聚合物熔体表面效应与平板微器件的注塑成型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面具有微细结构的塑料平板制件一聚合物平板微器件,可广泛应用于生命、化学分析、光学通讯等领域。微注塑是制造聚合物平板微器件的重要方法,熔体充型是微注塑成型的关键环节,而在微尺度条件下,熔体表面效应有可能对充型质量有显著影响。本文以聚合物平板微器件注塑成型为研究对象,分析表面效应对于熔体充型流动的影响,构建适用于微注塑充型的理论模型和CAE核心分析模块,针对微结构填充不足和平板翘曲等问题,开展微注塑模具制造与注塑成型工艺研究,制造了典型的聚合物平板微器件一微流体器件。主要研究内容如下:
     1.熔体表面效应测试与分析研究。实验测试了聚合物材料熔体的表面张力系数以及在硅、镍等基底材料上的静态接触角,分析了温度对表面张力系数及接触角的影响,建立用于描述熔体表面特性和流动充型的理论模型。
     2.微注塑充型分析的核心模块构建与充型过程分析。借助开源代码在动量方程中加入描述熔体表面特性的本构方程和微尺度粘度本构方程,构建了适用于微注塑成型CAE充型过程分析模块。针对微沟道的注塑充型过程,数值模拟了微结构部分的填充过程,研究了微尺度下表面效应对微注塑充型过程的作用机制。
     3.型芯可插拔式微注塑模具结构设计与制造。针对聚合物平板微器件小批量多样化制造需求,设计并制造了一种型芯可插拔式微注塑模具结构,采用定模板阶梯型插槽配合,实现型芯灵活更换;采用提高模具配合面加工质量、多点对称布置推杆、背向脱模等方法,使得型芯受力均匀,降低硬脆材料型芯的损坏几率;通过辅助抽真空结构减小熔体流动阻力;加入密封框提高型腔密封性。
     4.聚合物平板微器件优化实验研究。采用正交实验的方法研究了工艺参数对不同线宽微沟道填充率和平板翘曲变形的影响,确定了关键因素的主次影响顺序,得到实验最佳工艺参数组合;采用调整平板件的应力分布的方法,在制件中设计了辅助微结构减小了翘曲变形量,通过注塑实验验证了方法可行。
     5.微流体器件的注塑成型与实验测试。注塑成型了两种微流体器件,其微通道边界平直,没有明显的欠填充缺陷,翘曲量未对键合产生影响,进行多组参数测试没有漏液、键合失效、微通道边缘效应等问题,能满足使用要求。利用制造的蛇形被动式混合器,在1μ1.min-1的进样速度下实现两种液体的均匀混合。利用制造的液滴生成器能够稳定生成直径从153.7岬到69.4岬的微液滴。
Flat polymer micro-device is plastic plate part with micro structures, which is widely applied in life science, chemical analysis, optical communication, etc. Micro injection molding is an important manufacturing method for flat polymer micro-devices. Melt filling is a key step in micro injection molding. The surface effect of melt will be significant to filling quality under micro-scale conditions. In this study, by taking the micro injection molding of polymeric flat micro-device as the research object, the influence of surface effect on filling flow was analyzed, and the theoretical model and core analysis module of CAE were established for the filling process of micro injection molding. In order to solve the problems of filling shortage of micro structures and warpage, the mold fabrication and process research for micro injection molding were carried out. Finally, the micro fluidic devices, typical polymeric plate micro-devices, were fabricated. The main contents of this thesis are as follows:
     1. Research of melt surface effect test and analysis
     Surface tension coefficient of polymers and static contact angle of polymers on Si, Ni substrates were tested. The influence of temperature on surface tension coefficient and contact angle was analyzed and theoretical model was established to describe the melt surface effect and filling process.
     2. Core model establishment and analysis of filling process in micro injection molding
     By means of the open source codes, constitutive equations were added into momentum equation to describe the surface effect of melt and micro-scale viscosity. A CAE module was built to analyze the filling process of micro injection molding. Aiming at filling process of micro grooves, numerical simulation was carried out for filling process of micro structures, and the mechanism of surface effect on filling process of micro injection molding was researched under micro-scale condition.
