高能束原位合成碳化铬表面复合层及其耐磨性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摩擦磨损是材料损坏的主要形式之一,研究材料摩擦磨损机理,开发抗磨损材料或者通过在材料表面熔敷耐磨层,提高材料抗磨损性能,延长材料使用寿命,节约资源、降低能耗和环境污染,具有重要的工程应用价值和社会经济效应
     本文采用真空电子束分束旋转扫描和CO2激光扫描两种方法,以Fe/Cr/C(Cr3C2/Fe)合金粉末为熔覆材料,在903钢表面原位合成碳化物表面复合层。通过对熔敷试样的表面复合层进行金相分析,扫描电镜分析和X射线衍射分析,以及显微硬度测试和室温干滑动磨损试验,对不同试样表面复合层的组织、硬度和耐磨损性能进行评价,并对表面复合层在室温干滑动条件下的磨损机理进行探讨;通过对电子束原位合成的表面复合层进行热处理,研究分析其组织和抗磨损性能的变化。
     通过对熔化基材的稀释率和扫描过程中元素损耗率计算可以得出表面复合层中铬、碳元素的含量范围,基于Fe-Cr-C三元相图分析,可以设计和控制预测表面熔敷复合层的基本组织结构。
     论文设计了四种配比的Fe/Cr/C合金粉末,考察不同成分的合金粉末对表面复合层组织和性能的影响。论文发现按照表面复合层中铬碳元素含量的高低,四种不同配比的Fe/Cr/C合金粉末制备的试样出现四种不同的组织特征。按含碳量从高到低次序分别是过共晶组织、共晶组织、亚共晶组织和马氏体组织。过共晶组织以粗大的初生碳化物为主要特征,韧性相为奥氏体和碳化物的共晶组织,显微硬度达到了基体材料的3.4倍;共晶组织的碳化物为细长粒状或杆状、呈菊蔟状分布,表面复合层的显微硬度达到了母材3倍;亚共晶组织由先析出奥氏体枝状晶和奥氏体与碳化物的共晶组织组成,碳化物的颗粒非常细小,少部分共晶碳化物相互连接形成网络状组织;当碳含量较低时,表面复合层碳化物含量很少,主要为马氏体组织。表面复合层的硬度主要与其所含的碳化物的量有关,碳化物含量越高,其硬度也越大;马氏体组织由于含有过饱和的碳原子,导致严重的晶格畸变,其硬度相比基材也有很大提高,大约为基材的2倍。此外,真空电子束扫描制备的表面复合层存在着浓度梯度和组织梯度,各种粉末配比制备的表面复合层呈现不同程度的梯度特征,这是由于电子束对熔池的搅拌作用的特点和903钢对合金稀释作用造成的。这种表面复合层纵向存在的成分和组织梯度对复合层与903钢基体结合和提高复合层表面耐磨性是有利的。
     采用激光扫描制备表面复合层时,由于加热速度快,时间短,熔炼时熔池中元素难以充分、均匀扩散,生成的表面复合层组织存在不均匀性,铬、碳含量较大的区域形成了奥氏体枝状晶和M7C3/γ-Fe共晶组织,共晶碳化物颗粒极为细小;铬、碳含量较少的区域,主要生成马氏体组织。激光扫描合成表面复合层时,扫描轨迹重叠的部分存在重熔区和二次加热区,二次加热区的组织主要为奥氏体组织,其硬度有所下降。
     电子束原位合成表面复合层的耐磨损性能跟其组织形貌密切相关。过共晶组织的表面复合层组织抗磨损性能最好,共晶组织和亚共晶组织表面复合层抗磨损性能次之,在转速为250r/min时,过共晶组织、共晶组织和亚共晶组织的表面复合层相对耐磨性分别达到903钢11.7、8.5和5.1倍。在低应力磨损状态下,过共晶和共晶组织表面复合层中大量的碳化物能够有效地阻止磨料表面微凸体刺入形成微观切削机制,而奥氏体相能有效地组织裂纹的生成和扩展,对碳化物相起到很好的支撑作用。亚共晶组织表面复合层中细小的共晶碳化物组织尺寸远大于表面微凸体能造成的犁沟尺寸,能够有效地抵御磨粒的刺入和划痕,同时又不容易剥落,其耐磨性也较好。根据存在硬质相材料的磨粒磨损模型,作者提出的含碳化物表面复合层在磨粒磨损机理下磨损体积的估算公式,理论计算与实验结果相吻合。马氏体组织表面复合层与GCr15钢球发生了严重的粘着磨损,而且马氏体基体中微量存在的碳化物,增加了裂纹敏感性,裂纹容易扩展,通过切削作用导致表面材料除去,限制了其耐磨性能,其相对耐磨性约为903钢的2.1倍。激光制备表面复合层的组织存在不均匀性,其磨损机理也比较复杂,磨粒磨损和粘着磨损各占一定的比例,摩擦系数的波动较大。
     对过共晶组织的表面复合层试样进行后热处理发现:在1000℃和900℃高温下,奥氏体软质相中析出更多的细粒状二次碳化物;初生碳化物和共晶碳化物没有发生明显转变,在该温度下能够稳定存在;试样经过空冷后软质相仍为奥氏体组织,奥氏体中铬元素的含量下降较明显。扩散到基体的铬元素和碳元素也大量增加,熔合线的组织由奥氏体转变为马氏体组织。过共晶组织表面复合层在800℃正火处理后,软质相奥氏体大部分转变为铁素体平衡相,由于铁素体溶碳量的下降,原软质相奥氏体中铬元素和碳元素的扩散析出了大量的二次碳化物。经过热处理后试样的硬度都略有下降,数值却更加平均。
     经过三种不同温度热处理后试样的耐磨性都有所提高。热处理对表面复合层耐磨损性能的影响主要通过其组织中二次碳化物的析出和晶界位错塞积的减少;晶界处位错塞积的减少比二次碳化物的析出对耐磨性具有更大的影响;经过1000℃热处理后的试样尽管其析出的二次碳化物数量较少,但其最大程度地减小了奥氏体与碳化物界面处的位错塞积,其相对耐磨性提高了16.5%;经过800℃热处理的试样析出的二次碳化物最多,其相对耐磨性提高了12.9%。
     论文基于金属基复合材料的理念利用电子束熔炼扫描系统和CO2激光束实现了在低碳钢表面原位合成(Cr,Fe)7C3碳化物表面复合层,为提高材料耐磨损性能的表面改性提供了新的途径。
Friction and wear is the main form of material failure. The development of wear-resistant materials or fabrication of wear-resistant layer through surface cladding or surface modification has extended the service life of materials laygely. To improve the wear resistance of materials also contributes to conserve resources as well as reduce energy consumption and environmental pollution, which has an important engineering value and huge socio-economic effects.
