离子液体在多组分缩合反应中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室温离子液体由于具有不挥发、不可燃、液态范围宽、热稳定性和化学稳定性好、溶解性好、酸碱性可调、可循环利用等优点,近年来已被作为绿色溶剂或催化剂广泛应用于有机合成领域。多组分反应具有独特的合成效率、步骤简化,结构多样性、环境友好性、原子经济性等特点,更加接近于理想合成,是一种高效的合成方法和绿色合成途径。本论文以绿色化学为理念,采用室温离子液体作催化剂或反应介质,通过多组分反应设计合成具有重要生物活性和和药理活性的杂环化合物。本论文主要研究内容如下:
     首先,简要介绍了离子液体的定义、历史与现状、种类、性质及合成和多组分反应的基本概念、发展、特点及其在合成上的优势,并对近年来离子液体在多组分反应中的应用作简单综述。
     其次,以廉价、简便的酸性离子液体[Hnmp]HSO4为催化剂,研究了无溶剂加热条件下,芳香醛、1,3-二羰基化合物和尿素或硫脲三组分的Biginelli缩合反应及醛、β-萘酚和环1,3-二羰基化合物的缩合反应和以乙醇为溶剂,芳香醛、乙酰乙酰苯胺、5,5-二甲基-1,3-环己二酮和乙酸铵四组分的Hantzsch缩合反应。离子液体[Hnmp]HSO4应用于这些多组分反应,避免了毒性较大的含氟离子液体和成本较高的含咪唑或丙基磺酸离子液体的使用,为四氢苯并[a]氧杂蒽-11-酮衍生物合成提供了一条高效、快捷、环境友好的新途径,扩展了Hantzsch反应适用范围,对六氢喹啉化合物库是一个重要补充。
     最后,以碱性离子液体乙醇胺乙酸盐(HEAA)为催化剂、乙醇为溶剂,室温下芳香醛、4-羟基香豆素和丙二腈一锅法合成2-氨基-4-芳基-4H,5H-吡喃并[3,2-c]苯并吡喃-5-酮衍生物,该方法操作简单、反应条件温和、产率高、催化剂可以循环使用,具有很重要工业应用价值。
     以上方法采用离子液体作催化剂或反应介质催化或促进多组分反应,具有操作简便、产率高、离子液体可以循环使用、对环境友好等优点,符合绿色化学要求,具有潜在的应用前景。
In recent times, room temperature ionic liquids have been widely applied in organic synthesis because of their unique properties such as non-volatility, non-inflammability, tunable acidity and alkaline, wide liquid range, good solvating ability, high chemical and thermal stability and recyclable. Multicomponent reaction is a highly efficient and green synthesis pathway, which includes excellent synthesis efficiency, simple procedure, structural diversity, environmentally friendly, atom economy and closer to the ideal synthesis. In this paper, with the view of green chemistry, a varity of heterocyclic compounds which posses important biological and pharmaceutical activities were designed and synthesized using ionic liquids as green catalyst or reaction medium through multicomponent reaction. The main contents as follow:
     Firstly, the definition, development, types, properties and synthesis of ionic liquids and the conception, development, feature and the advantages in the synthesis of multicomponent reaction were introduced. And the applications of ionic liquids in multicomponent organic synthesis reactions were simply reviewed in recent years.
     Secondly, Biginelli reaction of aromatic aldehydes, 1,3-dicarbonyl compounds and urea or thiourea and three-component condesation reaction of aldehydes, cyclic 1,3-dicarbonyl compounds, andβ-naphthol were investigated using inexpensive and simple acidic ionic liquid [Hnmp]HSO4 as catalyst under solvent-free conventional heating condictions, and four-component Hantzsch reaction of aldehydes, 5,5-dimethyl-1,3-cyclohexanedione, acetoacetanilide and ammonium acetate were also studied in ethanol in the presence of [Hnmp]HSO4. The applications of ionic liquid [Hnmp]HSO4 in above multicomponent reactions, which avoids the toxic fluorine containing ionic liquids and expensive imidazole or propyl sulfonic acid ionic liquids, provides an efficient, fast and environmentally friendly new procedure for the preparation of tetrahydrobenzo[a]xanthen-11-one derivatives, and extends the application scopes of Hantzsch reaction and enriches hexahydroquinoline compound libraries.
     Lastly, 2-amino-4-aryl-4H,5H-pyrano[3,2-c]benzopyran-5-one derivatives were synthesized via three-component condensation reactions of aromatic aldehydes, 4-hydroxycoumarin and malononitrile in the presence of alkaline ionic liquid 2-hydroxyethylammonium acetate (HEAA) as catalyst in ethanol at room temperature. The method has several advantages such as simple operational procedure, mild reaction condition, short reaction time, high yields and the catalyst could be reused, which is much valuable in industrial applications.
     Multicomponent reactions were catalyzed by ionic liquids in the above mentioned methods, which offers several advantages such as simple operational procedure, high yields, short reaction time, recyclability of the ionic liquids and environmentally friendly. These methods meet the green chemistry and have potential applications.
引文
[1]闵恩泽,吴魏.绿色化学与工业.北京::化学工业出版社,2001:9-22.
    [2] Do|¨mling A. Recent advances in isocyanide-base multicomponent chemistry[J] Curr. Opin. Chem. Biol., 2002, 6(3): 306-313.
    [3] Seddon K. R. Ionic Liquids for Clean Technology[J].J .Chem. Biotechnol., 1997, 68(4): 351-356.
    [4] Huddleston J. G., Visser A. E., Reichert W. M., et al. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation[J]. Green. Chem., 2001, 3(4): 156-164.
    [5] (a)Sugden S., Wilkins H. CLXVII-The parachor and chemical constitution. Part XII. Fused metals and salts[J] J. Chem. Soc., 1929: 1291-1298; (b)Wasserscheid P., Keim W. Ionic Liquids-New Solutions for Transition Metal Catalysis[J]. Angew. Chem. Int. Ed., 2000, 399(21): 3772-3789.
    [6] Hurley F. H., Wier T. P. The electrodeposition of aluminium from nonaqueous solutions at room temperature[J]. J. Electrochem. Soc., 1951, 98(2): 203-208.
