宁武亚高山湖群浮游植物群落结构特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以山西宁武亚高山湖群浮游植物为研究对象。2007--2009年对该地区的浮游植物群落结构组成、现存量、生物多样性及水质等情况进行了调查研究,并且与其它地区湖泊的浮游植物进行了比较分析和探讨。
     宁武亚高山湖群是我国罕见的亚高山湖泊群系,处于海拔1771--1854m之间,有着特殊的地理位置和特有的气候特征。境内湖泊众多,环境复杂,水体多样,浮游植物资源十分丰富。通过对该湖群3次采集的标本进行定性定量的观察,共鉴定到浮游植物291种、变种及变型,隶属于8门,10纲,23目,45科,108属。每个湖泊均以硅藻门、绿藻门和蓝藻门为优势门,其它门的种类较少。但各个湖泊的种类数差别较大,其中马营海种类最多,干海最少。通过对优势科、优势属和优势种的统计发现它们的优势都比较明显。用两种方法统计的公共优势科有2科,分别为:脆杆藻科(Fragilariaceae)和舟形藻科(Naviculaceae);优势属有3属,分别为:脆杆藻属(Fragilaria)、舟形藻属(Navicula)和桥弯藻属(Cymbella);优势种有8种,分别为:蓝藻门的细小隐球藻(Aphanocapsa elachista)、铜绿微囊藻(Microcystis aeruginisa)和小席藻(Phormidium tenue),硅藻门的小环藻(Cyclotella sp.)、肘状脆杆藻(Fragilaria ulna)和尖针杆藻(Synedra acus)以及绿藻门的狭形纤维藻(Ankistrodesmus angustus)和小球藻(Chlorella vulgaris)。
     2009年五个湖泊浮游植物平均细胞密度为3.49×106 Cells/L,通过对该区域的浮游植物现存量和生物多样性指数进行分析发现:该湖群物种丰富,均匀度高,群落结构稳定,水质为轻污,属于中营养型;各个湖泊间比较,琵琶海浮游植物平均细胞密度最高,小海的平均细胞密度最低;公海水质最好,暖泉沟污染程度最大。
     暖泉沟不同于其它几个湖泊,它为一个开放式的观光湖泊,通过对该湖泊浮游植物现存量和生物多样性指数分析发现:该湖浮游植物平均细胞密度为2.24×106Cells/L,水质为轻污;从站点间比较,游艇处的平均细胞密度比指挥站高且污染程度大;从时间上比较,2009年比2008年的平均细胞密度高且污染程度大;从分层上比较:0.5m比表层的平均细胞密度高。
     通过对宁武亚高山湖群浮游植物与其它地区比较发现,宁武湖群浮游植物群落结构稳定,物种丰富且均匀,优势种也相对比较多。各个地区群落结构组成大部分都以硅藻、绿藻和蓝藻占优势,亚高山湖泊优势种大部分为硅藻,平原地区优势种为蓝藻和绿藻,可见海拔对浮游植物群落结构组成的影响主要是通过温度来起作用的,除此之外,周边环境和理化指标也是应考虑在内的重要影响因素。
In this paper, the phytoplankton community composition, biomass, biodiversity and water quality in Shanxi Ningwu subalpine lakes are investigated and studied from 2007 to 2009. What's more, they are discussed and compared with phytoplankton in other areas.
     Ningwu subalpine lakes are rare in China. The altitude is from 1771m to 1854m. They have a special geographical location and unique climate characteristics, and have many lakes, complex entertainment, all kinds of water area and very rich phytoplankton resources. There are 291 phytoplankton species or variants belonging to 8 Phyla,10 Classes,23 Orders,45 Families,108 Genus through qualitative and quantitative observation and identification. Bacillariophyta, Chlorophyta and Cyanophyta are dominant Phyla in all lakes, and other phyla are less. However, the species amounts are very different in each lake. The species amount of phytoplankton in mayinghai lake is the most, and the species amount in ganhai lake is the least. Through the statistical of the dominant families, dominant genera and dominant species, it is found that their advantages are very obvious. There are two common dominant families (Fragilariaceae and Naviculaceae) through two methods statistics. There are three dominant genera(Fragilaria, Navicula, Cymbella) and eight dominant species (Aphanocapsa elachista, Microcystis aeruginisa, Phormidium tenue, Cyclotella sp., Fragilaria ulna, Synedra acus, Ankistrodesmus angustus and Chlorella vulgaris).