     3. Structural design and fabrication of a core-removable micro injection mold
     According to the manufacturing requirements of polymeric plate micro-devices such as small quantity and diversification, a core-removable micro injection mold was designed and fabricated. Assembly of step-like slot and fixed mold plate was adopted to realize the flexible replacement of cores. By quality improvement of mating surface in mold, symmetric distribution of various push rods and backward demould, the loads of core were more uniform and the damage probability of cores with brittle-rigid materials was decreased. An assistant vacuum structure was adopted to reduce the resistance of melt fluidic and sealing frame was used to improve sealing performance of cavity.
     4. Experimental research on optimization of polymeric plate micro-device
     Orthogonal experiment was adopted to investigate the effect of process parameters on filling rate of micro grooves with different widths. The primary-secondary influential order of key factors was determined and combination of optimized levels was obtained. To reduce warpage of flat device, stress distribution was adjusted by the specially designed micro structures in plate device. Experiment results of micro injection verified the validity of this technique.
     5. Micro injection molding and experimental test of micro fluidic devices
     Two micro fluidic devices were fabricated through micro injection molding, the micro channels boundaries of which were straight. The defect of less filling was not obvious and the warpage did not influence the bonding process. The problems such as liquid leakage, bonding failure and boundary effect of micro channel were not discovered after multi-groups parameter tests. The fabricated snake-shaped passive mixer successfully realized uniform mixing of two kinds of liquids at sample injection speed of 1μl·min-1, and the fabricated droplet generator can steadily generate liquid droplets with various diameters from 153.7μm to 69.4μm. This confirmed that the two devices achieved the requirements of application.
引文
[1]USAMA M, ATTIA S M, JEFFREY R A. Micro-injection moulding of polymer microf luidic devices. Microfluid Nanofluid [J].2009,7(1):1-28.
    [2]ALEKSANDAR K A, JOHN P C. Micromolding Product Manufacture- A progress report [J]. ANTEC,2004,1:748-751.
    [3]THORSEN T, MAERKL S J, QUALCE S R. Microfluidic large scale integrate chip[J]. Sciences 2002,298:580-584.
    [4]YAGER P, EDWARDS T, FU E, et al. Microfluidic diagnostic technologies for global public health [J]. Nature,2006,442:412-418.
    [5]MALIC L, BRASSARD D, VERES T, et al. Integration and detection of biochemical assays in digital microfluidic LOC devices [J]. Lab chip,2010,10:418-431.
    [6]杨友麒.微尺度和纳米尺度过程系统工程的进展和挑战[J].现代化工,2007,27(10)1-9.
    [7]KIKUTANI Y, UENO M, HISAMOTO H, et al.Continuous-flow chemical processing in three-dimensional microchannel network for on-chip integration of multiple reactions in a combinatorial mode [J]. QSAR. COMB. Sci,2005,24:742-757.
    [8]ZHOU J, PYAYT A, DALTON L R, et al. Photobleaching fabrication of microring resonator in a chromophore - containing polymer [J]. IEEE Photonics Technology Letters,2006,18 (21):2221-2223.
    [9]TURNER A C, FOSTER M A, GAETA A L, etc. Ultra-low power parametric frequency conversion in a silicon microring resonator [J]. OPTICS EXPRESS,2008,16 (7): 4881-4887.
    [10]MENG Fantao, LUO Gang, MAXIMOV Ivan. Fabrication and characterization of bilayer metal wire-grid polarizer using nanoimprint lithography on flexible plastic substrate. Microelectronic Engineering, (2011), doi:10.1016/j.mee.2011.06.008
    [11]HUANG C K. Polymeric nanof eatures of 100nm using injection moulding for replication [J]. Micromech. Microeng,2007,6 (17):1518-1526.
    [12]陈庆伟,刘正舜.背光模组技术介绍[J].电子与材料杂志,1999,1(1):104-107.
    [13]张增宝,翁志成,丛小杰,等.液晶背投电视中蝇眼透镜阵列照明系统的设计[J].光学精密工程,2002,10(2):126-129.
    [14]王信阳.背光模组用导光板发展课题[J].光连双月刊,2003,44(3):41-44.