    [7] Koch V. R., Milleer L. L., Osteryoung R. A. Electroinitiated Friedel-Crafts transalkylations in a room-temperature molten-salt medium[J] J. Am. Chem. Soc., 1976, 98(17): 5277-5284.
    [8] Wilkes J. S., Levisky J. A., Wilson R. A. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis[J]. Inorg. Chem., 1982, 21(3): 1263-1264.
    [9] Hussey C. L. Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry[J].Pure & Appl. Chem., 1988, 60(12): 1763-1772.
    [10] Wilkes J. S., Zaworotko M. J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids[J].Chem. Commun[J]. 1992, (13): 965-967.
    [11] Cole A. C., Jensen J. L., Nitai I. Novel Br?nsted acidic ionic liquids and their use as dual solvent-catalysts[J] J. Am. Chem. Soc., 2002, 124(21): 5962-5963.
    [12] Douglas R. M., JenniferM P., Katarina M. J., et al. Lewis base ionic liquids [J]. Chem Commun, 2006, (18): 1905-1917.
    [13] Yamada T., Lukac P. J., Yu T., et al. room-temperature, chiral ionic liquids. amidinium carbamates derived from amidines and amino-acid esters with carbon dioxide[J]. Chem. Mater., 2007, 19(19): 4761-4768.
    [14] Zhao D. B., Fei Z. F., Geldbach T. J. J. Nitrile-functionalized pyridinium ionic liquids: Synthesis, characterization, and their application in carbon-Carbon coupling reactions[J]. J. Am. Chem. Soc., 2004, 126(48): 15876-15882.
    [15] Huang J., Jiang T., Gao H. X. Pd Nanoparticles immobilized on molecular sieves by ionic liquids: heterogeneous catalysts for solvent-free hydrogenation[J]. Angew. Chem. Int. Ed., 2004, 43(11): 1397-1399.
    [16] Dai L. Y., Yu S. Y., Shan Y. K. New Field of Ionic Liquid[J]. Eur. J. Inorg. Chem., 2004, (2): 237-241.
    [17] Hirao M., Sugimoto H., Ohno H. Preparation of novel room-temperature molten salts by neutralization of amines[J]. J. Electro. Chem. Soc., 2000, 147(11): 4168-4172.
    [18] Bonhote P., Dias A. P., Papageorigiou N., et al. Preparation of novel room-temperature molten salts by neutralization of amines[J]. Inorg. Chem., 1996, 35(5): 1168-1178.
    [19] (a) Dondoni A, Massi A. Desing and synthesis of new classes of heterocyclic C-Glycoconjugates and carbon-linked sugar and heterocyclic amino acids by asymmertric multicomponent reactions(AMCRs)[J]. Acc. Chem. Res., 2006, 39(7): 451-463; (b) Tietze L. F. Domino reactions in organic synthesis[J]. Chem. Rev., 1996, 96(1): 115-136; (c)Armstrong R.W., Combs A. P., TemPest, P. A., et al. Multicomponent condensations trategies for combinatorial library synthesis[J]. Acc. Chem. Res., 1996, 29(3): 123-131; (d) Ramón,D. J., Migue1Yus, M. Asymmetric multicomponent reactions(AMCRS): the new frontier[J]. Angew. Chem. Int. Ed., 2005, 44(11): 1602-1634; (e) Wangeli A. J. V, Neumann H., Gordes D, et al. Multicomponent coupling reactions for organic synthesis: chemoselective reactions with amide-aldehyde mixtures[J]. Chem. Eur. J., 2003, 9(15): 4286-4294.
    [20] Strecker A. Ueber die künstliche bildung der milchsaure und einen neuen, dem glycocoll homologen k?rper[J]. Justus Liebgis Ann.Chem., 1850, 75(1): 27-45.
    [21] (a) Zhu J. Recent developments in the isonitrile-based multicomponent synthesis of heterocycles[J]. Eur. J.Org. Chem., 2003, (7): 1133-1144; (b)Nair V., Rajesh C., Vinod A. U., et al. Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes[J]. Acc. Chem. Res., 2003, 36(12): 899-907; (c) D?mling A, Ugi I. Multicomponent reactions with isocyanides[J]. Angew. Chem. Int. Ed., 2000, 39(18): 3168-3210.
    [22] Divanfard H. R., Lysenko Z., Wang P. C., et al. Synthesis of heterocyclicα-amino acid[J] . Synth. Commun., 1978, 8(4): 269-273.
    [23] Do|¨mling A., Ugi I. The seven-component reaction[J]. Angew. Chem. Int. Ed., 1993, 32(4): 563-564.
    [24] Keating T. A., Armstrong R. W. Molecular diversity via a convertible isocyanide in the Ugi four-component condensation[J]. J.Am. Chem. Soc., 1995, 117(29): 7842-7843.
    [25] Weber L., Wallbaum S., Broger C., et al. Optimization of the biological activity of combinatorial compound libraries by a genetic algorithm[J]. Angew. Chem. Int. Ed., 1995, 34(20): 2280-2282.
    [26] Wess G., Urmann M., Sickenberger B. Medicinal chemistry: challenges and opportunities[J]. Angew.Chem. Int. Ed., 2001, 40(18): 3341-3350.
    [27] Weber, L. The application of multicomponent reactions in drug discovery[J]. Curr.Med.Chem., 2002, 9(23): 2085-2093.
    [28] (a)Xi C., Chen C., Lin J., Hong X. Pd-catalyzed one-pot multicomponent coupling reaction for the highly regioselective synthesis of polysubstituted benzenes[J]. Org. Lett., 2005, 7(2): 347-349; (b)Kerr D. J., Willis A. C., Flynn, B. L. Multicomponent coupling approach to (±)-Frondosin B and a ring-expanded analogue[J]. Org. Lett., 2004, 6(4): 457-460.
    [29] (a)Mihovilovic M. D., Stanetty E. Metal-assisted multicomponent reactions involving carbon monoxide-towards heterocycle synthesis[J]. Angew. Chem. Int. Ed., 2007, 46(20): 3612-3615; (b)Ogata A., Nemoto M., Kobayashi K., et al. Titanocene(ii)-promoted multicomponent reactions utilizing alkynyl sulfones, alkenyl sulfones, and carbonyl compounds: a novel method for the synthesis of vinylallenes[J]. Chem. Eur. J., 2007, 13(4): 1320-1325.