     In this paper, a new type of‘four line rotation scanning’vacuum electron beam was proposed; using this electron beam scanning method and CO2 laser, carbides composite surface layer was sucessfully in situ synthesized with Fe/Cr/C (Cr3C2/Fe) alloy powder on 903 steel substrate; through optimization of scanning electron-beam parameters and adjustment of Fe/Cr/C alloy powder ratio, surface composite layers of the different properties were in situ synthesized on the low-alloy steel. The microsructure of each surface composite layer was analyzed with optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM); the hardness and wear-resistant performance of each surface composite layer was evaluated with microhardness tester and tribological tester. Dry sliding wear mechanism of the surface of composite layers was explored; surface composite layers in situ synthesized by the electron beam were also heat-treated to study the changes in its microstructure and the improvement of wear resistance. The results and main conclusion of the study are as follows:
     Four different kinds of Fe/Cr/C alloy powder were designed according to the Fe-Cr-C ternary phase diagram to study the influence of powder composition on the microstructure and wear resistance of surface composite layer. The microstructure of surface composite layers prepared by different ratio Fe/Cr/C powder mixtures vary significantly. Since the eutectic composition of Fe-Cr-C alloy depends mainly on the carbon content, carbon content has much more influence on the microstructure of surface composite layer compared with chromium content. In a certain range, increasing the carbon content, higher amounts of chromium carbides will be formed.
     The chromium and carbon content in the surface composite layer can be calculated by considering the dilution of the melting substrate and the powder loss during the scanning. Thus the microstructure of the synthesized layer is predictable using the Fe-Cr-C ternary phase diagram.
     Samples synthesized with four different ratios of Fe/Cr/C powder mixtures show different microstructure characteristics. With carbon content decreasing, the microstructure of the composite layers is hypereutectic microstructure, eutectic structure, hypoeutectic microstructure and martensite structure respectively. The main features of hypereutectic sample are large primary carbide embeded in ductileγ-Fe/M7C3 eutectic structure; the micro-hardness is 3.3-fold of the substrate. In eutectic structure, the carbides are granular or slender rod-shaped, showing the distribution of chrysanthemum-shaped cluster; the micro-hardness was 3-fold of the substrate. In hypoeutectic microstructure, dendritic austenite first precipated, then eutectic reaction take place to form austenite and carbides; carbide particles are very small; some are connected to form network structure; when the carbon content is too low, carbides does not appear in the surface layer, which is mainly martensite phase. The hardness of the surface composite layer is mainly related to carbide amount. Tthe higher carbide amount, the greater its hardness; the supersaturated carbon atom in martensite, result in the serious distortion of the lattice; its hardness also greatly improved compared to the substrate, reaches 2-fold of the substrate.
     When using CO2 laser beam to scan pre-placed powder mixture on 903 steel substrate, scanning time is too short for elements to diffuse evenly in melting pool because of the high power of laser beam. The surface composite layer shows some non-uniformity. Dendritic austenite andγ-Fe/M7C3 eutectic structure formed in the high chromium and carbon content region. As a result of fast cooling rate, the carbide particles are extremely fine; in the low chromium and carbon content region, the microstructure is mainly martensite because of the rapid cooling rate. There is overlap on the scanning track, which result in remelting zone and re-heating zone in and near the overlap region. The microstructure of re-heating zone is mainly austenite; its micro-hardness decreases compare with other region on the surface composite layer. Because of the non-uniformity of the microstructure, the wear mechanism is more complicated, abrasive wear and adhesive wear co-exist in the wearing process. The fluctuation of friction coefficient is relatively large.
     The wear-resistant performance of surface composite layer is directly related to its microstructure. The surface composite layer with excellent wear resistance is mainly due to the large amout of (Cr,Fe)7C3 distributed in the tough austenite phase. In low stress abrasion conditions, carides can effectively prevent the asperity penetrating the surface to form micro-cutting, and the austenitic phase can effectively prevent crack formation and expansion. Different types of carbides play different effects in wear mechnanism. In low stress abrasion conditions, the size of fine eutectic carbides is much larger than the furrows depth caused by asperity. It can effectively resist the scratches and piercing of the abrasive, which enables the surface compoaite layer have a good wear-resistant properties. As to martensite surface layer, although it can effectively resist micro-cutting of abrasive, serious adhesive wear takes place. The wear-resistant performance of martensite layer is worse than the carbides composite layer.
     Heat treatment of hypereutectic surface composite layer shows that the chromium and carbon atom in austenite are able to diffuse with activation energy at 1000℃and 900℃. More fine secondary carbides are precipitated. Coarse primary carbides undergo no obvious changes in the heat treatment at 1000℃and 900℃. After heat treatment the tough phase is still austenite though its chromium content reduced. The chromium and carbon diffused to fusion line and substrate significantly increased. The microstructure became martensite in the fusion line area. After normalizing at 800℃, the austenite phase in the surface composite layer transform into ferrite phase; a large amount of secondary carbide form due to diffusion of chromium and carbon atom. After heat treatment, the microstructure changed due to chromium and carbon diffusion, which reduce the lattice distortion and form more uniformly distributed secondary carbides. After heat treatment the hardness of all samples decreased slightly, but is more averaged.
     After heat treatment, the wear resistance of both samples improved. With large amount of fine carbides, whether the soft phase is ferrite or austenite seem to have no difference on the wear performace of the surface composite layer. And the friction coefficient is also very close. In a state of low stress abrasion, hard phase plays a major role in the process of abrasion resistance. The sample heat treatmed at 800℃precipates more amounts of secondary carbides. Its wear resistance increases accordingly. Though the sample heat treatmed at 1000℃contains less amounts of secondary carbides, the reduction of the dislocation accumulation along grain boundary make its wear resistance improve obviously.
     In summary, basing on the concept of metal matrix composites (MMC), M7C3 carbide surface composite layer is successfully synthesized using scanning electron beam and CO2 laser on low carbon steel. It provides a new way on fabrication of wear-resistant material.
引文
[1]曲敬信,汪泓宏.表面工程手册.北京:化学工业出版社. 1998.
    [2]杨文涛,新型耐磨合金铸钢斗齿的研究与应用.工程机械, 2005, 4: 52-53.
    [3]徐滨士,朱绍华,刘世参,等.表面工程与维修.北京:机械工业出版社,1996:40-56.
    [4]徐滨士.表面工程.机械工业出版社, 2001.