    [15]蒋炳炎,沈龙江,罗建华,等.微结构特征对导光板翘曲变形的影响[J].光学精密工程,2007,15(2):180-185.
    [16]JACOBSON S C, HERGENROEDER R, KOUTNY L B, et al. Effects of injection schemes and column geometry on the performance of microchip electrophoresis devices [J]. Anal. Chem,1994,66:1107-1113.
    [17]BECKER H, LOWACK K, MANZ A. Planar quartz chips with submicron channels for two-dimensional capillary electrophoresis applications [J]. Micromech. Microeng, 1998,8:24-28.
    [18]MANZ A, FETTINGER J C, VERPOORTE E, et al. Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century's technology or just a fashionable craze [J]. TrAC Trends in Analytical Chemistry,1991, 10:144-149.
    [19]刘军山.PMMA集成毛细管电泳芯片制作工艺研究[D].大连:大连理工大学机械工程学院,2005.
    [20]YANG D, XU Z, LIU C, et al. Experimental study on the surface characteristics of polymer melts [J]. Colloids Surf. A:Physicochem. Eng. Aspects.2010,367:174-180.
    [21]BECKER H, GAERTNER C. Polymer microfabrication methods for microfluidic analytical application s[J]. Electrophoresis,2000,21:12-26.
    [22]祁恒,姚李英.PMMA基PCR微流控生物芯片准分子激光加工[J].微细加工技术,2006,1:16-19.
    [23]王晓东,罗怡.塑料(PMMA)微流控芯片微通道热压成形工艺参数的确定[J].中国机械工程,2005,16(22):2061-2063.
    [24]DUFFY D C, MCDONALD J C. Rapid Prototyping of Microfluidic Systems in Poly (dimethylsiloxane) [J]. Anal. Chem.1998,70:4974-4984.
    [25]WHITESIDE B R, MARTYN M T, COATES P D, et al. Micromoulding:process characteristics and product properties Plast [C]. Rubber Compos.2003,32:231-239.
    [26]FUNAMI E, TAKI K, MURAKAMI T. Measurement and prediction of surface tension of polymer in supercritical CO2 [C].22nd Annual Meeting of Polymer Processing Society, Yamagata, Japan,7/2-6; 2006; pp SP2-18.
    [27]WEI H, THOMPSON R B, PARK C B, et al. Surface tension of high density polyethylene (HDPE) in supercritical nitrogen:Effect of polymer crystallization [J]. Colloids Surf. A:Physicochem. Eng. Aspects (2009), doi:10.1016/j.colsurfa.2009.06.005.
    [28]QIAN Z, MINNIKANTI V S, SAUER B B, et al. Surface Tension of Symmetric Star Polymer Melts [J]. Macromolecules,2008,41:5007-5013.
    [29]KWOK D Y, CHEUNG L K, PARK C B, et al. Study on the surface tensions of polymer melts using axisymmetric drop shape analysis [J]. Polymer Engineering and Science, 1998,38 (5):757-764.
    [30]YAO D G, KIM B. Simulation of the filling process in micro channels for polymeric materials [J]. Journal of Micromech. Microeng,2002,12:604-610.
    [31]YAO D G, KIM B. Scaling issues in miniaturization of injection molded parts [J]. Manuf. Sci. Eng,2004,126 (4):733-738.
    [32]KEMMANN O,JEGGY C, MAGOTTE O,et al. Simulation of the micro injection molding process [C]. Proc. SPE ANTEC,2000:576-580.
    [33]KIM D S, LEE K C, KWON T H, et al. Micro-channel filling flow considering surface tension effect [J]. Micromech. Microeng,2002,12 (3):236-246.
    [34]蒋炳炎,谢磊,吴旺青,等.微尺度流道中流体流动前沿的喷泉流动仿真[J].高分子材料科学与工程,2006,22(5):5-9.
    [35]蒋炳炎,谢磊,谭险峰,等.微尺度聚合物熔体的非等温平板收缩流动数值仿真[J].南昌航空工业学院学报(自然科学版),2005,19(3):6-12.
    [36]CHIEN R D, JONG W R and CHEN S C. Study on rheological behavior of polymer melt flowing through micro-channels considering the wall slip effect [J]. Micromech. Microeng,2005,15 (8):1389-1396.
