuman A S,Chang M R.Electrocatalytic oxidation and trace detection of amitrole using a Nation/lead-ruthenium oxide pyrochlore chemically modified electrode.Electrochimica Acta,1999,45(10):1691-1700
    [68]Liu L,Pu C,Viswanathan R.Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells,Electrochim.Acta,1998,43(24):3657-3663
    [69]Shukla A K,Raman R K.Methanol- resistant oxygen reduction catalysts for direct methanol fuel cells.Annu Rev.Mater.Res.,2003,33:155-168
    [70]Xion L,Karma A M,Manthiram A.Pt-M(M=Fe,Co,Ni and Cu)electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells,Electrochemistry Communication,2002,4(3):898-903
    [71]P K Shen,K Y Chen,A C C Tseung.CO oxidation on Pt-Ru/WO_3 electrodes.J.Electrochem Soc.,1995,142:185-186
    [72]Arico A S,Poltarze wski Z,Kim H,et al.Investiagtion of carbon supported quartemary Pt-Ru-Sn-W catalyst for direct methanol fuel cell.Journal of Power Source,1995,55:159-165
    [73]Joongpyo Shim,Duck-Young Yoo and Ju-seong Lee.Characteristics for Electrocatalytic Properties and Hydrogen-Oxygen Adsorption of Platinum Ternary Alloy Catalysts in Polymer Electrolyte Fuel cell.Electrochimica Acta,2000,45:1943-1951
    [74]Kinoshita K.Electrochemical oxygen technology.A Wiley-Interscience Publication,1992
    [75]Raghuveer V,Ravindranathan K,Xanthopoulosc N,et al.,A rare earth cuprates as electrocatalysts for methanol oxidation,Solid State Ionics,2001,140:263-274
    [76]Kiros Y.,Lindstrom O,Kaimakis T.J.Power Sources,1993,45(2):219
    [77]Horst Massong,Hongsen Wang,Gabor Samjeske,et al.The co-catalytic effect of Sn,Ru and Mo decorating steps of Pt(111)vicinal electrode surfaces on the oxidation of CO.Electrochimica Acta,2001,46:701-707
    [78]Tamizhmani G.,Capuano G.A.Improved electrocatalytic oxygen reduction performance of platinum ternary alloy-oxide in solid-polymer-electrolyte fuel cells.J Electrochem Soc,1994,141:968-975
    [79]侯中军,俞红梅,衣宝廉等.质子交换膜燃料电池阳极抗CO催化剂的研究进展.电化学,2000,6(4):379-387
    [80]M-S Loftier,H Natter,R H Empelmann,et al.Preparation and characterization of Pt-Ru model electrodes for the direct methanol fuel cell.Electrochimica Acta,2003,48:3047-3051
    [81]A Hamnett,B J Kennedy.Bimetallic carbon supported anodes for the direct methanol-air fuel cell.Electrochimica Acta,1998,33(11):1613-1618
    [82]Li Wenzhen,Zhou Weijiang,Li Huanqiao,et al.Nano-structured Pt-Fe/C as cathode catalyst in direct methanol fuel cell.Electrochimica Acta,2004,49:1045-1055
    [83]Xiong L,Kanna A M,Manthiram A.Pt-M(M=Fe,Co,Ni and Cu)electrolyte synthesized by an aqueous route for proton exchange membrane fuel cells.Electrochem Commun,2002,4:898-903
    [84]Takako Toda,Horishi Igarashi,Hiroyuki Uchida,et al.,Enhancement of the electroreduction of oxygen on Pt alloys with Fe,Ni and Co.J.Electrochem.Soc.,1999,146:3750-3756
    [85]B Xing,O Savadogo.Hydrogen-Oxygen Polymer Electrolyte Membrane Fuel Cell based on Alkaline-Doped Polybenzimidazole.Electrochemistry Communications,2000,2:697-702
    [86]Appleby J,Foulkes F R.Fuel Cell Handbook.Nalabar:Krieger Publishing Company,Florida,1993,Chapter 12
    [87]Ralph T R,Hogarth M P.Catalysis for low temperature fuel cells,part Ⅱ:the anode challenge.PMR,2002,46(3):117-135
    [88]Shibli S M A,Noel M.Development and evaluation of platinum-ruthenium bimetal catalyst-based carbon electrodes for hydrogen/oxygen fuel cells in NaOH media.J Power Sources,1993,45:139-152.