    [5]劭荷生,张清.金属的磨粒磨损与耐磨材料.北京:机械工艺出版社,1998.
    [6]徐滨士.表面工程新技术.国防工业出版社, 2002.
    [7]刘家浚.材料磨损原理及其耐磨性.北京:清华大学出版社, 1993.
    [8] Ludema K.C. Mechanism-based modeling of friction and wear. Wear. 1996, 200(1-2): 1-7.
    [9] F.P. Bowden and D. Tabor, The Friction and Lubrication of Solids. Oxford Press, 1986, p 127
    [10] C.A. Stickels, ASM Handbook, Vol 4, ASM International. 1991, p 312-324
    [11]全永昕.工程摩擦学原理.杭州:浙江大学出版社, 1994.
    [12] Brian Williams, Surface engineering the key to longer bearing life and resistance to wear, corrosion and seizure. Aircraft Engineering and Aerospace Technology, 2002, 74: 38-45.
    [13] K.G. Budinski, Proceedings of Wear of Materials. American Society of Mechanical Engineers, 1991, p 289
    [14] F.P. Bowden and D. Tabor, Friction. An Introduction to Tribology, Robert Krieger Publishing, 1982
    [15] I.V. Kragelskii and N.M. Mikhin, Handbook of Friction Units of Machines, American Society of Mechanical Engineers, 1988.
    [16] R.D.Arnell, P.B.Davies, J.Halling, el al., Tribology Principles and Applicants. Springer-Verlag, 1991, p 1-66.
    [17] A.Majumdar and B.Bhushan, Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces. J.Tribology (Trans.ASME), Vol 112, 1990, p 205-216.
    [18]徐流杰,魏世忠,邢建东,等.高碳化物铁碳合金的磨粒磨损性能研究.金属热处理,2006, 31(12): 36-39
    [19]李茂林,我国金属耐磨材料的发展和应用.铸造. 2002.9, 51(9): 525-528.
    [20] Xiaojun Wu, Jiandong Xing, Hanguang Fu, et al. Effect of titanium on the morphology of primary M7C3 carbides in hypereutectic high chromium white iron. Materials Science and Engineering A, 2007, 457: 180–185.
    [21] Cemil Cetinkaya, An investigation of the wear behaviours of white cast irons under different compositions. Materials and Design, 2006, 27: 437–445.
    [22] K.Weber, D.Regener, H.Mehner, et al, Characterization of the microstructure of high-chromium cast irons using Mossbauer spectroscopy. Materials Characterization, 2001, 46: 399–406.
    [23] M.X. Zhang, P.M. Kelly, L.K. Bekessy, et al. Determination of retained austenite using an X-ray texture goniometer. Materials Characterization, 2000, 45: 39-49.
    [24] S.G. Sapate, A.V. Rama Rao. Effect of carbide volume fraction on erosive wear behaviour of hardfacing cast irons. Wear, 2004, 256: 774–786.
    [25]陈美玲,葛继平,陈玉喜, Cr17高铬白口铸铁的热处理工艺,铸造技术, 1998, 12: 34-37.
    [26] G. Pintaude, A.P. Tschiptschin, D.K. Tanaka, The particle size effect on abrasive wear of high-chromium white cast iron mill balls. Wear, 2001, 250: 66–70.
    [27] S.D. Carpenter, D. Carpenter, X-ray diffraction study of M7C3 carbide within a high chromium white iron. Materials Letters, 2003, 57: 4456–4459.
    [28]马建平,张云鹏,杨迎东.热处理工艺对高合金白口铸铁性能的影响.热加工工艺. 2007, 36: 30-33.
    [29] S.D. Carpenter, D.Carpenter, J.T.H. Pearce. XRD and electron microscope study of a heat treated 26.6% chromium white iron microstructure. Materials Chemistry and Physics, 2007, 101: 49–55.
    [30]苏应龙,张学昆,高铬抗磨铸铁韧性的提高.现代铸铁, 2000, 18: 56-59.
    [31] Drotlew, p. Christodoulou, V. Gutowski, Erosion of ferritic Fe-Cr--C cast alloys at elevated temperatures. Wear, 1997, 211: 120-128.
    [32] Lorella Ceschini, Giuseppe Palombarini, Giuliano Sambogna. Friction and wear behaviour of sintered steels submitted to sliding and abrasion tests. Tribology International, 2006, 39: 748–755.
    [33] Yuan-Fu Liu, Jian-Min Han, Rong-Hua Li, Microstructure and dry-sliding wear resistance of PTA clad (Cr,Fe)7C3/γ-Fe ceramal composite coating. Applied Surface Science, 2006, 252: 7539–7544.
    [34] Andreas Wank, Bernhard Wielage, Hanna Pokhmurska, et al. Comparison of hardmetal and hard chromium coatings under different tribological conditions. Surface & Coatings Technology, 2006, 201: 1975–1980.
    [35] Chieh Fan, Ming-Che Chen, Chia-Ming Chang, et al. Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe–Cr–C hardfacing alloys. Surface & Coatings Technology, 2006, 201: 908–912.
    [36] T.Ohide and G.Ohira: The British Foundryman, 1983, 76(1), 8.
    [37] I.Sevim, I.Eryurek, Effect of fracture toughness on abrasive wear resistance of steels. Materials and Design, 2006, 27: 911–919.
    [38]张鬲君,陈亚维,李春广, Cr12白口铸铁热处理工艺性分析. 1997, 8: 31-33.
    [39] Janina M. Radzikowska. Effect of specimen preparation on evaluation of cast iron microstructures. Materials Characterization, 2005, 54: 287–304.
    [40]王逊,史雅琴,马永庆. Fe-Cr-C系相图中M7C3体积分数的计算.大连海事大学学报, 2001, 27: 88-91.
    [41] J.C.G.Milan, M.A.Carvalhob, R.R.Xavier. Effect of temperature, normal load and pre-oxidation on the sliding wear of multi-component ferrous alloys. Wear, 2005, 259: 412–423.
    [42] J.D.Gates, G.J.Gore, M.JP.Hermand, The meaning of high stress abrasion and its application in white cast irons. Wear, 2007: 263: 6–35.
    [43]陈宗民. Fe-C-Cr合金三相共晶与四相包共晶反应对铬系白口铸铁组织的影响.山东工程学院学报, 2001, 15: 25-28.
    [44] Cemil Cetinkaya, An investigation of the wear behaviours of white cast irons under different compositions. Materials and Design, 2006, 27: 437–445.
    [45] Jüri Pirso, Sergei Letunovits, Mart Viljus, Friction and wear behaviour of cemented carbides. Wear, 2004, 257: 257–265.