    [37]HU Y D, WERNER C, LI D Q. Influence of three-dimensional roughness on pressure-driven flow through microchannels [J]. Fluids Eng,2003,125(5):871-879.
    [38]PIOTTER V, MUELLER K, PLEWA K, et al. Performance and simulation of thermoplastic micro injection molding [J]. Microsys. Tech,2002,8:387-390.
    [39]宋满仓,刘柱,于同敏.微成型数值模拟技术的现状与发展[J].机械制造与自动化,2005.34(2):1-3.
    [40]庄俭,王敏杰,于同敏,等.微流道中聚合物熔体黏度分布及其数值模拟[J].中国塑料,2007.3:58-62.
    [41]TSAI M H, OU K L, HUANG C F, et al. Study on micro-injection molding of light guiding plate by numerical simulation [J]. International Communications in Heat and Mass Transfer,2008(35):1097-1100.
    [42]SU Y C, SHAH J, Lin L. Implementation and analysis of polymeric microstructure replication by micro injection molding [J]. Micromech. Microeng,2004,14 (3) 415-422.
    [43]YAO D G, KIM B. Simulation of the filling process in micro channels for polymeric materials [J]. Micromech. Microeng,2002,12:604-610.
    [44]CHEN S C, SU L C, CHANG C Y, et al. Numerical simulation and moldability investigation of micro features [C]. Society of Plastics Engineers-65th Annual Technical Conference (ANTEC),2007:2045-2049.
    [45]ABDESSALEM Derdouri. Microinjection molding of microstructures-Experimental and numerical simulation [C]. AIChE annual meeting, Cincinnati, OH,30 October-4 November 2005.
    [46]SHEN Yung-Kang. Analysis for microstructure of microlens arrays on micro-injection molding by numerical simulation [J]. International Communications in Heat and Mass Transfer,2008,35:723-727.
    [47]PIOTTER V. Performance and simulation of thermoplastic micro injection molding [J]. Microsystem Technologies,2002,8:387-390.
    [48]SHEN Y K. Optimization of the Micro-Injection Molding Process using Grey Relational Analysis and MoldFlow Analysis [J]. Journal of Reinforced Plastics and Composites, 2004,23:1799-1814.
    [49]JEGGY C, MAGOTTE 0, DUPRET F. Numerical simulation of the micro-injection moulding process [C]. Guimara.es:Proceeding of The 2nd ESAFORM Conference,1999:117-120.
    [50]YOUNG W B. Simulation of the filling process in molding components with micro channels [J]. Microsystem Technologies,2005,11(6):495-500.
    [51]MOGUEDOT M, NAMY P, BEREAUX Y. On the Use of Comsol Multiphysics to Understand and Optimize the Filling Phase in Injection and Micro-Injection Molding Process [C]. The Proceedings of the COMSOL Users Conference,2007.
    [52]MOGUEDOT M, NAMY P, BEREAUX Y. Level Set Method for Fully Thermal-Mechanical Coupled Simulations of Filling in Injection and Micro-Injection Molding Process [C].The Proceedings of the COMSOL Conference,2009.
    [53]KNIGHTS M. Micro molds make micro parts [J]. Plast Technol,2002,48 (12):38-45.
    [54]WEULE H, HUNTRUP V, TRITSCHELER H. Micro-cutting of steel to meet new requirements in miniaturization [J]. Annals of CIRP 2001 (50):61-64.
    [55]马雅丽.基于UV-LIGA制作细胞培养器微注塑模具型腔的工艺研究[D].大连:大连理工大学机械工程学院,2009.
    [56]KIM J S, KO Y B, HWANG C J, et al. Fabrication of micro injection mold with modified LIGA micro-lens pattern and its application to LCD-BLU [J]. Korea-Australia Rheology,2007,165 (11):165-169.
    [57]杜立群,莫顺培,张余升,等.UV2LIGA和微细电火花加工技术组合制作三维金属微结构[J].光学精密工程,2010,18(2):363-368.
    [58]BISSACCO Giuliano, HANSEN Hans N, TANG Peter T. Jimmy Fugl. Precision manufacturing methods of inserts for injection molding of microfluidic systems [C]. Proceedings of the ASPE Spring Topical Meeting Columbus, Ohio, USA 2005:57-63.