    [89]查全性.电极过程动力学导论.北京:科学出版社,2002,105
    [90]M J Escudero,E Hontanon,S Schwartz,et al.Development and performance characterisation of new electrocatalysts for PEMFC.Journal of Power Sources,2002,106:206-214
    [91]冯春华.PEMFC用Pt/C以及Pt-Ru/C电催化剂的制备研究:[硕士学位论文].广州:华南理工大学,2003
    [92]Shim J,Lee Chang-Rae,Lee Hong-Ki.Electrochemical Characteristics of Pt-WO_3/C and Pt-TiO_2/C electrocatalysts in a polymer electrolyte fuel cell.J.Power Sources,2001,102:172-177
    [93]Sun Z,Chiu H C,Tseung C C.Oxygen reduction on teflon bonded Pt-WO_3 in acidic media.Electrochem.Solid-state Lett.,2001,4:E9-E12
    [94]Faubert G;Lalande G,Cote R,et al.Heat-treated iron and cobalt teara phenyl porphyrins adsorbed on carbon black:physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells.Electrochimica Acta,1996:41:1889 - 1911
    [95]Biloul A,Gouerec P,Savy M,et al.Oxygen electroeatalysis under fuel cell condition:Behavior of cobalt porphyrins and tetraazaannulene analogues.J Appl.Electrochem,1996,26:1139-1145
    [96]Lalande G.,Tamizhmani G,Cote R.et al.Influence of loading on the activity and stability of heat -treated carbon -supported cobalt phthalocyanine electrocatalysts in solid polymer electrolyte frel cells.J.Electrochem.Soc.,1995:142:1162
    [97]Lalande G.,Cote R,Tamizhmani G,et al.Physical,chemical and electrochemical charactedation of heat -treated tetracarboxylic cobalt phthalocyanine adsorbed on carbon black as electrocatalyst for oxygen reduction in polymer deectrolyte fuel cells.Electrochinmica Acta.,1995:40:2635-2646
    [98]Lalande G,Faubert G.,Cote R,et al.Catalytic activity and stability of heat treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells.J.Power Sources,1996:61:227
    [99]Xu Zhiqiang,Qi Zhigang,Arthur Kaufman,J.Power Sources,2003,115:40
    [100]Raghuveer V,Ravindranathan K,Xanthopoulosc Net al.,A rare earth cuprates as electrocatalysts for methanol oxidation,Solid State Ionics,2001,140:263-274
    [101]Shobba T,S Mayann M,C A Sequeir C.Preparation and characterization of Co-W alloys as anode materials for methanol fuel cells.J.Power Sources,2002,108:261-264
    [102]Mclntyre D R,Vossen A,Wilder J R,et al.,Electrocatalytic properties of a nickel-tantalum-carbon alloy in an acidic electrolyte.J.Power Source,2002,108:1-7
    [103]Sammels A F,White J H.An architectural approach to the oxygen permeability of a La_(0.6)Sr_(0.4)Fe_(0.9)Ga_(0.1)O_(3-δ)perovskite membrane.J.Electrochem.Soc.,1993,140:2167-2173
    [104]N A Vante,H Tributsch.Energy conversion catalysis using semiconducting transition metal cluster compounds.Nature,1986,323:431-432
    [105]R W Reeve,P A Christensen,A Hamnett,et al.,Methanol tolerant oxygen reduction catalysts based on transtion metal sulfides.J.Electrochem.Soc.,1998,145:3463-3467
    [106]V Trapp,P A Christensen,A Hamnett.New catalysts for oxygen reduction based on transition-metal sulfides.J.Chem.Soc.Fara.Trans.1996,92:4311-4319
    [107]Rodriguez F J,Sebastian P J,Solorza O,et al.,Mo-Ru-W chalcogenide electrodes prepared by chemical synthesis and careen prining for fuel cell applications.Int.J.Hydrogen Energy,1998,23:1031-1035
    [108]Romero T,Rivera R,Solorza O,et al.,Fabrication and testing of a H_2-O_2 fuel cell using Mo_xRu_ySe_z,Int.J.Hydrogen Energy,1998,23:1041-1044