    [30] (a)Ramón D. J., Yus M. Asymmetric multicomponent reactions: the new frontier[J]. Angew. Chem. Int. Ed., 2005, 44(11): 1602-1634.
    [31] Pirrung M. C., Sarma K. D. Multicomponent reactions are accelerated in water[J]. J. Am. Chem. Soc., 2004, 126(2): 444-445.
    [32] (a)Bremner W. S., Organ M. G. Multicomponent reactions to form heterocycles by microwave-asisted continuous flow organic synthesis[J]. J. Comb. Chem., 2007, 9(1): 14-16; (b)Khanetskyy B., Dallinger D., Kappe C. O. CombiningBiginelli multi-component and click chemistry: generation of 6-(1,2,3-triazol-1-y1)- Dihydropyrimi-done libraries[J]. J. Comb. Chem., 2004, 6(6): 884-892.
    [33] (a)Ramachary D. B., Barbas C. F. Towards organo-click chemistry:development of organocatalytic multicomponent reactions through combinations of Aldol, Wittig, Knoevenagel, Michael, Diels-Alder and Huisgen cycloaddition reactions[J]. Chem. Eur. J., 2004, 10(21): 5323-5331.
    [34] (a)Bashiardes G., Satin I., Mohamed A. S., et al. Microwave-assisted [3+2] cycloadditions of azomethine ylides[J]. Org. Lett., 2003, 5(25): 4915-4918; (b)Cui S. L., Lin X. F., Wang Y. G. Parallel synthesis of strongly fluorescent polysubstituted 2,6-dicyanoanilines via microwave-promoted multicomponent reaction[J]. J. Org. Chem., 2005, 70(7): 2866-2869.
    [35] (a) Gholap A. R., Venkatesan K., Daniel T., et al. Ionic liquid promoted novel and efficient one pot synthesis of 3,4-dihydropyrimidin- -2-(1H)-ones at ambient temperature under ultrasound irradiation[J]. Green. Chem., 2004, 6(2): 147-150; (b)Ye, F,; Alper, H. Ionic liquid-promoted palladium-catalyzed multicomponent cyclocarbonylmion of o-iodoanilines and allenes to form methylene-2,3-dihydro-1H-quinolin-4-ones[J]. J. Org. Chem., 2007, 72(9): 3218-3222.
    [36] (a)Henkel B., Sax M., D?mling A. New method for the preparation of solid -phase bound isocyanocarboxylic acids and Ugi reactions therewith[J]. Tetrahedron. Lett., 2003, 44(37): 7015-7018; (b)Basso A., Banff L, Riva R., et al. Solid-phase synthesis of modified oligopeptides via Passerini multicomponent reaction[J]. Tetrahedron. Lett., 2003, 44(11): 2367-2370; (C)Margathe J. F, Shipman M., Smith S. C. Solid-phase , multicomponent reactions of methyleneaziridines: synthesis of 1,3-disubstituted propanones[J] Org. Lett., 2005, 7(22): 4987-4990.
    [37] Zhu J, BienayméH. eds: Multicomponent Reactions[M]. Wiley. 2005.
    [38] (a)应安国,叶伟东,吴国锋,等.离子液体在有机合成中的研究进展[J].有机化学,2008,28(12):2081-2094;(b)王要令,徐军,陈宜俍,等.酸性离子液体的探究新进展[J].山东化工,2007,36(1):9-12.
    [39] Fan X. S., Li Y. Z, Zhang X Y., et al. A novel and green version of the passerini reaction in an ionic liquid ([bmim][BF4])[J]. Can. J. Chem., 2006, 84(5): 794-799; (b) Zhang X Y, Li Y. Z, Fan X. S., et al.. Ionic Liquid [bmim][BF4] as a Green Medium for Passerini Reaction[J]. Chinese Chemical Letters, 2006, 17(5): 578-580.
    [40] Mojtahedi M. M., Abaee M. S., Abbasi H. Environmentally friendly room temperature Strecker reaction: one-pot synthesis ofα-aminonitriles in ionic liquid[J]. Journal of the Iranian Chemical Society, 2006, 3(1): 93-97.
    [41] Ji S. J., Jiang Z. Q., Lu J., et al. Facile ionic liquids-promoted one-pot synthesis of polyhydroquinoline derivatives under solvent free conditions[J]. synlett, 2004, (5): 831-835.
    [42] Shi D. Q., Ni S. N., Fang Y., et al. An efficient synthesis of polyhydroacridine derivatives by the three-component reaction of aldehydes, amines and dimedone in ionic liquid[J]. J. Heterocyclic Chem., 2008, 45(5), 653-660.
    [43] Shaabani A., Rezayan A H., Rahmati A., et al. Ultrasound-accelerated synthesis of 1,4-dihydropyridines in an ionic liquid[J]. Monatshefte für Chemie, 2006, 137(1): 77-81.
    [44] Zhao G. Y., Jiang T, Gao H. X, et al .Mannich reaction using acidic ionic liquids as catalysts and solvents[J]. Green Chem., 2004, 6(2): 75-77.
    [45] Li J Z., Peng Y. Q., Song G. H. Mannich reaction catalyzed by carboxyl-functionalized ionic liquid in aqueous media[J]. Catalysis Letters, 2005, 102(3–4): 159-162.
    [46]刘宝友,许丹倩,罗书平,等.Br(?)nsted酸离子液体催化的醛、酮、胺三组分Mannich反应[J].化工学报,2004,55(12):2043-2046.
    [47] Sahoo S Joseph T, Halligudi S. B. Mannich reaction in Br?nsted acidic ionic liquid: A facile synthesis ofβ-amino carbonyl compounds[J]. J.Mol. Catal. A: Chem., 2006, 244(1-2): 179-182.
    [48] Fang D., Luo J., Zhou, X. L., Liu Z. L. Mannich reaction in water using acidicionic liquid as recoverable and reusable catalyst[J]. Catalysis Letters, 2007, 116(1–2): 76-80.
    [49] Fang D., Fei Z. H., Liu Z. L. Functionalized ionic liquid as the recyclable catalyst for Mannich-type reaction in aqueous media[J]. Catalysis Communications, 2009, 10(8): 1267-1270.