    [59]YOON S H, SRIROJPINYO C, LEE J, et al. Investigation of tooling surfaces on injection molded nanoscale features[J]. NSTI-Nanotech 2004 (3):460-463.
    [60]WERKMEISTER Jaime. Anisotropic Etching of Silicon as a Tool for Creating Injection Molding Tooling Surfaces [J]. Microelectromechanical systems,2006,15 (6) 1671-1680.
    [61]YAO D, KIMERLING T E, KIM B. High-frequency proximity heating for injection molding applications [J].Polym. Eng. Sci,2006,46 938-945
    [62]CHANG P C, HWANG S J. Geometry influence of reflectors for infrared rapid heating on micro-injection molding[C]. Internation conference of Advanced Manufacture, 2005,5.
    [63]林志鸿.微射出快速模温控制系统与玻璃模仁表面微结构成型性探讨[D].中国台湾:台湾大学,2001.
    [64]YAO D, Kim B. Injection molding high aspect ratio microfeatures [J]. Injection Molding Technol,2002 (6):11-17.
    [65]LIOU A L, CHEN R H. Injection molding of polymer micro and sub-micro structures with high-aspect rations [J]. Journal of advanced manufacture technology,2005, 28:1097-1103.
    [66]MICHAELI W, GARTNER R. New demolding concepts for the injection molding of microstructures [J]. Journal of polymer engineering,2006,26(2-4):161-177.
    [67]LIN H Y, CHANG C H, YOUNG W B. Experimental and analytical study on filling of nano structures in micro injection molding [J]. International Communications in Heat and Mass Transfer,2010(37):1477-1486.
    [68]XIE L, ZIEGAMN G. Visualizing analysis for weld line forming in micro injection molding by experimental method [J]. Microsyst Technol,2009 (15):913-917.
    [69]TOSELLO G, GAVA A, HANSERN H N, et al. Study of process parameters effect on the filling phase of micro-injection moulding using weld lines as flow markers [J]. Manuf Technol 2010(47):81-97.
    [70]ATTIA U M, JEFFREY R A. An evaluation of process-parameter and part-geometry effects on the quality of filling in micro-injection moulding [J]. Microsyst Technol, 2009(15):1861-1872.
    [71]YOON S H, CHA N G, LEE J S, et al. Effect of processing parameters, antistiction coatings, and polymer type when injection molding microfeatures[J]. POLYMER ENGINEERING AND SCIENCE,2010,50(2):411-419.
    [72]WANG W M, FU G L. Optimal Molding Parameter Design of PLA Micro Lancet Needles using Taguchi Method [J]. IEEE,2008:2731-2735.
    [73]成志强,BARRIERE T,柳葆生,等.微注射成形实验与数值模拟[J].西南交通大学学报2010: 45-49.
    [74]SONG M C, LIU C, WANG M J, et al. Research on effects of injection process parameters on the molding process for ultra-thin wall plastic parts [J]. Materials Processing Technology,2007:668-671.
    [75]HUANG M S, LI C J, YU J C, et al. Robust parameter design of micro-injection molded gears using a LIGA-like fabricated mold insert [J]. Materials Processing Technology 2009(209):5690-5701.
    [76]LIU F, ZHOU H M, LI D Q. Numerical Simulations of Residual Stressesand Warpage in Injection Molding [J]. Journal of Reinforced Plastics and Composites,2009(28): 571-571.
    [77]OZCELIK B, SONAT I. Warpage and structural analysis of thin shell plastic in the plastic injection molding [J]. Materials and Design,2009(30):367-375.
    [78]ZHENGA R, KENNEDYA R, THIENB N P. Thermoviscoelastic simulation of thermally and pressure-induced stresses in injection moulding for the prediction of shrinkage and warpage for fibre-reinforced thermoplastics [J]. Non-Newtonian Fluid Mech, 1999 (84):159-190.
    [79]李海梅,申长雨,顾元宪.注塑件残余应力计算及翘曲变形分析[J].流变学进展,1999:11-11.