    [109]Fischer C,Alonso Vante N,Fiechter S.Electrocatalytic properties of mixed transition metal tellurides(Chevrel-phases)for oxygen reduction.J.Appl.Electrochem.,1995,25:1004-1008
    [110]Solorza Feria O,Ellmer K,Giersig M.Novel low temperature synthesis of Se microducting transition metal chalcogenide electrocatalyst for multielectron charge transfer:molecular oxygen reduction.Electrochimica Acta.,1994,39:1647-1653
    [111]黄成德,韩佐青,李晓婷等.PEMFC用Pt/C电催化剂的制备.电源技术,2000,24(4):243-245
    [112]Vandan H E,Bekkum H V.Preparation of platinum on activated carbon.J.Catalysis,1991,131:335-349
    [113]Kinoshita K.,Carbon:Electrochemical and physicochemical properties,New York:Wiley Chichester,1988,388
    [114]Gameza A,Richard D,Gallezo T P,et al.Oxygen reduction on Well-defined platinum nanoparticles inside recast inonomer.Electrochemica Acta,1996,41(2):307-314
    [115]Bonemann H,Bmour W,Brinkmann R,et al.Preparation,characterization and application of fine metal particles and metal colloids using hydrotriorgnoborates.J.Molecular Catalysis,1994,86:129-177
    [116]Faubert G.,Guay D,Dodelet J P.Pt inclusion compounds as oxygen reduction catalysts in polymer-electrolyte fuel cells.J.Electrochem.Soc.,1998,145(9):2985-2991
    [117]Tilquin Y,Cote R,Veilleux G.,et al.Preparation and chemical reduction of Pt (Ⅳ)choloride-GICs:supported Pt vs Pt inclusion graphite compounds.Carbon,1995,33(9):1265-1271
    [118]文纲要,李长志,孙公权.燃料电池氧阴极催化剂的研究.电池,1999,29(3):110-112
    [119]G A Camara,M J Giz,V A Paganin,et al.Correlation of electrochemical and physical properties of PtRu alloy electrocatalysts for PEM fuel cells.Joural of Electroanalytical chemistry,2002,537:21-29
    [120]Yao Jun Zhang,A Maroto-Valiente,I Rodriguez-Ramos,et al.Synthesis and characterization of carbon black supported Pt-Ru alloy as a model catalyst for fuel cells.Catalysis Today,2004,93-95:619-626
    [121]U Koponen,H Kumpulainen,M Bergelin,et al.Characterization of Pt-based catalyst materials by voltammetric techniques.Power sources,2003,118:325-333
    [122]J-M.Leger,Mechanistic aspects of methanol oxidation on platinum-based electro catalysts.Journal of Applied Electrochemistry,2001,31:767-771
    [123]Dianxue Cao,Steven H Bergens.A nonelectrochemical redutive deposition of ruthenium adatoms onto nanoparticle platinum:anode catalysts for a series of direct methanol fuel cells.Electrochimica Acta,2003,48:4021-4031
    [124]杨书廷,曹朝霞,张焰峰.质子交换膜燃料电池(PEMFC)新型纳米稀土催化剂的制备与性质.无机材料学报,2004,19(4):921-925
    [125]Kim H,Subramanian N P,Popov BN.Preparation of PEM fuel cell electrodes using pulse electrodeposition.J.Powder Sources,2004,138:14-24
    [126]黄开辉,万惠霖.催化原理.北京:科学出版社,1982,489-503
    [127]Th Wolkenstein.In Advance in Catalysis,Vol.Ⅻ,Academic Press.1960,189
    [128]M M Jaksic.Electrcatalysis of Hydrogen Evolution in the Light of the BrewerEngles Theory for bonding in metals and Intermetallic phases.Int.J.Hydrogen Energy,1986,11:519-525
    [129]M M Jaksic.Advances in Electrocatalysis for Hydrogen Evolution in the Light of the Brewer- Engles Theory.J.Mol.Catalysis,1987,38:161-170
    [130]张文强,张萍.质子交换膜燃料电池阴极铂合金催化剂研究进展,材料导报.2004,18(7):45-48
    [131]Jalan V M,Taylor E J.Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid.J.Electrochem.Soc.,1983,130:2299-2302
    [132]Paffett M T,Beery J G.Oxygen reduction at Pt_(0.65)Cr_(0.35),Pt_(0.2)Cr_(0.8)and roughed platinum.J.Electrochem.Soc.,1988,135:1431-1437
