滴水湖及其外围水体浮游植物群落结构比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滴水湖位于上海市浦东新区临港新城内,是目前国内最大的人工湖泊,也是临港新城水系的核心。滴水湖在塑造城市景观生态,优化地区小气候环境起着相当重要的作用,它的水质好坏直接关系到临港新城未来城市的发展和旅游观光,同时间接反映出上海市水环境的安全情况。滴水湖的水源来自附近水体,附近的水体环境的好坏也会影响到滴水湖水质状况。自2009年1月至2010年12月对滴水湖的浮游植物进行了全面的调查研究,并从2009年3月起,增加对滴水湖的外围水体进行采样研究,比较分析滴水湖及其外围水体浮游植物群落结构的差别与联系,进一步探讨滴水湖浮游植物群落演替情况,并对滴水湖及其外围水质状况进行生态学评价,为滴水湖的水质保护和未来旅游开发提供了生物学依据。
     主要结果如下:
     1、2009年1月~2010年12月,滴水湖共鉴定浮游植物146种,隶属于8门64属。浮游植物平均数量为1698万个/L;数量组成主要以绿藻门为主,其次是硅藻门和隐藻门。浮游植物数量有明显的季节变化:夏季最高,冬季最低。滴水湖的浮游植物优势种主要有以下8种:蓝藻门的细小平裂藻( Merismopedia minima G. Beck )和微小色球藻( Chroococcus minutus (Kütz.)Nag.),绿藻门的球衣藻(Chlamydomonas globosa Snow),硅藻门的扁圆卵形藻(Cocconeis placentula Ehr.),甲藻门的裸甲藻属(Gymnodinium sp.),隐藻门的啮蚀隐藻(Cryptomonas erosa Ehr.)和尖尾蓝隐藻(Chroomonas acuta Uterm),金藻门的小色金藻(Chromulina pygmaea Nygaard)。滴水湖湖区各个样点水域的浮游植物群落结构较为均一,差别不大。
     2、2009年1月-2010年12月期间,滴水湖外围水体共鉴定浮游植物223种,隶属于8门86属。浮游植物数量变动范围为425-1711万个/L,生物量变动范围为2.60-9.79mg/L。
     外围水体浮游植物优势种主要有以下11种:绿藻门的四鞭藻属(Cateria sp.)、球衣藻(Chlamydomonas globosa Snow)、二尾栅藻(Scenedesmus bicaudatus (Hansgirg) Chodat)、四尾栅藻(Scenedesmus quadricauda (Turp.)Brébisson),硅藻门的扁圆卵形藻(Cocconeis placentula Ehr.)、变异直链藻(Melosira variansAgardh.)、梅尼小环藻(Cyclotella meneghiniana Kützing)、菱形藻属(Nitzschia sp.),甲藻门的裸甲藻属(Gymnodinium sp.),隐藻门的啮蚀隐藻(Cryptomonas erosa Ehr.)和尖尾蓝隐藻(Chroomonas acuta Uterm)。各样点优势种类存在差异,但是四鞭藻属(Cateria sp.)、啮蚀隐藻(Cryptomonas erosa Ehr.)和尖尾蓝隐藻(Chroomonas acuta Uterm)为各样点常见的优势种。
     3、采用spss软件进行聚类分析,将滴水湖及其外围水体划分为6种生境。6种生境浮游植物种类数及浮游植物群落结构差异较大。大治河(W1)、农场中心河(W2)、苦草种植区(W9)浮游植物数量远远低于湖区。而藻型水体和草型水体的浮游植物数量接近于滴水湖浮游植物的数量。
     从优势种变化来看,滴水湖优势种季节更替较为明显;而外围水体中,生境复杂多样,优势种季节更替不明显。
     根据浮游植物水质生态学评价,结果显示:目前滴水湖的水质处于中-富营养水平,外围水体的水质则处于富营养水平。
Dishui Lake is located in Pudong Qu Lingang New city, Shanghai, which is the largest man-made lake in China, and is the center of Lingang water system. Dishui Lake plays an important role in shaping the urban landscape ecology, and the microclimate. It is directly connected to the future development and tourism of the new city. Furthermore, it can reflect the water quality status of Shanghai. Water in Dishui Lake comes from the surrounding waters. Therefore, the quality of the surrounding waters can influence the water in Dishui Lake. Phytoplankton in Dishui Lake had been sampled from 2009 to 2010. Phytoplankton in the surrounding waters had been sampled since March 2009. The community structures of phytoplankton in the lake and the surrounding waters were compared, in order to know the succession of the phytoplankton community structure and its sp.ecificity. Furthermore, predict the pollution status of the waters. It provides the biology basis for the water protection and the future tourism development. The main results are listed as follows:
