质子交换膜力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜(PEM)是质子交换膜燃料电池(PEMFCs)的关键部件,其可靠性对燃料电池寿命有着至关重要的影响,研究其力学性能具有重要意义。本文利用动态力学分析仪(DMA-Q800)对PEM的基本力学性能进行了测试,考察了Nafion?-212在工作温度(85℃)下,受到循环应力作用时,其棘轮应变和棘轮应变率的变化情况,得出平均应力,应力幅,应变率等因素对材料棘轮应变的影响;还研究了其在高温(70℃)浸泡环境下的相关力学性能,有浸泡时间,应变率及是否浸泡对其拉伸性能的影响,还有是否浸泡,应力大小等对其棘轮效应的影响。结果表明,Nafion?-212为率相关材料,高温下应变率对其切线模量,棘轮应变及棘轮应变率均有影响,而高温下平均应力,应力幅等对其循环加载性能也有不同程度的影响;在去离子水中浸泡对其性能有着一定的影响,试样在相同应变下的应力值随着浸泡时间的增加而增大,但是浸泡24小时左右,试样的拉伸性能就趋于稳定,浸泡与否对试样棘轮变化趋势影响不大,但在相同的应力水平下,非浸泡试样的棘轮应变明显大于浸泡试样的。
     本文还选取了一种国产质子交换膜,研究了其在应变率控制下,在不同温度,加载率条件下的力学性能,包括拉伸性能,蠕变-恢复性能,应力松弛性能等,得出了此种PEM的弹性模量,应力,应变与温度、加载率的关系;在研究聚合物本构关系的基础上,研究了其蠕变随时间,温度,应力变化的蠕变公式,并进行了预测。结果表明,GEFC?-105基于Tan Delta的玻璃化转变温度略高于Nafion?-212;拉伸试验中,在相同的加载条件下,GEFC?-105材料的切线模量、屈服值以及相同应变下的应力值都要大于Nafion?-212的;蠕变试验中,随着应力的增大,试样经过相同时间的蠕变应变快速地增加,温度越高这种现象越明显,而相同蠕变时间的应变随温度的升高快速的增大;松弛试验中,试样的初始应变越大,其产生的初始应力也越大,应力先是快速下降,然后逐渐趋于稳定,而在相同初始应变下,温度越高,其产生的初始应力越低,在整个松弛过程中,其应力也越低;本文应用改进后的Findley蠕变模型预测的蠕变曲线效果比较好。
The Proton Exchange Membrane (PEM) is the crucial part of Proton Exchange Membrane Fuel Cells (PEMFCs) and its reliability has essential influence on the life of PEMFCs, so it is important to study the mechanical properties of PEMs.
     The Dynamic Mechanical Analyser (DMA-Q800) is used to test the basic mechanical properties in this work. The Nafion? -212 was exerted the cyclic stresses at its operating temperature(85℃), and the change of its ratcheting strain and strain rate was observed. Moreover, the effect of mean stress, stress amplitude and strain rate to the ratcheting strain were investigated. In addition, its mechanical properties in the soaking environment of high temperature(70℃) was studied too. Besides the research of the effect of soaking time, strain rate and soaking or not soaking on the tensile property, the effect of stress and soaking or not soaking on the ratcheting behavior was studied. The tests results indicated that Nafion? -212 was rate dependent material and the strain rate affected its tangent modulus, ratcheting strain and strain rate at high temperatures. Else, the mean stress, stress amplitude etc. had different influence on its cyclic loading properties. Being soaked in the deionized water had certain effect on its mechanical properties. The stress of specimen at the same strain level was increased as the increase of soaking time. But the tensile property tended to become stable after the specimen was soaked for 24 hours. The effect of soaking or not was small on the ratcheting trend, while the ratcheting strain of no soaked specimen was bigger than that of soaked specimen under the same stress level.