    [133]Watansbe M,Tsurumi K,Mizukami T,et al.,Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells.Electrochem.Soc.,1994,11:2659-2663
    [134]Sun Z,Tseung A C C.Effect of dissolved iron on oxygen reduction at a Pt/C electrode in sulfric acid.Electrochem Solid-state Lett.,2000,3:413-418
    [135]熊家炯.材料设计.天津:天津大学出版社,2000
    [136]Myoung-ki Min,Jihoon Cho,Kyuwoong Cho,et al.Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications.Electrochimica Acta,2000,45:4211-4217
    [137]Markovic N,Gasteiger H,Ross P N.Kinetics of oxygen reduction on Pt(hkl)electrodes:Implications for the crystallite size effect with supported Pt electrocatalysts.J.Electrochem.Soc.,1997,144(5):1591-1597
    [138]陈芸琪,郑德娟,曹培林.用Xα—DV方法研究CO,NO在Ⅷ族过渡金属的化学吸附.物理学报,1985,34(10):1299-1304
    [139]G Bihlmayer,R Eible,R Pobloucky.Ab initio study of the CO absorption on Ni Al(110)and Pt(100).Surface science,1998,402-404:794-797
    [140]Yasuyuki Ishikawa,Meng-Sheng Liao,Carlos R.cabrera.Oxdation of methanol on platinum,ruthenium and mixed Pt-M metals(M=Ru,Sn):a theoretical study.Surface Science,2000,463:66-80
    [141]E Grantscharova-Anderson,Alfred B Anderson.The prewave in CO oxidation over roughened and Sn alloyed Pt surfaces:possible structure and electronic causes.Electrochimica Acta,1999,44:4543-4550
    [142]Bonglin Simon Mun,Masamitsu Watanabe,Massimiliano Rossi,et al.A study of electronic structures of Pt_3M(M=Ti,V,Cr,Fe,Co,Ni)polycrystalline alloys with valence-band photoemission spectroscopy.Chemical Physics,2005,123:204717-1~204717-14
    [143]X Xu,D Y Wu,B Ren,et al.On top adsorption of hydrogen at platinum electrodes:a quantum-chemical study.Chemical Physics Letters,1999,311:193-201
    [144]Hideaki Aizawa,Shinji Tsuneyuki.First-principles investigation of photoinduced desorption of CO and NO from Pt(111).Surface Science,1996,363:223-228
    [145]Masahiro Yamamoto,Masahiro Kinoshita,Takashi Kakiuchi.Structure of the Pt(111)/liquid interface:a first-prineiples/RHNC calculation.Eleetrochimica Acta,2000,46:165-174
    [146]Henrik Gronbeck,Wanda Andreoni.Theoretical study of(CO)_n chemisorption on Pt and Pt_3:struetucral,electronic and vibrational properties,Chemical Physics Letters,1997,269:385-390
    [147]张婷,雷敏生,邱新平.CO吸附于PtRu合金(100)面上的DFT理论研究.江西师范大学学报,2005,29(2):99-103
    [148]Dae-Bok Kang,Choon-Kee Lee.Electronic properties of Ru/Pt(111)alloy surface:a theoretical study of H_2O adsorption.Bull.Korean Chem.Soc,2000,21(1):87-92
    [149]Wei Z D,Yin F,Li L L,et al.,Study of catalysts Pt/C and Pt-Fe/C for oxygen reduction in the light of quantum chemistry.J.Electroanal Chem.,2003,541(1):185-192
    [150]谢佑卿.金属材料系统科学框架.材料导报,2001,15(4):12-15
    [151]谢佑卿.合金物理与化学框架.材料导报,2001,15(8):3-6
    [152]谢佑卿,刘心笔.金属材料信息科学.材料导报,2003,17(1):1-7
    [153]谢佑卿.关于态和性质关系的讨论.材料导报,2001,15(6):4-6
    [154]谢佑卿,唐仁政,卢安贤.材料设计的回顾与思考.材料导报,1995,(2):1-7
    [155]Xie Y Q,Liu X B,Peng K.et al.Atomic states,potential energies,volumes,stability,and brittleness of ordered FCC TiAl_3-type alloys.Physica B,2004,353:15-33
    [156]Xie Y Q,Peng K,Liu X B.Influences of x_(Ti)/x_(Al)on atomic states,lattice constants and potential-energy planes of ordered FCC TiAl-type alloys.Physica B,2004,344:5-20
    [157]Xie Y Q,Peng H J,Liu X B,et al.Atomic states,potential energies,volumes,brittleness and phase stability of ordered FCC Ti_3Al type alloys.Physica.B,2005,362:1-17