    [46] D.K. Subramanyam, A.E. Swansiger, and H.S. Avery, Austenitic Manganese Steels, Properties and Selection: Irons, Steels, and High-Performance Alloys, Vol 1, Metals Handbook, 10th ed., 1990, p 822
    [47] M.Qian, in situ Observations of the Dissolution of Carbides in an Fe-Cr-C Alloy. Scripta Materialia, 1999, 41: 1301–1303.
    [48] P.Crook and C.C.Li, Wear of Materials, American Society of Mechanical Engineers, 1983, p272.
    [49] Liming Lu, Hiroshi Soda, Alexander McLean, Microstructure and mechanical properties of Fe-Cr-C eutectic composites. Materials Science and Engineering, 2003, A347: 214-222.
    [50] M. Aksoy, V. Kuzucu, M.H. Korkut. The influence of Strong carbide-forming elements and homogenization on the wear resistance of ferritic stainless steel. Wear, 1997, 211: 265-270.
    [51] Yu.L.Al’shevskii, O.N.Baklanova, A.I.Zaitsev, et al. Thermodynamic Analysis of Equilibria in Fe–Cr–C Alloys and Evaluation of Their Dusting Stability in Aggressive Carboniferous Atmospheres. Inorganic Materials, 2005, 41(2): 133–139.
    [52] S.D. Carpenter, D. Carpenter, J.T.H. Pearce, XRD and electron microscope study of a heat treated 26.6% chromium white iron microstructure. Materials Chemistry and Physics, 2007, 101: 49–55.
    [53] P. Christodoulou, A. Drotlew, W. Gutowski. The effect of carbon chromium and silicon content on wear resistance of ferritic Fe-Cr-C cast alloys. Wear, 1997, 211: 129-133.
    [54] E. Albertin, A. Sinatora. Effect of carbide fraction and matrix microstructure on the wear of cast iron balls tested in a laboratory ball mill. Wear, 2001, 250: 492–501.
    [55] J.Asensioa, J.A.Pero-sanzb, J.I.Verdeja. Microstructure selection criteria for cast irons with more than 10wt.% chromium for wear applications[J]. Materials Characteriaction, 2003(49): 83-93.
    [56] C.P. Tabrett, I.R. Sare, The effect of heat treatment on the abrasion resistance of alloy white irons. Wear, 1997, 203-204: 206-219.
    [57]孙志平,沈保罗,高升吉,高铬白口铸铁耐磨性和显微组织的关系,金属热处理, 2005, 30(7): 60-63
    [58]高原,徐晋勇,高清,碳钢表面高铬耐磨合金层的制备及其组织与性能,机械工程材料, 2006, 30(11):25-28
    [59]吴晓俊,邢建东,符寒光,等.高铬白口铸铁初生碳化物细化的研究进展,铸造, 2006.10, 55(10): 999-1002.
    [60]李守林,刘俊友,刘杰,铬锰铜合金白口铸铁抗冲蚀磨损性能研究,热加工工艺, 2007, 36(16): 29-32
    [61]饶启昌,张永振,中铬铸铁的研制[J],西安交大学报, 1987, 21(2): 97-108.
    [62]李卫,朴东学,高Si/C白口铸铁组织、结构及抗磨性[A],第五届全国金属耐磨材料学术会议论文选集[C],北京:中国金属学会耐磨材料学术委员会, 1989, 97-102.
    [63]于春田,大城佳作,山本郁等,含硅量和冷却速度对中铬铸铁碳化物的影响[J],铸造, 2001, 50(5): 258-262.
    [64]陈宗民,栾振涛,叶以富等,现代铬系抗磨白口铸铁的应用与发展[J],山东工程学院学报, 2000(3): 43-46.
    [65]陈宗民, Fe-Cr-C合金三相共晶与四相包共晶反应对铬系白口铸铁组织的影响[J],山东工程学院学报, 2001(3):25-27.
    [66]陈颢,李惠琪,李惠东,铁基等离子束表面冶金耐磨合金设计研究,材料导报, 2005. 06: 75-77
    [67]马建平,张云鹏,杨迎东,钒和铜对高合金白口铸铁铸态组织及性能的影响,铸造技术,2007.5 28(5):631-634
    [68]子澍,含钒高铬白口铸铁的结晶特点及钒对合金显微组织的影响,铸造, 2006.5 55(2): 185-188.
    [69]谭银元,钒对高铬锰白口铸铁组织和性能的影响,武汉船舶职业技术学院学报, 2006.2:23-24.
    [70] Yasuhiro Matsubara, Nobuya Sasaguri, Kazumichi Shimizu, et al. Solidification and abrasion wear of white cast irons alloyed with 20% carbide forming elements. Wear, 2001, 250: 502–510.
    [71] K. Kambakas, P. Tsakiropoulos, Solidification of high-Cr white cast iron–WC particle reinforced composites. Materials Science and Engineering A, 2005, 413–414: 538–544.
    [72]李秀兵,方亮,高义民, WC颗粒增强Cr系抗磨白口铸铁表层复合材料的抗磨损性能研究,铸造技术, 2005.2, 26(2): 96-99.
    [73]郭长庆,高守忠,新型铁基耐磨材料FCB合金.铸造, 2004.10, 53(10): 761-764.
    [74] Xiaojun Wu, Jiandong Xing, Hanguang Fu, Effect of titanium on the morphology of primary M7C3 carbides in hypereutectic high chromium white iron. Materials Science and Engineering A, 2007, 457: 180–185.
    [75]马幼平,赵峰,潘景余,过共晶高铬白口铸铁碳化物生长机制及影响因素分析,热加工工艺, 2007年第36卷第1期,14-16.
    [76]符定梅,低钨白口铸铁共晶碳化物团球化研究,材料开发与应用, 2005.2, 20(1): 13-16.
    [77]钱苗根,姚寿山,张少宗,现代表面技术.北京:机械工业出版社, 2002.5, p3
    [78]徐滨士,梁秀兵,马世宁.新型高速电弧喷涂枪的开发研究.中国表面工程, 1998, 11(3): 16-19.
    [79] Zhang, G.Q. et al., Spray forming and thermal processing for high performance superalloys, Materials Science Forum, 2005, 2773: 475–479.
    [80] Pawlowski, L., The Science and Engineering of Thermal Spray Coatings, John Wiley & Son Ltd., England, 1995.
    [81] Lin, L. and Han, K., Optimization of surface properties by ?ame spray coating and boriding, Surf. Coat. Technol., 1998, 106: 100.