     The phytoplankton average cell density of five lakes is 3.49×106 Cells/L in 2009. It is found that phytoplankton species are rich and even, and community structure is stable, and water quality is light-pollution and mid-eutrophic by the analysis of biomass and biodiversity index of phytoplankton in the region. Compared among each lake, the mean cell density of phytoplankton in pipahai lake is the most and Xiaohai lake is the least. Water quality of Gonghai lake is the best and Nuanquangou lake is the most serious.
     Unlike other several lakes, Nuanquangou lake is an open tourist lake. It is found that the phytoplankton mean cell density in Nuanquangou lake is 2.24×106 Cells/L, and its water quality is light-pollution through the analysis of phytoplankton biomass and biodiversity index. Compared between sampling sites, the phytoplankton average cell density in yacht site is more than Zhihuizhan site, and yacht sites pollution degree is more series. Compared between sampling time, the phytoplankton average cell density in 2009 is more than 2008, and pollution degree in 2009 is more series. Compared between different depths, the phytoplankton average cell density in 0.5m is more than the surface layer.
     Through comparing with other regions, phytoplankton community structure in Ningwu subalpine lakes is more stable, species much richer and evener, and the dominant species more. The most of phytoplankton community composition in all regions are Bacillariophyta, Chlorophyta and Cyanophyta. The most dominant species in subalpine lakes are diatoms, but the dominant species in plain areas are Cyanophyta and Chlorophyta. The major impact of altitude on phytoplankton is because of the difference of temperature. In addition, the surrounding environment and the physical and chemical indicators are also very important factors.
引文
[1]中国科学院中国自然地理编辑委员会.中国自然地理·地表水[M].北京:科学出版社,1981.
    [2]施成熙等.中国湖泊概论[M].北京:科学出版社,1989.3.
    [3]王洪道等.中国湖泊资源[M].北京科学出版社,1989.9.
    [4]史丹.湖泊富营养化问题及防治对策[J].资源开发与市场,2005,1(1):17-18.
    [5]刘连成.中国湖泊富营养化的现状分析[J].灾害学,1997,12(3):61-65.
    [6]刘建康.高级水生生物学[M].北京:科学出版社,2002.
    [7]金相灿,屠清英.中国湖泊富营养化[M].北京:中国环境科学出版社,1990:211-239.
    [8]梅洪,赵先富,郭斌等.中国淡水藻类生物多样性研究进展[J].生态科学,2003,22(4):356-359.
    [9]M. Tolotti, M. Manca, N. Angeli, G. Morabito, B. Thaler, E. Rott & E. Stuchlik. Phytoplankton and zooplankton associations in a set of Alpine high altitude lakes: geographic distribution and ecology. Hydrobiologia,2006,562:99-122.
    [10]E. Rott.Some aspects of the seasonal distribution of flagellates in mountain lakes. Hydrobiologia,1988,161:159-170.
    [11]C. S. Reynolds,G. H. M. Jaworski,J. V. Roscoe, D. P. Hewitt & D. G. George.Responses of the phytoplankton to a deliberate attempt to raise the trophic status of an acidic, oligotrophic mountain lake.Hydrobiologia,1998, 369/370:127-131.
    [12]Marolyn J. Parson & Bruce C. Parker.Seasonal pattern of ammonium (methylamine) uptake by phytoplankton in an oligotrophic lake. Hydrobiologia,1993,250:105-117.
    [13]Sonja Hausmann,Reinhard Pienitz.Seasonal water chemistry and diatom changes in six boreal lakes of the Laurentian Mountains (Quebec, Canada):impacts of climate and timber harvesting.Hydrobiologia,2009,635:1-14.
    [14]Sylvia Bonilla,Milla Rautio & Warwick F. Vincent. Phytoplankton and phytobenthos pigment strategies:implications for algal survival in the changing Arctic. Polar Biology,2009,32:1293-1303.
    [15]T. Frisk, A. Bilaletdin, H. Kaipainen, O.Malve & M. Mols.Modelling phytoplankton dynamics of the eutrophic Lake Vortsjarv, Estonia.Hydrobiologia,1999,414:59-69.