    [50] Gong K., Fang D., Wang H. L., et al. Basic functionalizedionicliquid catalyzed one-pot Mannich-type reaction: three component synthesis ofα-amino carbonyl compounds[J]. Monatshefte für Chemie, 2007, 138(11): 1195-1198.
    [51]彭家建,邓友全.室温离子液体催化“一锅法”合成3,4-二氢嘧啶-2-酮[J].有机化学.2007,22(1):71-73.
    [52] Gholap A. R., Venkatesan K., Daniel T., et al. Ionic liquid promoted novel and efficient one pot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones at ambient temperature under ultrasound irradiation[J]. Green Chem., 2004, 6(3): 147-150.
    [53] Shaabani A, Rohmati A. Ionic liquids-promoted efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones[J].catal.lett., 2005, 100(3-4): 177-179.
    [54]李明,郭维斯,文丽荣,等.新型无毒离子液体催化“一锅煮”合成3 ,4-二氢嘧啶-2(1H)-酮[J].有机化学,2005,25 (9):1062-1065.
    [55] Zheng R. W., Wang X. X., Xu H., et al. Br?nsted acidic ionic liquid: an efficient and reusable catslyst for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones[J]. Synthetic Communications, 2006, 36(11): 1503-1513.
    [56] Fang D., Luo J., Zhou X. L, et al. One-pot green procedure for Biginelli reaction catalyzed by novel task-specific room-temperature ionic liquids[J]. Journal of molecular catalysis A: Chemical, 2007, 274(1-2): 208-211.
    [57] Ma J. J., Zang X. H., Zhou X., et al. One-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones catalyzed by acidic ionic liquid[J]. Indian Journal of Chemistry, 2007, 46B(12): 2045-2048.
    [58] Shaabani A., Rahmati A., Naderi S. A novel one-pot three-component reaction: Synthesis of triheterocyclic 4H-pyrimido[2,1-b]benzazoles ring systems[J]. Bioorganic & Medicinal Chemistry Letters, 2005, 15: 5553-5557.
    [59] Shaabani, A., Rahmati, A., Aghaaliakbari, B., et al.1,1,3,3-N,N,N’,N’-Tetramethylguanidinium trifluoroacetate ionic liquid-promoted efficient one-pot synthesis of trisubstituted imidazoles[J]. Synthetic Communications, 2006, 36(1): 65-70.
    [60] Siddiqui S. A., Narkhede U. C., Palimkar S. S., et al. Room temperature ionic liquid promoted improved and rapid synthesis of 2,4,5-triaryl imidazoles from aryl aldehydes and 1,2-diketones or a-hydroxyketone[J]. Tetrahedron, 2005, 61(14): 3539-3546.
    [61] Khosropour A. R. Synthesis of 2,4,5-trisubstituted imidazoles catalyzed by [Hmim]HSO4 as a powerful Br?nsted acidic ionic liquid[J]. Can. J. Chem., 2008, 86(3): 264-269.
    [62] Gong K., Wang H. L., Fang D., et al. Basic ionic liquid as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes in aqueous media[J]. Catalysis Communications, 2008, 9(5): 650-653.
    [63] (a)Chen L., Li Y. Q., Huang X. J., et al. N,N-Dimethylamino-functionalized basic ionic liquid catalyzed one-pot multicomponent ceaction for the synthesis of 4H-Benzo[b]pyran derivatives under solvent-free condition[J]. Heteroatom Chemistry, 2009, 20(2): 91-94; (b) Chen L., Li Y. Q., Huang X. J., et al. A one-pot multicomponent reaction for the synthesis of 2-amino-2-chromenes promoted by N,N-dimethylamino-functionalized basic ionic liquid catalysis under solvent-free condition[J]. Monatsh Chem, 2009, 140(1): 45-47.
    [64] Abolghasem D., Majid M. H., Leila R. D., et al. Br?nsted-acidic ionic liquid [HO3S(CH2)4MIM][HSO4] as efficient and reusable catalyst for one-pot synthesis ofβ-acetamido ketones[J]. Monatsh Chem, 2009, 140(12): 1499-1502.
    [65] Deshmukh K. M., Qureshi Z. S., Nandurkar N. S., et al. One-pot synthesis ofβ-amido ketones using Br?nsted acidic ionic liquid as an efficient and reusable catalyst[J] Can. J. Chem., 2009, 87(2): 401-405.
    [66] Shaabani A., Soleimani E., Maleki .A. Ionic liquid promoted one-pot synthesis of 3-aminoimidazo[1,2-a]pyridines[J]. Tetrahedron Letters, 2006, 47: 3031-3034.
    [67] Shaabani A., Soleimani E., Darvishi M.. Ionic liquid promoted one-pot synthesis of furo[2,3-d]pyrimidine-2,4(1H,3H)-diones[J]. Monatshefte für Chemie, 2007,138(1), 43-46 .
    [68] Shaabani A., Maleki A. Ionic liquid promoted one-pot three-component reaction: Synthesis of annulated imidazo[1,2-a]azines using trimethylsilylcyanide[J]. Monatshefte für Chemie, 2007, 138(1): 51-56.
    [69] Shi D. Q., Ni S. N., Yang F., et al. Indeno[2',1':5,6]pyrido[2,3-d]pyrimidine derivatives via multicomponent reactions in ionic liquid[J]. J. Heterocyclic Chem., 2008, 45(3): 693-702.
    [70] Shi D. Q., Ni S. N., Yang F., et al. An efficient and green synthesis of 3,3'-benzylidenebis (4-hydroxy-6-methylpyridin-2(1H)-one) derivatives through multicomponent reaction in ionic liquid[J]. J. Heterocyclic Chem., 2008, 45(5): 1275-1280.
    [71] Hajipour A. R., Ghayeb Y., Sheikhan N., et al. Br?nsted acidic ionic liquid as an efficient and reusable catalyst for one-pot synthesis of 1-amidoalkyl-2-naphthols under solvent-free conditions[J]. Tetrahedron Letters, 2009, 50(40): 5649-5651.
    [72] Zhang X. Y., Li X. Y., Fan X. S., et al. Ionic liquid promoted preparation of 4H-thiopyran and pyrimidine nucleoside-thiopyran hybrids through one-pot multi-component reaction of thioamide[J]. Mol Divers, 2009, 13(1):57-61.