    [82] Clare, J.H. and Crawmer, D.E., Thermal spray coatings, in Metals Handbook, Vol. 5: Surface Cleaning, Finishing and Coating, 9th ed., ASM International, Metals Park, OH, 1982, p. 361.
    [83] Liu, C.S., Huang, J.H., and Yin, S., The in?uence of composition and process parameters on the microstructure of TiC-Fe coatings obtained by reactive ?ame spray process, J. Mater. Sci., 37, 5241, 2002.
    [84] Du, A.K., Wang, J.J., Ye, M.H., and Yan, J., Wear of the Al2O3-based multi-ceramic coatings produced by SHS ?ame spray, Key Eng. Mater., 280–283, 1123, 2005.
    [85] Tikkanen, J. et al., Characteristics of the liquid ?ame spray process, Surf. Coat. Technol., 90, 210, 1997.
    [86]徐维普,高速电弧喷涂Fe-Al/CrC金属间化合物复合涂层高温性能研究及应用.博士学位论文,上海:上海交通大学. 2005.
    [87] Leatham, A., Commercial spray forming: Exploiting the metallurgical benefits, Mater. World,4, 317, 1996.
    [88] S. Matthews, M. Hyland, B. James, Microhardness variation in relation to carbide development in heat treated Cr3C2–NiCr thermal spray coatings. Acta Materialia, 2003, 51: 4267–4277.
    [89] Susumu Uozato, Kazuhiro Nakata, Masao Ushio. Evaluation of ferrous powder thermal spray coatings on diesel engine cylinder bores. Surface & Coatings Technology, 2005, 200: 2580–2586.
    [90] D.L. Duan, S. Li, X.H. Duan, et al. Wear Behavior of Thermally Sprayed Coatings under Different Loading Conditions. Tribology Transaction, 2005, 48(1): 45-49.
    [91] A.H. Kasama, A.J. Mourisco, C.S. Kiminami, Microstructure and wear resistance of spray formed high chromium white cast iron. Materials Science and Engineering A, 2004, 375–377: 589–594.
    [92] Xu Binshi, Ma Shining, Wang Jianjun, et.al. Study on the are spraying of 7Cr13 coredwire and tribological properties of the composite coating. Proceeding of the 15th International Thermal Spray Conf, France, 1998: 207-210.
    [93]罗来马,俞佳,刘少光,高速电弧喷涂FeMnCr/ Cr3C2涂层的组织与性能,材料热处理学报, 2009.6, 30(3): 174-177
    [94]贾焕丽,刘建华,陈波,高速电弧喷涂铁基Cr3C2复合涂层的显微组织,机械工程材料, 2008.9, 32(9): 45-48
    [95]傅斌友,陈小磊,蒋建敏,电弧喷涂工艺参数对Fe基涂层组织及耐磨性的影响. 2008.9, 41(9): 34-36
    [96]江峰,高速电弧喷涂7Cr13涂层冲蚀磨损性能及其机理研究.南京工业职业技术学院学报, 2006.12, 6(14): 1-3
    [97] Fauchais, P. and Verdelle, A., Thermal plasmas, IEEE Trans. Plasma Sci., 25, 1258, 1997.
    [98] DeMasi-Marcin, J.T., Shef?er, K.D., and Bose, S., Mechanisms of degradation and failure in a plasma-deposited thermal barrier coating, J. Eng. Gas Turbines Power, 112, 521, 1990.
    [99] Padture, N.P., Gell, M., and Jordan, E.H., Thermal barrier coatings for gas-turbine engine applications, Science, 296, 280, 2002.
    [100] T.A. Mantyla, K.J. Niemi, P. Vuoristo, et al. Abrasion wear resistance of tungsten carbide coatings prepared by various thermal spraying techniques, in: H.Eschnauer (Ed.). Proceedings of 2nd Plasma-Technik Symposium, Lucerne, Switzerlan, 1991: 287-279.
    [101] Shaw, L. et al., The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions, Surf. Coat. Technol., 130, 1, 2000.
    [102] M.F. Buchely, J.C. Gutierrez, L.M. Leon, The effect of microstructure on abrasive wear of hardfacing alloys. Wear, 2005, 259: 52–61.
    [103] S. Astamert, H.K.K.H.Bhadeshia, Microstructure and Stability of Fe-Cr-C Hardfacing Alloys. Materials Science and Engineering, 1990, A130: 101-111.
    [104]徐文晓,杨昌群,杜春城, Fe-C-Cr-Mn堆焊层的抗冲蚀磨损性能.长春工业大学学报, 2005, 26: 151-154.
    [105]王清宝,王智慧,李世敏. Fe-Cr-C系高碳耐磨堆焊合金组织及性能.焊接学报, 25 (2004) 119-123.
    [106]王智慧,王清宝.Fe-Cr-C耐磨堆焊合金中初生碳化物生长方向的控制.焊接学报, 25 (2004) 103-110
    [107] A.H. Kasama, A.J. Mourisco, C.S. Kiminami, et al. Microstructure and wear resistance of spray formed high chromium white cast iron. Materials Science and Engineering A, 2004, 375–377: 589–594.
    [108]刘均波,黄继华,王立梅.反应等离子熔敖Cr7C3/γ-Fe金属陶瓷复合材料涂层组织与耐磨性[J].焊接,2005, 11: 49-52.
    [109] L. Bourithis, Ath. Milonas, G.D. Papadimitriou, Plasma transferred arc surface alloying of a construction steel to produce a metal matrix composite tool steel with TiC as reinforcing particles. Surface and Coatings Technology, 2003, 165: 286–295.
    [110]杨尚磊,吕学勤,邹增大,基于TiC-VC耐磨堆焊的硬度与合金过渡的试验研究.中国机械工程, 2004, 15: 1329-1332.
    [111] B.V. Cockeram, Some Observations of the Influence ofδ-Ferrite Content on the Hardness, Galling Resistance and Fracture toughness of Selected Commercially Available Iron-Based Hardfacing Alloys. Metallurgical and Materials Transactions, 2002, 33A: 3403-3416.
    [112]孟工戈,逯允龙,李丹,耐高温磨损堆焊焊条的研制.焊接, 2005, 4: 27-30.
    [113] Chieh Fan, Ming-Che Chen, Chia-Ming Chang, Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe–Cr–C hardfacing alloys. Surface & Coatings Technology, 2006, 201: 908–912.
    [114]潘春旭,陈俐,耐磨堆焊层显微组织特征及其与耐磨性关系的研究.兵器材料科学与工程, 2000, 23: 8-11.
    [115] S.G. Sapate, A.V. RamaRao, Erosive wear behaviour of weld hardfacing high chromium cast irons: effect of erodent particles. Tribology International, 2006, 39: 206–212.