    [80]HIRT C W, NICHOLS B D. Volume of fluids (VOF) method or the dynamics of free boundaries [J]. Comput. Phys,1981:201-225.
    [81]ASHGRIS, POO J Y, FLAIR. Flux line-segment model for advection and interface reconstruction [J]. Comput. Phys,1991 (39):449-468.
    [82]刘儒勋,王志峰.数值模拟方法和运动界面追踪[M],合肥:中国科技大学出版社,2001.
    [83]GUEGFFIER D, LI J. Volume-of-fluid interface tracking with smoothen surface stress [J]. Comput. Phs,1999:423-451.
    [84]RUDMAN M. Volume-tracking methods for interfacial flow calculations [J]. Heat Fluid Flow,1997:671-691.
    [85]YOUNGS D L. Time-dependent multi-material flow with large fluid distortion [J]. Numerical Methods for Fluid Dynamics,1982:273-281.
    [86]UBBINK O, ISSA R I. A method for capturing sharp fluid interfaces on arbitrary meshes [J]. Comput. Phys,1999:26-50.
    [87]HARTEN A. High resolution schemes for hyperbolic conservation laws [J]. Comput. Phys,1983:357-393.
    [88]BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension [J]. Journal of computational physics,1992(100):335-354.
    [89]徐佩弦.高聚物流变学及其应用[M].北京:化学工业出版社,2003.
    [90]GIBOZ J, COPPONNEX T, MELE P. Microinjection molding of thermoplastic polymers: a review [J]. Micromech. Microeng,2007,17 (6):96-109.
    [91]YAO D G, KIM B. Simulation of the filling process in micro channels for polymeric materials [J]. Micromech. Microeng,2002,12 (5):604-610.
    [92]江体乾.化工流变学[M].上海:华东理工大学出版社,2004.
    [93]庄俭.微注射成型充模流动理论与工艺实验研究[D].大连:大连理工大学,2007.
    [94]徐斌,王敏杰,于同敏,等.微尺度效应下的聚合物熔体粘度理论及实验[J].机械工程学报,2010,46(19):125—132.
    [95]冯焱颖,周兆英,叶雄英,等.微流体驱动与控制技术研究进展[J].力学进展,2002,1(32): 1-16.
    [96]徐征,黎永前,刘冲,等.微通道壁面突起对片上电泳分离流动特性影响数值计算研究[J],计算力学学报,2007,1(24):25-29.
    [97]孟凡涛,褚金奎.面形误差对亚波长金属光栅偏振器性能的影响[J],光子学报,2009,38(4):951-955.
    [98]任露泉.实验优化设计与分析[M].北京:高等教育出版社,2003.
    [99]MELIN J, GIMENEZ G, ROXHED N, STEMME G, et al. A fast passive and planar liquid sample micromixe r[J]. Lab Chip,2004,4(3):214-219.
    [100]KAMHOLZ A E, YAGER P. Molecular diffusive scaling laws in pressure-driven microf luidic channels:deviation from one-dimensional Einstein approximations [J]. Sens Actuators B,2002,82(1):117-121.
    [101]PARK S J, KIM J K, PARK J, et al. Rapid three-dimensional passive rotation micromixer using the breakup process [J]. Micromech. Microeng,2004,14(1):6-14.
    [102]AHMED D, MAO X L, JULURI B K, et al. A fast microf luidic mixer based on acoustically driven sidewall-trapped microbubbles [J]. Microfluid Nanofluid,2009,7(5): 727-731.
    [103]EL M, AUBRY N, BATTON J, et al. Electro-hydrodynamic micro-fluidic mixer [J]. Lab Chip,2003,3(4):273-280.
    [104]LYNN N S, HENRY C S, DANDY D S, et al. Microfluidic mixing via transverse electrokinetic effects in a planar microchannel[J]. Microfluid Nanofluid,2008, 5(4):493-505.
    [105]STROOCK A D, DERTINGER S K, AJDARI A, MEZIC I, et al. Chaotic mixer for microchannels [J]. Science,2002,295(5):647-651.
    [106]SONG H, TICE J D, ISMAGILOV R F. A microfluidic system for controlling reaction networks in time [J]. Angew Chem,2003,42(7):768-772.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700