    [73] Li Y. L., Xu, X. P., Shi, D. Q., et al. one-pot synthesis of 14-aryl-1,6,7,14-tetrahydrodibenzo-[a,i]acridine-1,6-dione in ionic liquid[J]. Chinese Journal of Chemistry, 2009, 27(8): 1510-1514.
    [1] (a)Rovnyak G. C., Kimball S. D., Beyer B., et al. Calcium entry blockers and activators: Conformational and structuraldeter. minants of dihydropyrimidine calcium channelmodulators[J]. Journal of Medicinal Chemistry, 1995, 38(1): 119-129; (b)路军,杨秉勤,白银娟,等.3,4-二氢嘧啶-2-酮衍生物合成研究进展[J].有机化学,2001,21(9):640-647;(c) Kappe C. O., Fabian W. M. F., Semones, M. A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies[J].Tetrahedron, 1997, 53(8): 2803-2816; (d) Atwal, K. S.; Rovnyak G. C.; Kimball, S. D.; ,et al . Dihydropyrimidine calcium channelblockers: 3-substituted-4-aryl-dihydro-6-methyl-5-pyrimidine carboxylic acid esters as potent mimics of dihydropyridines [J]. Medicinal Chemistry, 1990, 33(9): 2629-2635.
    [2] (a)Kappe C O. 100 years of the Biginelli dihydropyrimidine synthesis[J ]. Tetrahedron, 1993, 49 (32): 6937-6963; (b) Kappe C. O., Kumar D., Varma R. S. Microwave-assisted high-speed parallel synthesis of 4-aryl-3,4-dihydropyrimidin-2(1H)-ones using a solventless Biginelli condensation protocol[J]. Synthesis, 1999, (10): 1799-1803.
    [3] Overman L. E., Rabinowitz M. H., Renhowe P. A. Enantioselective Total Synthesis of (-)-Ptilomycalin A[J]. J Am Chem Soc, 1995, 117(9): 2657-2658.
    [4] Snider B. B., Chen J., Patil A. D., et al. Synthesis of the tricyclic portions of batzelladines A,B and D.Revision of the stereochemistry of batzelladines A and D[J]. Tetrahedron Lett., 1996, 37(39): 6977-6980.
    [5] Biginelli P. G. Synthesis of 5-4-aryl-3,4-dihydropyrimidin-2(1H)-ones[J]. Chim. Ital., 1893, (23): 360-416.
    [6] Hu E. H., Sidler D. R., Dolling U. H. Unprecedented catalytic three component one-pot condensation reaction : an efficient synthesis of 5-alkoxycarbonyl-4-aryl-3 ,4-dihydropyrimidin-2 (1H)-ones[J]. J Org Chem., 1998, 63(10): 3454-3457.
    [7] Sharghi H., Jokar M. Al2O3/MeSO3H: A novel and recyclable catalyst for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur derivatives in Biginelli condensation [J]. Synth. Commun., 2009, 39(6), 958-978.
    [8] Ranu B. C., Hajra A , Jana U. Indium( III) chloride-catalyzed one-pot synthesis of dihydropyrimidinones by a three-component coupling of 1 ,3-dicarbonyl compounds ,aldehydes ,and urea :an improved procedure for the Biginelli reaction[J]. J. Org. Chem., 2000, 65(19): 6270-6269.
    [9] (a) Liu J, Bai Y. Catalysis of the Biginelli reaction by ferric and nickel chloride hexahydrates. One-pot synthesis of 3 ,4-dihydropyromidin-2-(1H)-ones[J]. Synthesis, 2002, (4): 466-470; (b)路军,马怀让.三氯化铁催化的一锅法合成3,4-二氢嘧啶-2-酮[J].有机化学,2000,20(5):815-819.
    [10] Ramalingan C., Kwak Y. W. Tetrachlorosilane catalyzed multicomponent one-step fusion of biopertinent pyrimidine heterocycles[J]. Tetrahedron, 2008, 64(2): 5023-5031.
    [11] Sabitha G., Reddy G. S., Reddy K. B, et al. Vanadium (Ⅲ) chloride catalyzed Biginelli condensation: solution phase library generation of dihydropyrimidin-2-(1H)-ones[J]. Tetrahedron Letters, 2003, 44(34): 6497-6499.
    [12] Shalaja M., Manjula A., Vittal Rao B., et al. Simple protocol for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones Using SnCl2·2H2O–LiCl as an Inexpensive Catalyst System[J]. Synth. Commun., 2004, 34(9): 1559-1564.
    [13]陈维一,陆军,高氯酸镁催化合成1 ,2 ,3 ,4-四氢嘧啶-2-酮[J].有机化学,2004,24(9):1111-1113.
    [14] Liu C. J. Wang J. D. Copper(II) sulfamate: An efficient catalyst for the one-pot synthesis of 3,4-dihydropyrimidine-2(1H)-ones and thiones[J]. Molecules. 2009, 14(2), 763-770.
    [15] Salehi H., Guo Q. X. Efficient magnesium bromide-catalyzed one-pot synthesis of substituted 1,2,3,4-tetrahydropyrimidin-2-ones under solvent-free Conditions[J]. Chin. J. Chem., 2005, 23(1): 91-97.
    [16] Varala R., Alam, M. M., Adapa S. R. Bismuth triflate catalyzed one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-ones: an improved protocol for Biginelli reaction[J]. Synlett, 2003, (1): 67-70.
    [17] Amini M. M., Shaabani M., Bazgir A. Tangstophosphoric acid (H3PW12O40): An efficient and eco-friendly catalyst for the one-pot synthesis of dihydropyrimidin-2(1H)-ones[J]. Cata. Commun., 2006, 7(11): 843-847.
    [18] Chitra S., Pandiarajan K. Calcium fluoride: an efficient and reusable catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones and their corresponding -2(1H)-thione:an improved high yielding protocol for the Biginelli reaction[J]. Tetrahedron. Lett., 2009, 50(19): 2222-2224.
    [19] Zhang, M.; Li, Y. Q. Facile one-pot synthesis of 3,4-dihydropyrimidin-2(1H)-one catalyzed by Zn(NH2SO3)2[J]. Synth. Commun., 2006, 36(7): 835-841.