    [158]Xie Y Q,Tao H J,Peng H J,et al.Atomic states,potential energies,volumes, stability and brittleness of ordered FCC TiA12 type alloys.Physica.B,2005,366:17-37
    [159]谢佑卿.金属材料系统科学.长沙:中南工业大学出版社,1998
    [160]谢佑卿.确定晶体电子结构的单原子状态自洽法.科学通报,1992,(6):1529-1532
    [161]Pauling L.The Nature of the Chemical Bond.Comell University Press,1960
    [162]Xie Youqing.A new potential function with many-atom interactions in solid.Science in China,Ser.A,1993,1:90-99
    [163]XIE Y Q.The electronic structure and properties of pure iron.Acta metall.Mater.,1994,11:3705-3715
    [164]彭浩,谢佑卿,彭坤等.用DV-Xα法与用单原子理论计算单质铁电子结构及性质的比较.中国有色金属学报,2001,3:477-480
    [165]谢佑卿,张晓东.金属Cu的电子结构和物理性质.中国科学(A辑),1993,14(8):875-880
    [166]陶辉锦.Ⅰ、Ⅳ和VIB过渡金属电子结构、物理性质和热力学性质的系统研究:[博士学位论文].长沙:中南大学,2006
    [167]Eckardt H,Fritsche L,Noffke J.Self-consistent relativistic band structure of the noble metals.J.Phys.F:Met.Phys.,1984,14:97-112
    [168]聂跃庄.金属晶格稳定性与物理性质第一原理研究:[博士学位论文].长沙:中南大学,2007
    [169]Grigorovich V K.The metallic bond and structure of metals.New York:Nova Science,1989:58-77
    [170]Xie Youqing,Liu Xinbi.Electronic structure and physical properties of pure aluminum metal.Science in China Ser.E,1999,29(6):603-608
    [171]ASM International Handbook Committee.Metals handbook,10~(th)ed,vol 2:Properties and selection:nonferrous alloys and special- purpose materials.OH:Materials Park,1990:1113,1117,1157
    [172]谢佑卿,张晓东.金属Au的电子结构和物理性质.中国有色金属学报1992,2:51-55
    [173]彭红建,谢佑卿.贵金属Ir的原子状态与物理性质.中南大学学报,2006,37(5):937-942
    [174]Xie Youqing,Zhang Xiaodong,Chen J Y.Electronic structure and properties of Cobalt,Science in China,Ser.E,1996,26(4):394-403
    [175]黎鼎鑫.贵金属材料学.长沙:中南大学出版社,1991,37
    [176]陈景.贵金属物理性质与原子结构的关系.中国工程科学,2000,2(7):66-73
    [177]谭庆麟,阙振寰.铂族金属性质、冶金、材料、应用.北京:冶金工业出版社,1990,31
    [178]Kittel C.Introduction to solid state physics,6~(th)ed.New York:John Wiley and Sons,Inc,1986:55,57,144,110
    [179]张迎九,谢佑卿,李为民等.Ni_3Al的德拜温度及物理性质.中国有色金属学报,1996,6(4):114-118
    [180]Wang Y,Curtarolo S,Jiang C,et al.Ab initio lattice stability in comparison with CALPHAD lattice stability.CALPHAD,2004,28:79-90
    [181]Dinsdale A T.SGTE data for pure elements.CALPHAD,1991,15(4):317-425
    [182]Chase M W.NIST-JANAF thermochemical tables(Fourth Edition Part Ⅰ).Gaithersburg:National Institute of standards and technology,1998,1125-1136
    [183]American Institute of Physics.American Institute of Physics Handbook,3~(rd)ed.New York:McGraw-Hill Book Company,1972:4-119
    [184]Shobhana Narasirnhan and Stefano de Gironcoli,Ab initio calculation of the thermal properties of Cu:performance of the LDA and GGA.Phys.Rev.B,2002,65(6):4302-4307
    [185]周如松.金属物理.北京:高等教育出版社,1992:201-202
    [186]WEAST R C.CRC Handbook of Chemistry and Physics,70th ed.Florida:CRC Press Inc,1990:B-216
    [187]侯增寿,卢光熙.金属学原理.上海:上海科学技术出版社,1990:36-37
    [188]Sundman Bo,Aldinger Fritz.The Ringberg workshop 1995 on unary data for elements and other end-members of solutions.CALPHAD,1995,19(4):433-436
    [189]Saunders N,Miodowik A P,Dinsdale A T.Metastable lattice stabilities for the elements.Calphad-Computer Coupling of Phase Diagrams and thermochemistry,1988,12:351-374
    [190]Zhang Z J.Reassessmentculation of the properties of some metals and alloys.Journal of Physics:Condens.Matter,1998,10:495-499
    [191]Zhang Z J.Calculation of the properties of some metals and alloys.Journal of Physics:Condens.Matter,1998,10:L495-L499