     1. There are146 species of phytoplankton in Dishui Lake, which belong to 64 genera of 8 phyla. The abundance of phytoplankton is 1698×104ind/L; Chlorophyta is the main phytoplankton, following is Bacillariophyta and Cryptophyta. Phytoplankton biomass has obvious change with seasons, more in summer, less in winter. There are 8 dominant species in Dishui Lake: Merismopedia minima G.Beck, Chroococcus minutus (Kütz.)Nag., Chlamydomonas globosa Snow, Cocconeis placentula Ehr., Gymnodinium sp., Cryptomonas erosa Ehr., Chroomonas acuta Uterm and Chromulina pygmaea Nygaard.
     The community structure of phytoplankton in Dishui Lake is well-distributed.
     2. There are 223 species of phytoplankton was identified in the surrounding waters from March 2009 to December 2010, which belong to 86 genera of 8 phyla. The abundance of phytoplankton is between 425 and 1711×104ind/L, and the average biomass is between 2.60 and 9.79 mg/L.
     There are 11 dominant species in the surrounding waters: Cateria sp., Chlamydomonas globosa Snow, Scenedesmus bicaudatus (Hansgirg) Chodat, Scenedesmus quadricauda (Turp.)Brébisson, Cocconeis placentula Ehr., Melosira varians Agardh., Cyclotella meneghiniana Kützing, Nitzschia sp., Gymnodinium sp., Cryptomonas erosa Ehr. and Chroomonas acuta Uterm.
     The dominant species in different site are different, but Cateria sp.、Cryptomonas erosa Ehr. and Chroomonas acuta Uterm are the same dominant species in every sampling site.
     3.Cluster by spss software, Dishui Lake and the surrounding waters is divided into 6 habitat., which had great difference among phytoplankton. Among the surrounding waters, the abundance of the phytoplankton in Dazhi River (W1) , Center of the farm river(W2) and eelgrass growing aera(W9)were less than Dishui Lake. However, the abundance of the phytoplankton in base for algae-water and grass-water is closed to the Dishui Lake.
     The variation of the dominant species changes with the seasons is obvious in Dishui Lake, the surrounding waters is not obvious.
     According to the ecological evaluation criterions, the results showed that the water quality of Dishui Lake was at middle-eutrophic eutrophic level. The water quality of the surrounding waters was at eutrophic level.
引文
[1] Reynolds C S. phytoplankton periodicity: the interactions of form,function and environmental variability[J]. Freshwater Biology. 1984, 14: 111-142.
    [2]刘建康.高级水生生物学[M].北京:科学出版社. 1999: 176-177.
    [3]胡鸿钧,李尧英,魏印心,朱惠忠,陈嘉佑,施之新编著.中国淡水藻类[M].上海:上海科技出版社, 1980.
    [4]刘光钊等编译.水体富营养化及其藻害[M].北京:中国环境科学出版社, 2005.
    [5]章宗涉,黄祥飞编著.淡水浮游生物研究方法[M].北京:科学出版社, 1991.
    [6]沈银武等.富营养湖泊滇池水华蓝藻的机械清除[J].水生生物学报, 2004, 28(2): 131-136.
    [7]杜桂森等.官厅水库水体营养状况分析[J].湖泊科学, 2004, 16(3): 277-281.
    [8]周广杰,况琪军,胡征宇等.三峡库区四条支流藻类多样性评价及“水华”防治[J].中国环境科学, 2006, 26(3): 337-341.