    [16]Kemal Celik . Tugba Ongun;The relationships between certain physical and chemical variables and the seasonal dynamics of phytoplankton assemblages of two inlets of a shallow hypertrophic lake with different nutrient inputs.Environ Monit Assess,2007, 24:321-330.
    [17]E.Yu. Mitrofanova & V.V. Kirillov.Algal endemism of Lake Teletskoye phytoplankton. Hydrobiologia,2006,568(S):77-81.
    [18]E.Walter Helbling, M. Eugenia Farias, M. Veronica Fernondez Zenoff & Virginia E.Villafane. In situ responses of phytoplankton from the subtropical Lake La Angostura(Tucuman, Argentina) in relation to solar ultraviolet radiation exposure and mixing conditions. Hydrobiologia,2006,559:123-134.
    [19]Evgeny A. Kurashov.The role of meiobenthos in lake ecosystems. Aquatic Ecology, 2002,36:447-463.
    [20]Ernesto J. Gonzalez.Nutrient enrichment and zooplankton effects on the phytoplankton community in microcosms from El Andino reservoir (Venezuela). Hydrobiologia,2000,434:81-96.
    [21]C. S. Reynolds.Phytoplankton designer or how to predict compositional responses to trophic-state change.Hydrobiologia,2000,424:123-132.
    [22]Colin Reynolds, Martin Dokulil & Judit Padisak.Understanding the assembly of phytoplankton in relation to the trophic spectrum:where are we now? Hydrobiologia, 2000,424:147-152.
    [23]L. Schluter & F. Mohlenberg.Detecting presence of phytoplankton groups with non-specific pigment signatures. Journal of Applied Phycology,2003,15:465-476.
    [24]Matthew P. Miller, Diane M. McKnight and Steven C. Chapra.Production of microbially-derived fulvic acid from photolysis of quinone-containing extracellular products of phytoplankton. Aquatic Science.2009,71:170-178.
    [25]张梅,李原,王若南.滇池浮游植物种类的动态变化[J].云南大学学报(自然科学版),2006,28(1):73-77.
    [26]吴乃成,徐耀阳,唐涛.滇池入湖河流大清河河口段浮游藻类格局研究[J].生态科学,2008,27(4):212-216.
    [27]周永兴,李伟.滇池水系不同水体冬季浮游生物群落组成与水质的关系[J].内蒙古林业调查设计,2009,32(4):6-11.
    [28]段金荣,张红燕,刘凯等.基于地理信息系统的滇池浮游植物生物多样性的研究 [J].浙江海洋学院学报(自然科学版),2006,25(3):322-326.
    [29]赖英.博斯腾湖浮游植物季节变化的研究.水生态学杂志[J],2009,2(5):104-106.
    [30]孙春梅,范亚文.松北地区人工湖藻类植物的群落组成术[J].哈尔滨师范大学自然科学学报,2008,24(3):69-72.
    [31]田家怡,田静,申保忠等.南水北调东线工程输水沿线浮游植物分布与多样性[J].山东科学,2008,21(1):28-34.
    [32]吴生才,陈伟民.太湖浮游植物生物量的周期性变化[J].中国环境科学,2004,24(2):151-154.
    [33]宋晓兰,刘正文,潘宏凯.太湖梅梁湾与五里湖浮游植物群落的比较[J].湖泊科学,2007,19(6):643-651.
    [34]陈家长,孟顺龙,尤洋等.太湖五里湖浮游植物群落结构特征分析[J].生态环境学报,2009,18(4):1358-1367.
    [35]郭春燕,李砧,谢树莲.太原市汾河景区浮游藻类及水质评价研究[J].山西大学学报(自然科学版),2006,29(2):205-208.
    [36]唐汇娟,谢平,刘丽.武汉东湖浮游植物群落结构的时空变化与环境因子的关系[J].中山大学学报(自然科学版),2008,47(3):100-108.
    [37]汤宏波,胡圣,胡征宇.武汉东湖甲藻水华与环境因子的关系[J].湖泊科学,2007,19(6):632-636.
    [38]张婷,李德亮,许宝红等.西洞庭湖区养殖水体浮游植物调查与水质评价[J].水生态学杂志,2009,2(5):12-18.
    [39]孔义军,杨浩文,林少君等.南亚热带城市浅水湖泊富营养化与浮游植物群落的时空特征:庆星湖为例.应用与环境生物学报[J],2009,15(2):153-160.