     The mechanical properties (tensile property, creep-recover property, stress relaxation) of a kind of domestic PEM were studied under different temperatures and strain rates with strain controlled methods. The relationship between elastic modulus, stress, strain and temperature, loading rate was obtained. The experimental results indicated that the glass transition temperature of GEFC?-105 based on Tan Delta was slightly higher than Nafion?-212. In the creep-recover test, the creep strain increased quickly with the increase of stress, and the increase was more significant as the temperature went higher. Additionally, the creep strain increased slightly as the increase of temperature too. In the relaxation tests, the bigger the initial strain, the bigger the initial stress. And the stress declined rapidly first, then reached equilibrium gradually. While under the same strain level, the higher the temperature, the lower the initial stress and the stress within the whole relaxation progress. Based on the research of the constitutive relation of polymer, a creep equation involving time, temperature, stress was studied. Moreover, the creep curves at various temperatures were predicted. The prediction of creep curves used with the improved Findley creep model was good.
引文
[1] Borup R, Meyers J, Pivovar B, et al., Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation, Chemical Reviews, 2007, 107 (10): 3904~3951
    [2] Bossel U G, Proceedings of the European Fuel Cell Forum Portable Fuel Cells Conference, Lucerne, 1999, 79~84
    [3] Lai Y, Mittelsteadt C K, Gittleman C S, et al., Proceedings of The Third International Conference on Fuel Cell Science, Engineering and Technology, Ypsilanti, Michigan, 2005, 5: 23~25
    [4] Keith B P, Polymer Electrolyte Fuel Cell: a review of recent developments. Journal of Power Sources, 1994, 51: 129~135
    [5]李文兵,齐智平,质子交换膜燃料电池研究进展,化工科技,2005,13:55~59
    [6]刘丰峰,卢玫,质子交换膜燃料电池研究进展,通信电源技术,2009,2:25~28
    [7]黄汉生,日本燃料电池研究开发动向,现代化工,1998,10:42~46
    [8] Timothy N T, Scott G H, Joseph M S, et al., Hydrocarbon PEM/Electrode Assembilies for Low-Cost Fuel Cells: Development, Performance and Market Opportunities, Workshop on Fuel Cell, Technology and Applications, Dalian, PR China, 1998. 9: 10~15
    [9]黄镇江(刘凤君),燃料电池及其应用,北京:电子工业出版社,2005. 8,1~17
    [10]衣宝廉,燃料电池-原理、技术、应用,北京:化学工业出版社,2003,200~202
    [11] Kordesch K, Simader G, Fuel cell and their applications. Weinheim, New York, Based, Cambridge, Tokyo: VCH, 1996
    [12] Hirschenhofer J H, Stauffer D B, Engelman R R, Fuel Cell Handbook Fourth Edition, Parsons Corporation, DOE Report No. DOE/FETC-99/1076, 1998
    [13] Solasi R, Huang X, Proceedings of the 4th International Conference on Fuel Cell Science, Engineering, and Technology 2006, Irvine, CA, 2006
    [14] Eseribano S, Aldebert P, Pineri M, Volumic electrodes of fuel cells with polymer electrolyte membranes: electrochemical performances and structural anslysis by thermoporometry, International Journal of Hydrogen Energy, 1996, 21(8): 673~678
    [15] Teagan W, Bentley J,“Status:ADL/EPYX Fuel Processing Technology,”Joint DOE/EPRI/GRI Workshop on Fuel Cell Technology, San Francisco, CA, 1998
    [16] Asada T, Usame Y, Tokyo Electric Power Company Approach to Fuel Cell Power production. Journal of Power Sources, 1990, 29: 97~103