    [9] http://www.chinanews.com.cn/sh/news/2008/02-28/1176516.shtml.2008-2-28.
    [10]汤宏波,刘国祥,胡征宇.三峡库区高岚河甲藻水华的初步研究[J].水生生物学报, 2006, 30(1): 47-51.
    [11]黄玉瑶.内陆水域污染生态学原理与应用[M].北京:科学出版社, 2001.
    [12]沈蕴芬,章宗涉,龚循矩,顾曼如,施之新,魏印心.微型生物监测新技术[M].中国建筑工业出版社, 1990.
    [13]陈菊芳,齐雨藻,徐宁.大亚湾澳头水域浮游植物群落结构及周年数量动态[J].水生生物学报. 2006, 30(3): 311-317.
    [14] Buzzi F. phytoplankton assemblages in two sub-basins of Lake Como[J]. Journal of Limnology. 2002, 61(1): 117-128.
    [15] Ehrlich, P. R, Ehrlich, A. H., Holdren, J. P. 1977. Ecocience: Populatioa, Resources, Environment. San Francisco: W. H. Fresman and Company.
    [16] Tilman D, Kiesling, R L. Freshwater algal ecology: taxonomic tradeofs in the temperature dependence of nutrient competitive abilities. In: M. J. Klug&C. A . Reddy, eds, Current Persp.ective in Microbial Ecology, proceedings of the 3rd International Symposium on Microbial Ecology, 1984.
    [17] Welch, E. B. 1980. Ecological effects of waster Water. New York:Cambridge University Press
    [18] Sehefer M S, Rinaldi A, Gragnani LR Mur, and Van Nes E H.On the dominance of filamentous cyanobaeteria in shallow, turbid lakes[J]. Ecology, 1997(78):272--282
    [19]颜天,周名江,钱培元.赤潮异湾藻的生长特性[J].海洋与湖沼, 2002, 33(2): 209—214.
    [20]颜天,周名江,钱培元.环境因子对塔码亚历山大藻生长的综合影响[J].海洋学报, 2002, 24(2): 114-120.
    [21] Harding, W.Meeson, W.Fisher, PhytoPlankton Production in two East Coast Estuaries: Photosynthesis-light Functions and Pattems of Carbon Assimilation in Chesapeake and Delaware Bays[J]. East Coastal Shelf Science, 1986, 23:773-806.
    [22]王荣,焦念志,李超伦,沈志良,吉鹏.胶州湾的初级生产力和新生产力[J].海洋科学集刊, 1995, 36: 181-194.
    [23] ELENALITCHMAN. Growth rates of Phytoplankton under fluctuating light[J]. Freshwater Biology, 2000, 44: 223-225.
    [24] Findlay D L, Kasian S E M. Resp.onse of a Phytoplankton community to controlled partial recovery from experimental acidification[J]. Can J fish aquat Sci, 1991(48):1022-1029.
    [25] BrettumP. Changes in the volume and composition of phytoplankton after experimental acidification of a humic lake[J]. Environment International, 1996(22): 619-628.
    [26] Semina,H.J. The size of phytoplankton cells in the Pacific Ocean [J]. Hydrobiology, 1972, 57:177-205.
    [27]肖利娟.海南省7座大中型水库浮游植物群落特征和富营养化分析[D].暨南大学硕士学位论文, 2008.
    [28]董旭辉,羊向东,潘红玺.长江中下游地区湖泊现代沉积硅藻分布基本特征[J].湖泊科学, 2004, 12(4): 298-304.
    [29]李夜光,李中奎,耿亚红等.富营养化水体中N, P浓度对浮游植物生长繁殖速率和生物量的影响[J].生态学报, 2006, 26(2): 317-325.
    [30]刘建康.高级水生生物学[M].北京:科学出版社1999.
    [31]曲翠.兴凯湖浮游植物多样性及群落结构研究[D].东北林业大学硕士学位论文, 2009.
    [32] DeMot W R.The influence of Prey hardness on DaPhnia’s seleetivity for large Prey[J].Hydrobiologia 1994(307): 127-138.