    [40]云宝琛,姜恩来,暴学祥等.长白山天池藻类的调查[J].松辽学刊(自然科学版),1992,(4):22-25.
    [41]朱大岗,孟宪刚,邵兆刚等.山西宁武地区高山湖泊全新世湖相地层划分及干海组的建立[J].地质通报,2006,25(11):1303-1310.
    [42]胡鸿钧,李尧英,魏印心等.中国淡水藻类[M].上海:上海科学技术出版社,1980:9-411.
    [43]朱蕙忠,陈嘉佑.中国西藏硅藻[M].北京:科学出版社,2000.
    [44]饶钦止.中国鞘藻目专志[M].北京:科学出版社,1979.
    [45]黎尚豪,毕列爵等.中国淡水藻志(第五卷)[M].北京:科学出版社,1998.
    [46]朱浩然.中国淡水藻志(第二卷)[M].北京:科学出版社,1991.
    [47]齐雨藻,李家英等.中国淡水藻志(第十卷)[M].北京:科学出版社,2004.
    [48]虞功亮,宋立荣,李仁辉.中国淡水微囊藻属常见种类的分类学讨论[J].植物分类学报,2007,45(5):727-741.
    [49]吉利明,祝幼华,王少飞.鄂尔多斯盆地三叠系延长组葡萄藻形态特征[J].古生物学报,2008,47(2):185-194.
    [50]齐雨藻,沈萍萍,王艳.棕囊藻属(Phaeocystis)的分类与生活史(综述)[J].热带亚热带植物学报,2001,9(2):174-184.
    [51]陈丽芬,章群,许忠能等.棕囊藻属的分类现状[J].生态科学,2003,22(1):093-094.
    [52]章宗涉,黄祥飞.淡水浮游植物研究方法[M].北京:科学出版社,1991.
    [53]沈韫芬,章宗涉.龚循矩等.微型生物监测技术[M].北京,中国建筑工业出版社,1990.
    [54]吴沿友,李萍萍,王宝利等.红枫湖百花湖水质及浮游植物的变化[J].农业环境科学学报,2004,23(4):745-747.
    [55]李喆,姜作发,赵文阁等.新疆乌伦古湖浮游植物种群结构特征[J].水产学杂志,2008,21(2):15-20.
    [56]叶尚明,苏德学,刘栓.新疆乌伦古湖水生生物资源调查研究[J].水利渔业,2004,24(2):51-53.
    [57]杨建新,祁洪芳,史建全等.青海湖夏季水生生物调查[J].青海科技,2008,6:19-25.
    [58]潘继征,熊飞,李文朝等.抚仙湖浮游植物群落结构、分布及其影响因子[J].生态学报,29(10):5376-5385.
    [59]李荫玺,王林,祁云宽等.抚仙湖浮游植物发展趋势分析[J].湖泊科学,2007,19(2):223-226.
    [60]潘继征,熊飞,李文朝等.抚仙湖浮游植物群落结构、分布及其影响因子[J].生态学报,2009,29(10):5376-5380.
    [61]武发思,葛亮,蔡泽平等.甘肃省苏干湖浮游植物多样性研究[J].西北植物学报,2008,28.
    [62]葛大兵,吴小玲,周慧等.岳阳南湖浮游植物与富营养化特征分析[J].水资源保护,2005,21(2):46-49.
    [63]王全喜,陈立群,包文美.五大连池的浮游绿藻[J].哈尔滨师范大学自然科学学报,1992,8(2):88-96.
    [64]孙嘉龙,董泽琴,瞿丽雅等.贵州万峰湖浮游植物的调查及其指数评价[J].安徽农业科学,2008,36(23):10096-10097.
    [65]张良璞.巢湖藻类群落多样性分析[J].生物学杂志,2007,24(6):53-72.
    [66]李荣旗,杜桂森,李慧敏等.北京稻香湖园林水系的浮游植物与水质变化[J].世界科技研究与发展,2008,30(3):307-309.
    [67]裴国凤,刘国祥,胡征宇.云南高原湖泊沿岸带底栖藻类群落的分布[J].武汉植物学研究,2008,26(4):373-378.
    [68]周晓,高信芬,羊向东等.九寨沟风景区秋季水体硅藻的海拔梯度变化[J].应用与环境生物学报,2009,15(2):161-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700