    [116] T.W.Chenje, D.J.Simbi, E.Navara, Relationship between microstructure, hardness, impact toughness and wear performance of selected grinding media for mineral ore milling operations. Materials and Design, 2004, 25: 11–18.
    [117] Soner Buytoz, Mustafa Ulutan, M. Mustafa Yildirim, Dry sliding wear behavior of TIG welding clad WC composite coatings. Applied Surface Science, 2005, 252: 1313–1323.
    [118] Yuan-Fu Liu, Zhi-Ying Xia, Jian-Min Han, et al. Microstructure and wear behavior of (Cr,Fe)7C3 reinforced composite coating produced by plasma transferred arc weld-surfacing process. Surface & Coatings Technology, 2006, 201:863–867.
    [119] Yuan-Ching Lin, Shi-Wei Wang, Yu-Chang Lin, Analysis of microstructure and wear performance of WC–Ti clad layers on steel, produced by gas tungsten arc welding.Surface & Coatings Technology, 2005, 200: 2106-2113.
    [120]王清宝,眭向荣,张迪,铁基高碳耐磨堆焊焊条性能研究,焊接, 2008,4: 42-45
    [121]刘政军,宗琳,孙景刚, Fe-Mn-Cr-Mo-V系抗冲击磨料磨损堆焊材料的研制,焊接技术, 2009.1, 38(1): 47-50
    [122]刘政军,宗琳,孙景刚,金属基陶瓷复合等离子弧堆焊层组织与耐磨性能,焊接学报, 2009.1, 30(1): 17-21.
    [123]姜锦程,刘俊友,刘杰, Fe-Cr-C-Mo堆焊合金层的特征分析,热加工工艺, 2009, 04: 63-65.
    [124]田大标,铌对高铬铸铁堆焊层耐磨性的影响,焊接, 2008, 01: 58-60.
    [125]魏建军,黄智泉,杨威,高碳高铬铸铁堆焊合金组织分析,焊接学报, 2008.3, 29(3): 145-148.
    [126]李强,汤文博,张太超, CrMoNbB系免预热耐磨料磨损堆焊焊条的研究,中原工学院学报, 2008.4, 19(2): 16-19.
    [127]张秉刚,吴林,冯吉才,国内外电子束焊接技术研究现状.焊接, 2004, 2: 5-8
    [128]郝胜智,钟涛,董闯.强流脉冲电子束材料表面改性技术,真空与低温, 2001, 7: 77-80.
    [129]阎洪,用电子束进行金属材料表面改性处理.电加工, 1996, 2: 30-33.
    [130]李少青,张毓新,梁智,真空电子束钎焊工艺研究.焊接技术, 2004, 33: 27-30.
    [131]王慧三,用于金属材料表面改性的脉冲电子束技术.等离子体应用技术学报, 1999, 7: 1-5.
    [132]范玉殿.电子束和离子束加工.机械工业出版社, 1989.
    [133]王亚军.电子束加工技术的现状与发展.航空制造技术, 1995, 1: 28-31.
    [134] Dilthey U , Weiser J .电子束束流特性及其对焊缝成型影响的研究.航空制造技术, 1996,1: 9-12
    [135]郭绍庆. GH909电子束焊接温度场的有限元分析.航空材料学报, 2000, 20 (3): 98-101.
    [136] W. Ensinger, H.R. Muller, Surface modification and coating of powders by ion beam techniques. Materials Science and Engineering, 1994, A188: 335-340.
    [137] R. Mehnert, Electron beams in research and technology. Nuclear Instruments and Methods in Physics Research B, 1995, 105: 348-358.
    [138] V.P. Rotshtein, D.I. Proskurovsky, G.E. Ozur. Surface modification and alloying of metallic materials with low-energy high-current electron beams. Surface and CoatingsTechnology, 2004, 180–181: 377–381.
    [139] R.G. Song, K. Zhang, G.N. Chen, Electron beam surface treatment. Part I: surface hardening of AISI D3 tool steel. Vacuum, 2003, 69: 513–516.
    [140] R.G. Song, K. Zhang, G.N. Chen, Electron beam surface treatment. Part II: microstructure evolution of stainless steel and aluminum alloy during electron beam rapid solidification. Vacuum, 2003, 69: 517–520.
    [141] R.G. Song, K. Zhang, G.N. Chen, Electron beamsurface remelting of AISI D2 cold-worked die steel. Surface and Coatings Technology, 2002, 157: 1–4.
    [142] Seong-hun Choo, Sunghak Lee, Soon-Ju Kwon, Surface hardening of a gray cast iron used for a diesel engine cylinder block using High-energy electron beam irradiation. Metallurgical and Materials Transaction, 1999, 30A: 1211-1223.
    [143] R.G. Song, K. Zhang, G.N. Chen, Electron beamsurface remelting of AISI D2 cold-worked die steel. Surface and Coatings Technology, 2002, 157: 1–4.
    [144] Jun Cheol Oh, Sunghak Lee, Correlation of Microstructure and Abrasive and Sliding Wear Resistance of (TiC,SiC)/Ti-6Al-4V Surface Composites Fabricated by High-energy Electron beam Irradiation. Metalluregical and Materails Transactions, 2004, 35A: 139-150.
    [145] Kwangjun Euh, Sunghak Lee, Correlation of Microstructure with Hardness and Wear Resistance of VC/steel Surface-Alloyed Materials Fabraicated by High-Energy Electron Beam Irradiation. Metallurgical and Materials Transactions, 2003, 34A: 59-72.
    [146] Eunsub Yun, Kyuhong Lee, Sunghak Lee, Correlation of microstructure with high-temperature hardness of (TiC,TiN)/Ti–6Al–4V surface composites fabricated by high-energy electron-beam irradiation. Surface & Coatings Technology, 2005, 191: 83– 89.
    [147] A.A. Novakova, I.G. Sizov, D.S. Golubok, et al. Electron-beam boriding of low-carbon steel. Journal of Alloys and Compounds, 2004, 383: 108–112.
    [148] Eunsub Yun, Kyuhong Lee, Sunghak Lee. Improvement of high-temperature hardness of (TiC,TiB)/Ti–6Al–4V surface composites fabricated by high-energy electron-beam irradiation. Surface and Coatings Technology, 2004, 184: 74–83.
    [149] C. Dong, A. Wu, S. Hao, Surface treatment by high current pulsed electron beam. Surface and Coatings Technology, 2003, 163–164: 620–624.