    [192]谢佑卿.金属固溶体及其组元的性质.中南矿冶学院学报,1993,24(3):332-341
    [193]Xie Youqing.Atomic energies and Gibbs energy functions of Ag-Cu alloys.Science in China,Ser.E,1998,41(2):146-156
    [194]Xie Youqing.Atomic volume and volume function of Ag-Cu alloys.Science in China,Ser.E,1998,41(2):157-168
    [195]Xie Youqing.Electronic structures of Ag-Cu alloys.Science in China,Ser.E,1998,(3):225-236
    [196]Xie Youqing,Zhang Xiaodong.Phase diagram and thermodynamic properties of Ag-Cu alloys.Science in China,Ser.E,1998,(4):348-356
    [197]Yu Fang-xin,XieY Q,Nie Y Z,et al.Electronic structure of Au-Cu alloys.Trans.Nonferrous Met.Soc.China,2004,6:1041-1049
    [198]杨喜昆,李昕,衡根华.PtRu合金薄膜结构及其催化性能.物理化学学报,2007,23(3):389-393
    [199]Arico A S,Antonucci P L,Modica E,et al,Effect of Pt-Ru alloy composition high-temperature methanol electro-oxidation.Electrochimica Acta,2002,47:3723-3729
    [200]Gasteiger H,Ross P N,Cairns T R,Temperature-dependent methanol electrooxidation on well-characterized Pt-Ru alloy.Surface Science,1994,141:1795-1802
    [201]Xie You-qing,Peng Kun,Yang Xin-xin.Electronic strctures and properties of Ti,Zr and Hfmetals.Journal of central south university of technology,2001,8(2):83-88
    [202]Corrigan D A,Knight S L.Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel hydroxide redox reaction.J.Electrochem.Soc.,1989,136:613-618
    [203]Barnard R,Randell C F,Tyef L,Studies concerning charged nickel hydroxide electrodes Ⅰ,Measurement of reversible potentials.J.Applied Ectrochem.,1980,10:109-113
    [204]Xie Youqing.Electronic structure and properties of Ni metal.Science in China,Ser.A,1993,(4):495-503
    [205]肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分方法在化学和物理学中的应用.北京:科学出版社,1998,54
    [206]Markovic N,Gasteiger H,Ross P N.Kinetics of oxygen reduction on Pt(hkl)electrodes:Implications for the crystallite size effect with supported Pt electrocatalysts.J.Electrochem.Soc.,1997,144(5):1591-1597
    [207]Kinoshita K.J.Electrochem.Soc.,1990,137(5):845
    [208]司永超,韩佐青,陈延喜.催化剂制备工艺对PEMFC氧电极性能的影响.物理化学学报,1998,14(4):361-363
    [209]Costanaga P,Srinivasan S.Quantum jumps in the PEMC science and technology from 1960s to the year 2000:Part Ⅰ,Fundmental Scientific aspects.J.Power sources,2001,102:242-256
    [210]Ianniello R,Sehmidt V M,Stimming U,et al.CO adsorption and oxidation on Pt and Pt-Ru alloys:dependence on substrate composition.Electrochimica Acta.,1994,39:1863-1892
    [211]Lee S J,Mukerjee S,Ticianelli E A,et al.Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cell.Electrochimica Acta.,1999,44:3283-3290
    [212]Gottesfeld S,Zawodzinski T A.PEM fuel cells for transportation and stationery power generation.Adv.Electrochem.Sci.Eng.,1997,5:219
    [213]何纯孝.贵金属合金相图第一补编.北京:冶金工业出版社,1993
    [214]余瑞璜.固体与分子经验电子理论.科学通报,1978,23:217-219
    [215]S Y Savrasov.Linear-response theory and lattice dynamics:A muffin-tin -orbital approach.Phys.Rev.,1996,B54:16470-16474
    [216]肖慎修,孙泽民,刘洪霖等.量子化学中的离散变分X_α方法及计算程序.成都:四川大学出版社,1986
    [217]F Aryasetianwan.Ab initio calculation of the core-hole effect in the electron energy loss near edge structure.Phys.Rev.,2000,B62:7901-7905
    [218]Mark Winter.Http://www.webelements.com/.The University of Sheffield and webelements Ltd,2006,4
    [219]Benner L S.Precious Metals Science and Technology.Published by IPMI,1991,13-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700