    [33]刘建康,谢平.用醚蠕直接控制微囊藻水华的围隔试验和湖泊实践[J].生态科学, 2003, 22(3): 193-196.
    [34]朱惠.鱼类对藻类消化吸收的研究(I)自鳝对斜生栅藻的消化吸收[J].水生生物学集刊,1982,(7):547一550.
    [35]朱惠,邓文瑾.鱼类对藻类消化吸收的研究(Il)鳝、编对微囊藻和裸藻的消化吸收[J].鱼类学论文集, 1983, (3): 77一91.
    [36]石志中,方德奎,张卫.白鲍等鱼种对螺旋鱼腥藻消化吸收的示踪实验报告[J].水生生物学集刊, 1975, 5: 497一502.
    [37]阮景荣,戎克文,王少梅.微型生态形态中鲍、蠕下行影响的实验研究一一浮游生物群落和初级生产力[J].湖泊科学, 1995, 4:334-341.
    [38]谷孝鸿,刘桂英.滤食性鲍编鱼对池塘浮游生物的影响[J].农村生态环境,1992,12(l):6-10,41.
    [39]胡维平.净化局邵水体的物理生态工程实验与太湖富营养化数值模拟[D],南京:中国科学院南京地理与湖泊所, 1999.
    [40]李尚志,唐永琼.利用水生植物对污染水体进行生态修复[J].深圳大学学报:理工版2005, 22 (3) : 272-276.
    [41]陈亮.惠州西湖浮游植物群落结构特征及其对生态系统修复的响应[D].暨南大学硕士学位论文, 2010.
    [42]蔡庆华.湖泊富营养化综合评价方法[J].湖泊科学, 1997, 9(1): 89-94.
    [43]赵生才.我国湖泊富营养化的发生机制与控制对策[J].地球科学发展, 2004, 19(1): 138-140.
    [44]孔繁翔,高光.大型浅水富营养化湖泊中蓝藻水华形成机制的思考[J].生态学报, 2005, 25(3): 589-595.
    [45]朱孔颖.湖泊富营养化原因及控制措施[J].江苏环境科学, 2004, 17(supp): 63-64.
    [46]顾宗濂.中国富营养化湖泊的生物修复[J].农村生态环境., 2002, 18(1): 42 - 45.
    [47]谢雄飞,肖锦.水体富营养化评述[J ].四川环境, 2000 , 19 (2) :22– 25.
    [48]袁龙义,李伟,刘贵华.湖泊富营养化的生态影响及治理措施[J].湖泊农业科学, 2004, (5): 13-15.
    [49]刘培桐.环境学导论[M].北京:高等教育出版社, 1985.
    [50]贺丽君,龚洁,赖承程,谷颖慧.湖泊富营养化的成因及防治对策[J].工业安全与环保, 2008, 34(9): 23-24.
    [51]彭近新,陈惠君.水质富营养化与防治[M].北京:中国环境科学出版社, 1988.
    [52]余涛.巢湖浮游植物群落结构[D].安徽大学硕士学位论文, 2010.
    [53]李汉卿,谢文焕,等.环境污染与生物[M].哈尔滨:黑龙江科学技术出版社, 1985.
    [54] Carlson R E., A trophic state index for lakes[J]. Limnol Oceanogr.1977, 22(2): 361-366.
    [55]雷光英,杨宇峰,王庆,胡韧,王朝晖.珠江广州河段水质和浮游植物群落特征[J].暨南大学学报, 2007, 28(3): 302一307.
    [56]王炜.中国环境科学. 1985, 5(3): 31一36.
    [57]祝玉坷,谢淑琦.从浮游藻类的种群看汾河水系太原河段的污染等[J].环境科学, 1981, 2(5): 51一55.
    [58]冯建社.白洋淀浮游植物与水质评价[J] .江苏环境科技, 1999,12( 2) : 27-29.
    [59]晏妮,王洋,潘鸿,等.利用浮游植物群落结构特征评价乌江沙砣水电站库区水质状况[J] .贵州科学, 2006, 24 ( 1 ) : 67-72.