    [150] V. Engelko, B. Yatsenko, G. Mueller, et al. Pulsed electron beam facility (GESA) forsurface treatment of materials. Vacuum, 2001, 62, 211-216.
    [151] Eunsub Yun, Sunghak Lee, Correlation of microstructure with hardness and wear resistance in Cr3C2/stainless steel surface composites fabricated by high-energy electron beam irradiation. Materials Science and Engineering A, 2005, 405: 163–172.
    [152] Eunsub Yun, Yong Chan Kim, Sunghak Lee, el al. Correlation of Microstructure with Hardness and Wear Resistance in (TiC,SiC)/Stainless Steel Surface Composites Fabricated by High-Energy Electron Beam Irradiation. Metallurgical and Materials Transactions, 2004, 35A: 1029-1039.
    [153]陈迎春,冯吉才.电子束表面合金化制备Ti5Si3/ TiAl复相合金改性层.中国有色金属学报, 2004, 14: 1839-1842.
    [154]石其年, 45钢电子束表面合金化处理研究,黄石理工学院学报, 2007.2, 23(1): 16-22.
    [155]吴爱民,刘捍卫,邹建新, D2钢电子束表面改性抗微动磨损性能研究,核技术, 2002.9, 25(9): 758-765.
    [156]吴爱民,陈景松,张爱民,模具钢电子束表面改性研究,核技术, 2002.8, 25(8): 608-614.
    [157] B.L. Mordike, Processing of Metals and Alloys, VCH, Weinheim, 1991, p. 113.
    [158] K. Ghosh, M.H. McCay, Narendra, Formation of a wear resistant surface on Al by laser aided in-situ synthesis of MoSi. Journal of Materials Processing Technology, 1999, 88: 169–179.
    [159]张松,张春华,文效忠,原位反应合成金属间化合物激光合金化层的组织及抗磨性能.摩擦学学报. 2005, 25: 97-100.
    [160] Akio HIROSE, Kojiro F.KOBAYASHI, Formation of Hybrid Clad Layers by Laser Processing. ISIJ International, 1995, 35(6): 757-763.
    [161]王家金.激光加工技术(第1版),北京:中国计量出版社, 1992.
    [162] C. Tassin, F. Laroudie, M. Pons, et al. Carbide-reinforced coatings on AISI 316 L stainless steel by laser surface alloying. Surface and Coatings Technology, 1995, 76-77: 450-455.
    [163]吴萍,姜恩永,赵慈,等.激光参数对Ni基熔覆层结构及耐磨性的影响.焊接学报, 2003 , 24 (2): 44-47.
    [164] S.W. Huang, M. Samandi, M. Brandt, Abrasive wear performance and microstructure of laser clad WC/Ni layers. Wear, 2004, 256: 1095–1105
    [165] S. Kac, J.Kusinski, SEM and TEM microstructural investigation of high-speed tool steel after laser melting. Materials Chemistry and Physics, 2003, 815: 10–512.
    [166]肖红军,彭云,马成勇,激光表面改性.表面技术, 2005, 34: 10-13.
    [167]张维平,刘硕,高能激光束对材料表层快速凝固组织及性能影响的研究进展.铸造, 2005, 54: 28-31.
    [168]张光钧.激光热处理的现状及进展,金属热处理, 2000, 1: 6-10.
    [169] D.I. Pantelis, E. Bouyiouri, N. Kouloumbi. Wear and corrosion resistance of laser surface hardened structural steel. Surface and Coatings Technology, 2002, 298: 125–134
    [170] Juan de Damborenea, Surface modification of metals by high power lasers. Surface Coatings Technology, 1998, 100-101: 377-382.
    [171] M. H. Mccay, N. B. Dahotre, J. A. Hopkins, et al. The in?uence of metals and carbides during laser surface modification of low alloy steel. Journal of Materials Science, 1999, 34: 5789–5802.
    [172]韩莉,姜伟, 1Cr18Ni9Ti激光表面强化工艺的研究,表面技术, 2008,01: 62-64
    [173]陈卓君,刘征,张祖立, 65Mn钢激光表面强化工艺参数研究, 2008.3, 24(2): 324-327.
    [174]魏华凯,姜伟,韩莉, 30CrMnSi的激光表面淬火,热加工工艺, 2008, 04: 82-83.
    [175] S. Kac, J. Kusinski, SEM structure and properties of ASP2060 steel after laser melting. Surface and Coatings Technology, 2004, 180-181: 611-615.
    [176] Jan Kusifiski, Microstructure, chemical composition and properties of the surface layer of M2 steel after laser melting under different conditions. Applied Surface Science, 1995, 86: 317-322.
    [177] M. Kulka, A. Pertek, Microstructure and properties of borided 41Cr4 steel after laser surface modification with re-melting. Applied Surface Science, 2003, 214: 278-288.
    [178] P. Wu, C.Z. Zhou, X.N. Tang, Microstructural characterization and wear behavior of laser cladded nickel-based and tungsten carbide composite coatings. Surface and Coatings Technology, 2003, 166: 84–88.
    [179] M.H. Stai, U, M. Cruz, Microstructural and tribological characterization of an A-356 aluminum alloy superficially modified by laser alloying. Thin Solid Films, 2000, 377-378: 665-674.
    [180]汤光平,黄文荣,杨家林. Cr12MoV模具钢的激光熔覆.金属热处理, 2002, 27(4): 13-19.
    [181] H. Hugel, New solid-state lasers and their application potentials. Optics and Lasers in Engineering, 2000, 34: 213-229.
    [182]李刚,夏延秋,王彦芳等.激光熔覆Zr-Al-Ni-Cu复合涂层组织及摩擦磨损性能,摩擦学学报, 2002, 22(5): 343-346.
    [183] S.V. Joshi, G. Sundararajan, Lasers in Surface Engineering, Surface Engineering Series, ASM International, 1998, p. 121.
    [184] S.M. Shariff, G. Sundararajan, S.V. Joshi, Surface Modification Technologies, Institute of Materials, London, 1999, p. 135.
    [185] J. Dutta Majumdar, B. Ramesh Chandra, I. Manna, Laser composite surfacing of AISI 304 stainless steel with titanium boride for improved wear resistance. Tribology International, 2007, 40: 146-152.
    [186]斯松华,袁小敏,何宜柱.激光熔覆Ni基SiC合金涂层组织与性能的研究.激光技术, 2002, 26(5): 324-326.
    [187] Mordike BL. Laser processing of materials, materials science and technology, vol. 15. Weinheim: VCH; 1993. p.111–36.
    [188] Cheng FT, Kwok CT, Man HC. Laser surfacing of S31603 stainless steel with engineering ceramics for cavitation erosion resistance. Surface Coatings Technol, 2001, 139:14–24.