    [17] Bacon T T, Fuel Cell, Past. Present and Future. Electrochim Acta, 1969, 14: 569~585
    [18] http://www.expo2010china.com/expo/chinese/sbdt/sbjj/cjxw/userobject1ai3156 9. html
    [19] Wu J F, Martina J J, A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies, Journal of Power Sources, 184 (2008): 104~119
    [20] Shao Y Y, Yin G P, Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges, Journal of Power Sources, 167 (2007): 235~242
    [21]黄倬,质子交换膜燃料电池的研究开发与应用,北京:冶金工业出版社,2000,1~5
    [22] Zhang S S, Yuan X Z, A review of accelerated stress tests of MEA durability in PEM fuel cells, International Journal of Hdrogen Energy, 34 (2009): 388~404
    [23] Tan J Z, Chao Y J, Chemical and mechanical stability of EPDM in a PEM fuel cell environment, Polymer Degradation and Stability, 2009, 94(11): 2072~2078
    [24] Grushetskii I V, Parfeev V M, Variation in the optical properties of polymeric film materials under static and cyclic loading, Mekhanika Kompozitnykh Materialov, 1989, 1: 35~56
    [25] Roham S, Yue Z, On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles, Journal of Power Sources, 2007, 167: 366~377
    [26] Ahmet K, Anette M K, Michael H S, et al., William BJ, Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses, Journal of Power Sources, 2007, 170: 345~358
    [27] Roham S, Zou Y, Huang X, et al., On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles, Journal of Power Sources, 2007, 167: 366~377
    [28] Roham S, Zou Y, Huang X, et al., A time and hydration dependent viscoplastic model for polyelectrolyte membranes in fuel cells, Mechanics of Time-Dependent Materials, 2008, 12: 15~30
    [29]王振峰,燃料电池用质子交换膜力学性能研究:[硕士学位论文],天津;天津大学,2009
    [30] Kang G Z, Gao Q, Yang X J, Uniaxial cyclic ratcheting and plastic flow properties of SS304 stainless steel at room and elevated temperatures, Mechanics of Materials, 2002, 34: 145~159
    [31]刘伟,高宗战,岳珠峰,不同温度下MDYB-3有机玻璃的棘轮效应,材料科学与工程学报,2008,26(1):64~67
    [32]陈旭,焦荣,田涛,棘轮效应预测及其循环本构模型研究进展,力学进展,2003,33(4):461~470
    [33] Zhang Z, Chen X, Wang Y P, Uniaxial ratcheting behavior of polytetrafluoroethylene at elevated temperature, Polymer Testing, 2010. 01(001): 1~6
    [34] Hassan T, Kyriakides S, Ratcheting in cyclic plasticity, part II: Multiaxial behavior, International Journal of Plasticity, 1992, 8(2): 117~146
    [35] Hassan T, Kyriakides S, Ratcheting in cyclic plasticity, part I: Uniaxial behavior, International Journal of Plasticity, 1992, 8(1): 91~116
    [36] Kang G Z, Liu Y J, Zhao L, Damage-Coupled Constitutive Model For Uniaxial Ratcheting And Fatigue Failure Of 304 Stainless Steel, Materials Science and Engineering A, 2006, 435~436, 396
    [37] Kang G Z, Gao Q, Cai L X, et al., Experimental study on uniaxial and nonproportionally multiaxial ratcheting of SS304 stainless steel at room and high temperatures, Nuclear Engineering and Design, 2002, 216(13): 13~26
    [38] Jiang Y, Sehitoglu H, Cyclic Ratchetting of 1070 Steel under Multiaxial Stress States, International Journal of Plasticity, 1994, 10(5): 579~608
    [39] Chen G, Chen X, Niu C D, Uniaxial ratcheting behavior of 63Sn37Pb solder with loading histories and stress rates, Materials Science and Engineering A, 2006, 421(1-2): 238~244
    [40] Chen X, Yu D H, Kim K S, Experimental study on ratcheting behavior of eutectic tin-lead solder under multiaxial loading, Materials Science and Engineering A, 2005, 406(1-2): 86~94