    [60]孟顺龙,陈家长,胡庚东,等.太湖蠡湖浮游植物群里特征及其对水质的评价[J].长江流域资源与环境, 2010, 19(1): 30-36.
    [61]陈立群,王友联,王全喜,等.镜泊湖的浮游藻类及水质评价[J].哈尔滨师范大学自然科学学报, 1994 , 10( 1 ): 80- 84 .
    [62]包军,王立伟,苏春东.通过监测浮游植物评价红旗水库水质现状和发展趋势[J].环境研究与监测,2007,20(1): 14一25.
    [63]吴波,陈德辉,吴琼,等.黄浦江浮游植物群落结构及其对水环境的指示作用[J].武汉植物学研究, 2007, 25 (5) : 467 - 472 .
    [64]常秀岭,黄道明,谢文星,张庆,谢山,杨汉运.红旗湖水生植被恢复重建与浮游植物变化的研究[J].水利渔业, 2002, 22(5): 45-47.
    [65] Froneman P W. Food web dynamics in a temperate temporarily open/close estuary (SouthAfriea) [J]. Estuarine, Coastal and Shelf Science, 2004, 59: 87- 95.
    [66] Pham N N, Huismanb J, Sommeijera B P.Simulation of three-dimensional phytoplankton dynamics:competition in light-limited environments[J],Journal of computational and applied mathematies, 174: 57 - 77.
    [67]李纯厚,林钦,张汉华等.大亚湾大鹏澳网箱养殖水域的浮游植物生态特征研究[J],农业环境科学学报, 2005, 24(4): 784 -789.
    [68]Rey P A, Taybr J C, Laas A. Determining the possible application value of diatoms as indications of general water quality a comparison with SASS[J], Water SA, 2004, 30: 32-332.
    [69] Ferreira J G, Woff W J, Simas T C.Does biodiversity of estuarine phytoplankton depend on hydrology[J], Ecological Modelling, 2005, 187: 513 - 523.
    [70]赵爱萍,刘福影,吴波,等.上海淀山湖浮游植物[J].上海师范大学学报(自然科学版) , 2005, 34 (4) : 70– 76.
    [71]章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社. 1991.
    [72]湖泊富营养化调查规范(第二版)[M].中国环境科学出版社,1990.
    [73]毕列爵,胡征宇,凌元杰,梁良弼,刘国祥.中国淡水藻志第八卷绿球藻目(上)[M].北京:科学出版社, 2004.
    [74]施之新,王全喜,谢树莲,戴健寿.中国淡水藻志第六卷裸藻门[M].北京:科学出版社,1999.
    [75]王全喜,何群,包文美.东北淡水藻类的研究II-黑龙江省水网藻科初报.哈尔滨师范大学自然科学学报[J]. 1990,6 (3):71-81.
    [76]王全喜,吕淑慧,包文美.东北淡水藻类的研究I-栅藻属Scenedesmus.哈尔滨师范大学自然科学学报[J], 1991, 7(生物专辑): 99-112.
    [77]魏印心.中国淡水藻志第七卷绿藻门双星藻目中带鼓藻科鼓藻目鼓藻科第1册[M].北京:科学出版社, 2003.
    [78]朱惠忠,陈嘉佑. 2000.中国西藏硅藻[M].北京:科学出版社.
    [79] Jiang J G, Shen Y F. Application and validation of a new biotic index using data from several water systems [J].Environ.Monitor. 2003, 5 (8):71-87.
    [80]李晓波,许夏玲,陈德辉,王全喜.上海滴水湖小色金藻种群变化[J].上海师范大学学报(自然科学版) , 2009, 28(2): 193 - 196.
    [81]孟顺龙,陈家长,范立民,等.2007年太湖五里湖浮游植物生态学特征[J].湖泊科学, 2009, 21(6): 845 - 854.
    [82]张才学,孙省利,谢少英等.湖光岩玛珥湖的浮游植物[J].水生生物学报,2008, 32(5): 620 - 630.