    [20]丁欣宇,施磊,景晓辉.氨基磺酸催化合成4-苯基-6-甲基-5-乙氧羰基-3 ,4-二氢嘧啶-2(1H)-酮[J].精细石油化工进展,2005,6(10):26-28.
    [21] Gupta R., Gupta A. K., Kaul S., et al. Improved synthesis of some ethyl 4-aryl-6-methyl-1,2,3,4-tetrahydropyrimidin-2-one/thino-5-carboxylates by microwave irradiation[J]. Ind. J Chem.,1995, 34B(4): 151-154; (b) Choudhary V. R., Tillu V. H., Narkhede V. S., et al. Microwave assisted solvent-free synthesis of dihydropyrimidinones by Biginelli reaction over Si-MCM-41 supported FeCl3 catalyst [J]. Catalysis Communications, 2003, 4(9): 449-453.
    [22] Li J. T., Han J. F., Yang J. H., et al. An efficient synthesis of 3,4-dihydropyrimidin-2-ones catalyzed by NH2SO3H under ultrasound irradiation[J]. Ultrasonics Sonochemistry, 2003, 10(3): 119-122.
    [23] Perez R., Beryozkina T., Zbruyevo I., et al. Traceless solid- phase synthesis of bicyclic dihydropyrimidones using multidirectional cyclization cleavage[J]. Journal of Combinatorial Chemistry, 2002, 4 (5): 501-510.
    [24] (a) Tom Welton. Ionic liquids in catalysis[J]. Coordination Chemistry Reviews, 2004, 248(21-24): 2459-2477; (b)高建荣,叶芳芳,等.氯铝酸离子液体催化合成香豆素结构荧光染料[J].精细化工,2007,24(9):867-869.
    [25] Swatloski R. P., Holbrey J. D., Rogers R. D. Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate[J]. Green Chem, 2003, 5(4): 361-363.
    [26]黄宝华,汪艳飞,等.吡咯烷酮酸性离子液体的合成及其对酯化反应的催化活性[J].催化学报,2007,28(8):743-748.
    [27] Putilova E. S., Kryshtal G. V., Zhdankina G. M., et al. Alkylammonium and alkylimidazolium perhaloborates, phosphates, and aluminates as catalysts in the Biginelli reaction[J]. Russian Journal of Organic Chemistry, 2005, 41(4): 512-516.
    [28] Kappe C. O. A Reexamination of the Mechanism of the Biginelli Dihydropyrimidine Synthesis. Support for an N-Acyliminium Ion Intermediate[J]. J. Org. Chem., 1997, 62: 7201-7204.
    [1] Poupelin J. P., Saint-Ruf G., Foussard-Blanpin, O., et al. Synthesis and antiinflammatory properties of bis (2-hydroxy-1-naphthyl) methane derivatives[J]. Eur. J. Med. Chem., 1978, 13: 67-71.
    [2] Jamison J. M., Krabill K., Hatwalkar A. Potentiation of the antiviral activity of poly r(A-U) by xanthene dyes[J]. Cell. Biology. International. Reports, 1990, 14(12): 1075–1084.
    [3] El-Brashy A. M., Metwally M. E., El-Sepai F. A. Spectrophotometric determination of some fluoroquinolone antibacterials by binary complex formation with xanthene dyes[J]. Farmaco, 2004, 59(10): 809–817.
    [4] Ion R. M., Frackowiak D, Planner A., et al. Wiktorowicz K. The incorporation of various porphyrins into blood cells measured via flow cytometry, absorption and emission spectroscopy[J]. Acta Biochim. Pol., 1998, 45(3), 833-845.
    [5] [5] Saint-Ruf G., Hieu H. T., Poupelin J. P. The effect of dibenzoxanthenes on the paralyzing action of zoxazolamine[J]. Naturwissenschaften, 1975, 62(12): 584-585.
    [6] (a) Banerjee A., Mukherjee A. K. Chemical aspects of santalin as a histological stain[J]. Stain Technol. 1981, 56(2): 83-85; (b) Bhowmik B. B., Ganguly P. Photophysics of xanthene dyes in surfactant solution[J]. Spectrochimica. Acta. Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(9): 1997-2003.
    [7] Ahmad M., King T. A., Ko D. K., et al. Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases[J]. J. Phys. D: Appl. Phys., 2002, 35(13): 1473-1476.
    [8] Knight C. G., Stephens T. Xanthene-dye-labelled phosphatidylethanolamines as probes of interfacial pH. Studies in phospholipid vesicles[J]. Biochem. J., 1989, 258(3): 683-689.
    [9] Dong, S., Sun, Z., Lu, Z. J. A new kind of chemical sensor based on a conducting polymer film[J]. Chem. Soc. Chem. Commun., 1988, (15): 993-995.
    [10] Suarez M., Verdecia Y., Ochoa E., et al. Synthesis and structural study of3,4-dihydro-2(1H)-pyridones and isoxazolo[5,4-b]pyridine-6(7H)-ones[J]. Eur. J. Org. Chem., 2000, (11): 2079-2088.
    [11] Li J. J., Tang W. Y., Lu L. M., Su W.K. Strontium triflate catalyzed one-pot condensation ofβ-naphthol, aldehydes and cyclic 1,3-dicarbonyl compounds[J]. Tetrahedron Letters, 2008, 49(50): 7117-7120.
    [12] Das B., Laxminarayana K., Krishnaiah M., et al. An efficient and convenient protocol for the synthesis of novel 12-aryl- or 12-alkyl-8,9,10,12- tetrahydrobenzo[a]xanthen -11-one Derivatives[J]. Synlett. 2007, (20): 3107-311.
    [13] Wang R. Z., Zhang L. F., Cui Z. S. Iodine-catalyzed synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthen-11-one derivatives via multicomponent reaction[J]. Synth. Commun., 2009, 39(12): 2101-2107.
    [14] Gao S. J., Tsai C. H., Yao C. F. A simple and green approach for the synthesis of tetrahydrobenzo[a]xanthen-11-one derivatives using tetrabutyl ammonium fluoride in water[J]. Synlett, 2009, (6): 949-954.