    [41] Chen X, Li R, Qi K, et al., Tensile Behaviors and Ratcheting Effects of Partially Sintered Chip-Attachment Films of a Nanoscale Silver Paste, Journal of Electronic Materials, 2008, 37(10): 1574~1579
    [42] Kwofie S, Cyclic creep of copper due to axial cyclic and tensile mean stresses, Materials Science and Engineering: A, 2006, 427(1-2): 263~267
    [43] Tao G, Xia Z H, A non-contact real-time strain measurement and control system for multiaxial cyclic/fatigue tests of polymer materials by digital image correlation method, Polymer Testing, 2005, 24(7): 844~855
    [44] Shen X, Xia Z, Ellyin F, Cyclic deformation behavior of an epoxy polymer. Part I: Experimental investigation, Polymer Engineering and Science, 2004, 44(12): 2240~2246
    [45] Xia Z, Shen X, Ellyin F, Cyclic deformation behavior of an epoxy polymer. Part II: Predictions of viscoelastic constitutive models, Polymer Engineering and Science, 2005, 45(1): 103~113
    [46] Nishitani T, Yamashita T, Journal of Matierals Science, 21, 2830(1986)
    [47] Abraham F, Alshuth T, Jerrams S, Materials and Design, 26, 239(2005)
    [48] Tao G, Xia Z H, Ratcheting behavior of an epoxy polymer and its effect on fatigue life, Polymer Testing, 2007, 26: 451~460
    [49] Wang G T, Liu H Y, Saintier N, et al., Cyclic fatigue of polymer nanocomposites, Engineering Failure Analysis, 2009: 2635~2645
    [50]宋之敏,黄婉霞,倪海鹰,刘民治,疲劳/蠕变复合作用下聚碳酸酯的交互损伤研究,航空材料学报,2003,23(4):44~47
    [51]吕锡慈,高分子材料强度与破坏,成都:四川教育出版社,1988,356
    [52] Chen X, Hui S C, Ratcheting behavior of PTFE under cyclic compression, Polymer Testing, 2005, 24(7): 829~833
    [53] Zhang Z, Chen X, Polymer Engineering and Science, in press.
    [54] Yu W W, Chen X, Wang Y P, et al., Uniaxial Ratchetting Behavior of Vulcanized Natural Rubber, Polymer Engineering and Science, 2008: 192~197
    [55]过梅丽,高聚物与复合材料的动态力学热分析,北京:化学工业出版社,2002:1~10
    [56]焦剑,雷渭媛,高聚物结构、性能与测试,北京:化学工业出版社,2003:426~428
    [57]朱清仁,陈顺喜,邹应芳,聚合物动态力学分析的方法-扭辫分析法,安徽化工,1982,4(12):59~62
    [58]董炎明,高分子分析手册,北京:中国石化出版社,2004:467
    [59]魏莉萍,刘运传,郑会保,DMA测量高聚物粘弹性参数重复性研究,工程塑料应用,2007,35(6):54~56
    [60]高家武,周福珍,高分子材料热分析曲线集,北京:科学出版社,1990:91~93
    [61]王雁冰,黄志雄,张联盟,DMA在高分子材料研究中的应用,国外建材科技,2004,25(2):25~27
    [62]杨建,动态力学分析及在高分子研究中的应用,中国塑料,1989,3(4):80~95
    [63]蔡长庚,朱立新,贾德民,动态力学分析在复合材料界面中的应用,纤维复合材料,2004,1:46~49
    [64] Kang G Z, Ratchetting: Recent progresses in phenomenon observation, constitutive modeling and application, International Journal of Fatigue, 2008, 30: 1448~1472
    [65]杨显杰,蔡力勋,向阳开,316L不锈钢的高温单轴应变循环与棘轮行为试验研究,西南交通大学学报,1998,33(1):25~29
    [66] Dou P, Suo S F, Yang Z G, Ratcheting short crack behavior in medium carbon bainitic back-up roll steel under mild tractive rolling contact, Wear, 2010, 268(1~2): 302~308
    [67]回素彩,纳米Al2O3/PTFE复合材料的制备与力学性能的研究:[硕士学位论文],天津:天津大学,2005
    [68]郎万中,许振良,全氟磺酸离子膜的结构与应用研究进展,膜科学与技术,2005,25(6):69
    [69]郎万中,童蔚,杨虎,全氟磺酸再生树脂的微结构和热性能,华东理工大学学报(自然科学版),2006,32(4):390
    [70]金日光,华幼卿,高分子物理,北京:化学工业出版社,2006:48~50
    [71]路纯红,白鸿柏,粘弹性材料本构模型的研究,高分子材料科学与工程,2007,23(6):28~31
    [72]曾广胜,瞿金平,聚合物粘弹性及其力学模型,华南理工大学学报(自然科学版),2005,33(2):14~17
    [73] Findley J D, Lai J S, Onaran K, Creep and Relaxation of Nonlinear Viscoelastic Materials, North-Holland Pub, Co., 1976

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700