    [83]谢钦铭,李长春,彭赐莲.鄱阳湖浮游藻类群落生态的初步研究[J].江西科学, 2000, 18(3): 162-166.
    [84]宋辞,于洪贤.镜泊湖浮游植物多样性分析及水质评价[J].东北林业大学学报, 2009, 37(4): 40-42..
    [85]李荫玺,王林,祁云宽,唐芳.抚仙湖浮游植物发展趋势分析[J].湖泊科学, 2007, 19(2):223-226.
    [86]马晓东,陈亚宁,黄适,张媛媛,石磊.新疆柴窝堡湖浮游植物群落结构及其多样性[J].干旱区资源与环境, 2009, 23(4): 191-195.
    [87]饶钦止,章宗涉.武汉东湖浮游植物的演变(1956-1975)和富营养化问题[J].水生生物学集刊, 1980, 7(1): 1-17.
    [88]邓建明,蔡永久,陈炜宇,等.洪湖浮游植物群落结构及其环境因子的关系[J].湖泊科学,2010, 22(1): 70-78.
    [89]柳丽华,左涛,陈瑞盛等. 2004年秋季长江口海域浮游植物的群落结构和多样性[J].海洋水产研究, 2007, 28(3): 112-119.
    [90]潘继征,熊飞,李文朝,柯凡.抚仙湖浮游植物群落结构、分布及其影响因子[J].湖泊科学2009, 29(10): 5376-5385.
    [91]袁伟玲,曹凑贵,汪金平,等.稻鱼共作生态系统浮游植物群落结构和生物多样性[J].生态学报, 2010,30(1): 253-257.
    [92]马成学,刘曼红,黄璞祎,等.镜泊湖枯水期和丰水期浮游植物群落结构[J].东北林业大学学报, 2010,38(2): 35-37.
    [93]顾林娣,陈坚,陈卫华,等.苦草种植水对藻类生长的影响[J] .上海师范大学(自然学报版), 1994, 23( 1) : 62-68
    [94]孙文浩,余叔文.相生相克效应及应用[J].植物生理学通讯, 1992, 28( 2) : 81-87.
    [95]刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜[J].长之流域资源与环境, 1999, 8(3): 312-319.
    [96] Brook, A. J., Planktonic algae as indicators of lake types, with sp.ecial reference to the Desmidiaceae[J]. Limmol Oceanogr. 1965, 10: 403-411.
    [97]王明翠,刘雪芹,张建辉.湖泊富营养化评价方法及分级标准.中国环境监测, 2002, 18 (5) : 47-49.
    [98]李雪松,梁君荣,陈长平,等.泉州湾虾池浮游植物种类多样性研究[J].厦门大学学报, 2006, 45 (5) : 234 - 239.
    [99]蒙仁宪,刘贞秋.以浮游植物评价巢湖水质污染及富营养化[J].水生生物学报,1988,12(1): 14-26.
    [100]章宗涉,莫珠成,戎克文.用藻类监测和评价图们江的水污染[J].水生生物学集刊,1983,8(1): 97-104.
    [101]李晓波.滴水湖浮游植物群落结构变化及其水质评价[D].上海师范大学硕士论文,2009.
    [102]许夏玲.滴水湖浮游植物群落结构变化及其与环境因子关系的研究[D].上海师范大学硕士论文, 2008.
    [103]吴芝瑛,虞左明,盛海燕,等.杭州西湖底泥疏浚工程的生态效应[J]. 2008, 20(3): 277- 284.
    [104] WILLEN E. Planktonic green algae in an acidification gradient of nutrient - poor lakes [J]. Archrive Protis-takend, 1992, 141: 47 - 64.
    [105] GIROLDOD, V IEIRA A. Assimilation and release of 14C in a tropical strain of Cryptomonas obovata (Cryptophyceae) exposed to several irradiances [J]. J Plankton Res, 1999, 21: 1911 -1921.
    [105]朱梦杰,汤琳,吴阿娜,等.滴水湖浮游植物群落结构特征初探[J].科技信息, 2009, 26: 696 - 697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700