    [189] G. Abbas, U. Ghazanfar, Two-body abrasive wear studies of laser produced stainless steel and stainless steel+SiC composite clads. Wear, 2005, 258: 258–264
    [190] Xiaolei Wu, Rapidly solidified nonequilibrium microstructure and phase transformation of laser-synthesized iron-based alloy coating. Surface and Coatings Technology, 1999, 115: 153-162.
    [191] L.Avril, B.Courant, J.-J.Hantzpergue, Tribological performance ofα-Fe(Cr)-Fe2B-FeB andα-Fe(Cr)-h-BN coatings obtained by laser melting. Wear, 2006, 260: 351–360
    [192] M. Bonek, L.A. Dobrzanski, E. Hajduczek, Structure and properties of laser alloyed surface layers on the hot-work tool steel. Journal of Materials Processing Technology, 2006, 175: 45–54.
    [193] Dawei Zhang, Xinping Zhang, Laser cladding of stainless steel with Ni-Cr3C2 and Ni–WC for improving erosive-corrosive wear performance. Surface & Coatings Technology, 2005, 190: 212-217.
    [194] K.Van Acker, D.Vanhoyweghen, R.Persoons, In?uence of tungsten carbide particle sizeand distribution on the wear resistance of laser clad WC/Ni coatings. Wear, 2005, 258: 194-202.
    [195] C.Tassin, F.Laroudie, M. Pons, Improvement of the wear resistance of 316L stainless steel by laser surface alloying. Surface and Coatings Technology, 1996, 80: 207-210.
    [196] K.Obergfell, V.Schulze, O.Vohringer, Classification of microstructural changes in laser hardened steel surfaces. Materials Science and Engineering, 2003, A355: 348-356.
    [197] J.Przybylowicz, J.Kusinsk. Structure of laser cladded tungsten carbide composite coatings. Journal of Materials Processing Technology, 2001, 109: 154-160
    [198] M. Kulka, A. Pertek, Microstructure and properties of borocarburized 15CrNi6 steel after laser surface modification, Applied Surface Science, 2004, 236: 98-105.
    [199] A.Kagawa. Utilization of cast iron scraps as a raw material for laser-clad chromium carbide hardfacing. Jounal of Materials Science Letter, 1998, 17: 99-101.
    [200] G. Thawari, G. Sundarararjan, S.V. Joshi, Laser surface alloying of medium carbon steel with SiC. Thin Solid Films, 2003, 423: 41-53.
    [201] A Klimpel, A Lisiecki, Janicki, The influence of the shielding gas on the properties of a laser-melted surface of austenite stainless steel. Proceeding of Institution of Mechanical Engineers, 2004, 218: 1137-1146.
    [202] P. Wu, H.M. Du, X.L. Chen, In?uence of WC particle behavior on the wear resistance properties of Ni–WC composite coatings. Wear, 2004, 257: 142-147.
    [203] A. Singh, N. B. Dahotre, Laser in-situ synthesis of mixed carbide coating on steel. Journal of Materials Science, 2004, 39: 4553-4560.
    [204]胡乾午,刘顺洪,李志远等,涡轮发动机叶片的激光表面强化.应用激光, 1998, 18(2):75-78.
    [205] Z.Sun, I.Annergren, D.Pan, T.A.Mai, Effect of laser surface remelting on the corrosion behavior of commercially pure titanium sheet. Mater. Sci. Eng. A, 2003, 345: 293-298.
    [206]方艳丽,王华明,激光熔化沉积Cr13Ni5Si2/γ-Ni基合金的耐磨性能,金属学报, 2006, 42(2): 181-185.
    [207]姜伟,戚佳睿,孙海霞, 30CrMnSi镀铬后激光表面合金化,表面技术, 2008.8, 37(4): 29-31.
    [208]姜伟,黄旭仁,苏洪波, 45钢镀镍后激光表面合金化,青岛大学学报, 2007.6, 22(2): 21-24.
    [209] Da-Wei Zhang, T.C.Lei, The microstructure and erosive-corrosive wear performance oflaser-clad Ni-Cr3C2 composite coating. Wear, 2003, 255: 129-133.
    [210] Jiang Xu, Wenjin Liu, Minlin Zhong, Microstructure and dry sliding wear behavior of MoS2/TiC/Ni composite coatings prepared by laser cladding. Surface & Coatings Technology, 2006, 200: 4227-4232.
    [211] Powell G, Randle V, The effect of Si on the relationship between orientation and carbide morphology in high chromium white irons. Journal of materials science 32(1997) 561-565.
    [212] G.V. Raynor, V.G. Rivlin, Phase Equilibria in Iron Ternary Alloys, the Institute of Metals, The Bath Press, UK, 1988, p.143.
    [213] K. Bungardt, E. Kunze, E. Horn, Arch. Eisenhüttenwes. 29(3) (1958) 193.
    [214] N.R. Griffing, W.D. Forgeng, G.W. Healy, Trans. TMS-AIME 224(1962) 148.
    [215] Yu.L.Al’shevskii, O.N.Baklanova, A.I.Zaitsev, et al., Thermodynamic Analysis of Equilibria in Fe–Cr–C Alloys and Evaluation of Their Dusting Stability in Aggressive Carboniferous Atmospheres. Inorganic Materials, 2005,41(2): 133–139.
    [216]叶大伦,胡建华.实用无机物热力学数据手册.北京:冶金工业出版社. 2002.9
    [217] John C. Lippold, Damian J. Kotecki, welding metallurgy and weldability of stainless steels. Wiley-Insterscience, 2005, pg.10.
    [218] L.E.Svensson, B.Gretoft, Fe-Cr-C hardfacing alloys for high-temperature applications, Journal of Material Science, 1986, 21: 1015-1019.
    [219] S.Atamert, H.K.D.H.Bhadeshia, Microstructure and Stability of Fe-Cr-C Hardfacing Alloys, Materials Science and Engineering A, 1990, 130: 101-111.
    [220] Minkoff I. The physical metallurgy of cast iron. John Wiley and Sons, 1983. p.175–188.
    [221] W.C.Young, Roark's Formulas for Stress and Strain, 6th ed., McGraw-Hill Book Company, 1989.
    [222]束德林.金属力学性能,北京:机械工业出版社, 1999: 175.
    [223] Edgar C. Bain. Functions of the Alloying Elements in Steel, American Society for Metals, 1939, p127.
    [224] Metals Handbook, Vol. 8, Metallography and Phase diagram, American Society for Metals, Metals park, OH, 8th edition, 1973, p402.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700