    [15] Nandi G.C., Samai S., Kumar R., et al. An efficient one-pot synthesis of tetrahydrobenzo[a]xanthene-11-one and diazabenzo[a]anthracene-9,11-dione derivatives under solvent free condition[J]. Tetrahedron, 2009, 65(34):7129-7134.
    [1] (a)Janis R. A., Silver P. J., Triggle D. J. Drug action and cellular calciumregulation[J]. Adv. Drug Res., 1987, 16: 309-591; (b) Bossert F. Meyer H., Wehinger E. 4-Aryldihydropyridines, a new class of highly active calcium antagonists[J]. Angew. Chem. Int. Ed. Engl. 1981, 20(9): 762-769.
    [2] (a) Nakayama H., kasoaka Y. Chemical identification of binding sites for calcium channelantagonists[J]. Heterocycles. 1996, 42: 901-909; (b) Godfraid T., Miller R., Wibo M. Calcium antagonism and calcium entry blockade[J]. Pharmacol . Rev., 1986, 38(4): 321-416.
    [3] (a)Sausins A., Duburs G. Synthesis of 1,4-dihydropyridines by cyclocondensation reactions[J]. Heterocycles, 1988, 27(1): 269-289; (b)Mager P. P., Coburn R. A., Solo A. J., et al. QSAR, diagnostic statistics and molecular modelling of 1,4-dihydropyridine calcium antagonists: a difficult road ahead[J]. Drug Des. Discovery., 1992, 8(4): 273-289.
    [4] Kappe C. O., Fabian W. M. F., Semones M. A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies[J]. Tetrahedron, 1997, 53(8): 2803-2816.
    [5] Mannhold R., Jablonka B., Voigt W., et al. Calcium-and calmodulin-antagonism of elnadipine derivatives: comparative structure activity relationship[J]. European Journal of Medicinal Chemistry, 1992, 27(3): 229-235.
    [6] Ramin M., Katayoun J., Hasti S.,et al. Synthesis, study of 3D structures, and pharmacological activities of lipophilic nitroimidazolyl-1,4-dihydropyridines as calcium channel antagonist[J]. Bioorg. Med. Chem., 2006, 14(14): 4842-4849.
    [7] Simsek R., Safak C., Erol K., et al. Synthesis of hexahydroquinoline derivatives possessing calcium antagonistic activity[J]. Pharmazie, 2001, 56(8): 665-666.
    [8] Klsmetli E., Safak C., Erol K., et al. Studies on 3-diethylaminocarbonyl-1, 4, 5, 6, 7, 8-hexahydroquinoline derivatives and their calcium channel antagonistic activities in vitro[J]. Arzneim Forsch, 2004, 54(7): 371-375.
    [9] Hantzsch A. Ueber die synthese pyridinartiger verbindungen aus acetessig?ther und aldehydammoniak[J]. Justus Liebigs Ann. Chem., 1882, 215(1): 1-83.
    [10] Sainani J. B., Shah A. C., Arya V. P. Synthesis of4-aryl-1,4,5,6,7,8-Hexahydro-5-oxo-2,7,7-trimethyl-quinoline-3-carboxylates and amides[J]. Indian. J. Chem., 1994, 33B(6): 526-531.
    [11] Kuma S., Sharma P., Kapoor K. K., et al. An efficient, catalyst- and solvent-free, four-component, and one-pot synthesis of polyhydroquinolines on grinding[J]. Tetrahedron, 2008, 64(3): 536-542.
    [12] (a) Khadikar B. M., Gaikar V. G., Chitnavis A. A. Aqueous hydrotrope solution as a safer medium for microwave enhanced hantzsch dihydropyridine ester synthesis[J] Tetrahedron Lett., 1995, 36(44): 8083-8086; (b)屠树江,周建峰,邓旭,蔡佩君,王海,冯骏材.微波辐射一步合成对-芳基多氢喹啉衍生物[J].有机化学.2001,21:313-316.
    [13] Sabitha G., Reddy G. S. K. K., Reddy C. S., et al. A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature[J]. Tetrahedron Lett., 2003, 44(21): 4129-4131.
    [14] Maheswara M., Siddaiah V., Damu G. L. V. Rao C. V. An efficient one-pot synthesis of polyhydroquinoline derivatives via hantzsch condensation using a heterogeneous catalyst under solvent-free conditions[J]. Arkivoc, 2006, 2: 201-206.
    [15] Akbar M., Naser F., Mohammad Ali B. F., et al. Efficient one-pot synthesis of polyhydroquinoline derivatives using silica sulfuric acid as a hererogeneous and reusable catalyst under conventional heating and energy-saving microwave irradiation[J]. Synth. Commun. 2009, 39(7): 1166-1174.
    [16] Das B., Ravikanth B., Ramu R., Rao B. V. An efficient one-pot synthesis of polyhydroquinolines at room temperature using HY-zeolite[J]. Chem. Pharm. Bull., 2006, 54(7): 1044-1045.
    [17] Donelson J. L., Gibbs R. A., De S. K. An efficient one-pot synthesis of polyhydroquinoline derivatives through the Hantzsch four component condensation[J]. Journal of Molecular Catalysis A: Chemical, 2006, 256(1-2): 309-311.
    [18] Cherkupally S. R., Mekala R. P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multi-componentcondensation[J]. Chemical & Pharmaceutical Bulletin, 2008, 56(7): 1002-1004.
    [19] Ko S., Sastry M. N. V., Lin, C., et al. Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction[J]. Tetrahedron. Lett., 2005, 46(34): 5771-5774.
    [20] Nagarapu L., Apuri S., Gaddam S., et al. A facile synthesis of polyhydroquinoline derivatives via the Hantzsch reaction under solvent free-conditions using potassium dodecatungstocobaltate trihydrate (K5CoW12O40·3H2O)[J]. Letters in Organic Chemistry, 2008, 5(1): 60-64.
    [21] Reddy C. S., Raghu M. Cerium(IV) ammonium nitrate-catalysed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multicomponent condensation[J]. Chinese Chemical Letters, 2008, 19(7): 775-779; (b) Ko S., Yao C. F. Ceric ammonium nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction[J]. Tetrahedron, 2006, 62(31): 7293-7299.
    [22] Ji S. J., Jiang Z. Q., Lu J., et al. Facile ionic liquids-promoted one-pot synthesis of polyhydroquinoline derivatives under solvent-free conditions[J]. Synlett, 2004, (5): 831-835.
    [1] Hatakeyama S., Ochi N., Numata H., Takano S. A new route to substituted 3-methoxycarbonyldihydropyrans; enantioselective synthesis of (–)-methyl elenolate[J]. J. Chem. Soc., Chem. Commun., 1988, (17): 1202-1204; (b)Gonzalez R., Martin N, Seoane C.,et al. The first asymmetric synthesis of polyfunctionalized 4H-pyrans via Michael addition to 2-Acyl acrylates[J]. Tetrahedron. Lett., 1992, 33(26): 3809-3812.
    [2] Shestopalov A. M., Niazimbetova Z. I, Evans, D. H., et al. Synthesis of 2-amino-4-aryl-3-cycno-6-methyl-5-ethoxycarbonyl-4H-pyrans[J]. Heterocycles, 1999, 51(5): 1101-1107.
    [3] Bloxham J., Dell C. P., Smith C. W., Preparation of some new benzyldenemalononitriles by an snar reaction application to naphtho[1,2-b]pyran synthesis[J]. Heterocycles, 1994, 38(2): 399-408; (b)Nawwar G. A. M., Abdelrazek F. M., Swcllam R. H. Cinnamoylnitrile-derivatives, pyran-derivatives, and pyranopyrazole-derivatives containing the salicylanilide moiety with anticipated molluscicidal activity[J]. Arch. Pharm., 1991, 324(11): 875-877; (c) Zamocka J., Misikova E., Durinda J. Preparation, structure elucidation and activity of some (5-hydroxy-4-oxo-4H-pyran-2-yl)methyl-2-alkaxycarbanilatesand (5-methoxy-4-oxo-4H-pyran-2-yl)methyl-2-alkoxycarbanilates[J]. Pharmazie, 1991, 46(8): 610.
    [4] Witte E. C., Neubert P., Roesoh A. 7-(Piperazinylpropoxy)-2H-l-benzopyran-2-ones[J], DE 3427985, 1986 [Chem. Abstr. 1986, 104, 224915f].
    [5] Wang J. L., Liu D., Zhang Z. J., et al. Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells[J] Proc. Natl. Acad. Sci. U. S. A., 2000, 97(13): 7124-7129.
    [6] Armesto D., Albert A., Cano F H., et al. A study on the scope of the photochemical ring contraction of substituted 2-amino-3-cyano-4H-pyrans to cyclobutenes: crystal structure of 3-carbamoyl-3-cyano-1-ethoxycarbonyl-4-isopropyl-2-phenylcyclobutene[J]. J. Chem. Soc. Perkin Trans. 1,1997, (22): 3401-3406; (b) Armesto D., Horspool W. M., Martin N., et al. Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyrans[J]. J. Org. Chem., 1989, 54(13): 3069-3072.
    [7] Mitra A. K., De A., Karchaudhuri N., et al. Synthesis of coumarins in search of better nonpeptidic HIV protease inhibitors[J]. J . Indian Chem. Soc., 1998, 75(10-12): 666-671.
    [8] (a) Pakmanabhan S., Peri R., Rutledye A, et al. Synthesis and binding properties of 2H-1-benzopyran-2-one fluorophore-linked calcium channel antagonist nifedipine (1,4-dihydropyridine) analogs[J]. J . Heterocycl . Chem., 1997, 34(1): 301-304; (b) Trkovnik M., Ivezic Z. Syntheses of some new coumarin-quinolone carboxylic acids[J]. J. Heterocycl. Chem., 2000, 37(1): 137-141.
    [9] Shaker R. M. Synthesis and reactions of some new 4H-pyrano[3,2-c] benzpyran-5-one derivatives and their potential biological activities[J]. Pharmazie., 1996, 51(3), 148; (b) El-Agrody A. M., El-Lalif A. M. S., Fakery A. H., et al. Heteroaromatization with 4-hydroxycoumarin: Synthesis of some new pyranocoumarins and coumarinopyranopyrimidines[J]. J. Chem. Res., Synop., 2000, (1): 26–27.
    [10] Kidwai M., Saxena S. Convenient preparation of pyrano benzopyranes in aqueous media[J]. Synth. Commun., 2006, 36(18): 2737-2742.(b)蒋虹,屠树江,房芳,等.微波辐射下“一锅法”合成2-氨基-3-氰基-4-芳基-4H,5H-吡喃-[3,2-c]苯并吡喃-5-酮[J].有机化学,2004,24(11):1458-1460 .
    [11] Shaabani A., Samadi S., Baderi Z. Rahmati A. Ionic liquid promoted efficient and rapid one-pot synthesis of pyran annulated heterocyclic systems[J]. Catal Lett., 2005, 104(1-2): 39-43.
    [12]王香善,曾兆森,史达清,等.KF/Al2O3催化下2-氨基-4-芳基-4H-吡喃并[3,2-c]香豆素衍生物的一步合成[J].有机化学.2005,25(9):1138-1141.
    [13]史达清,王静,庄启亚,等.水介质中1,6-二氧-5-氧代-1,4,5,6-四氢化菲衍生物的三组分一锅合成[J].有机化学,2006,26(5):643-647.
    [14] Seifi M., Sheibani H. High surface Area MgO as a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3,4-dihydropyrano[c]chromene derivatives in aqueous media[J]. Catal Lett. 2008, 126(3-4): 275-279.
    [15] Heravi M. M., Jani B. A., Oskooie H. A. Three component, one-pot synthesis of dihydropyrano[3,2-c]chromene derivatives in the presence of H6P2W18O62·18H2O as a green and recyclable catalyst[J]. Catalysis Communications., 2008, 10(3): 272-275.
    [16] Abdolmohammadi S., Balalaie S. Novel and efficient catalysts for the one-pot synthesis of 3,4-dihydropyrano[c]chromene derivatives in aqueous media[J]. Tetrahedron Lett., 2007, 48(18): 3299-3303..
    [17] Yuan X. L. Zhang S. J. Lu X.M. Hydroxyl ammonium ionic liquids: Synthesis, properties, and solubility of SO2[J]. J. Chem. Eng. Data., 2007, 52(2): 596-599.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700