对映—贝壳杉烷二萜化合物的植物毒性及作用机制的研究——推定的化感作用潜能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
香茶菜属植物为唇形科多年生草本、灌木或亚灌木,全世界共有150多个种,广泛分布于热带及亚热带地区。对映-贝壳杉烷二萜化合物是该属植物的主要次生代谢产物,目前已从该属植物中分离得到400余种该类化合物。在长期进化过程中形成的如此含量丰富且种类繁多的次生代谢产物很有可能对物种自身的生存有着特殊的意义,然而这些化合物是否在其自然生境中发挥着某些生态作用仍然不清楚。
     为了确定该类化合物的植物毒性,推断其是否有可能在自然生境中发挥重要的生态作用,为系统开展该类化合物化感作用的研究提供依据,我们选取了4种含量丰富且具结构代表性的对映-贝壳杉烷二萜化合物,运用生物测定的方法研究了它们对常见受试植物莴苣的植物毒性,并探讨了具有较强植物毒性的化合物Leukamenin E可能的作用机制。研究结果如下:
     ①4种二萜化合物Leukamenin E、Weisiensin B、Rabdosin B和Epinodosin在短期实验条件下对莴苣的种子萌发率、苗长、鲜重和干重等均没有表现出显著的影响,但是幼苗的根长和根毛发育却都受到了显著的影响。160μM的4种二萜化合物处理后,莴苣幼苗的根毛发育都受到了不同程度的抑制。除Rabdosin B以外,其余3种化合物在较高浓度(120-160μM)条件下都能够显著抑制幼苗的根长,化合物Rabdosin B在40-160μM的浓度范围内对莴苣幼苗根的生长表现出显著的促进作用。结果表明该类化合物能够特异影响莴苣幼苗根的生长及根毛发育,很有可能在其自然生境中发挥着重要的生态作用。
     ②Leukamenin E在较低浓度(10-80μM)条件下就能够对莴苣幼苗的根毛发育过程产生显著的抑制作用,80μM的Leukamenin E就能够完全抑制根毛发育过程。而在较高浓度(50-200μM)条件下,根的净生长速率(NGR)也受到了显著的抑制。
     ③100和200μM的Leukamenin E处理后莴苣幼苗的根系活力显著下降,说明高浓度的Leukamenin E处理后根系的代谢能力减弱,但是根系活力的降低可能只是高浓度条件下的一种综合反映,并不是根的生长受到抑制的直接原因。
     ④Leukamenin E处理后根尖分生区的有丝分裂指数也受到了显著的抑制,而且与根的NGR变化趋势相一致,线性回归分析的结果表明根的NGR与有丝分裂指数具有显著的相关性,说明根的生长受到抑制的主要原因是由于根尖分生区的有丝分裂行为受到抑制的结果。有丝分裂指数的降低主要是由于前期细胞比率的下降,这种现象很有可能与细胞周期阻滞有关。
     ⑤高浓度(100和200μM)的Leukamenin E处理后根尖分生区出现一些异常有丝分裂现象,主要与染色体受到损伤或者纺锤体微管受到影响有关系。纺锤体微管受到影响有可能阻止姐妹染色单体在后期的分离,从而增加了中期细胞相对于分裂期细胞的比率。
     ⑥Leukamenin E和乙烯作用拮抗剂Ag+都能够显著抑制莴苣幼苗的根毛发育过程,而且它们对于乙烯利促进根毛顶端生长的作用均具有拮抗特性。Leukamenin E对莴苣幼苗根毛发育的抑制作用并不能通过同时添加乙烯利而恢复,说明Leukamenin E并没有影响乙烯的合成,而是和Ag+一样影响了乙烯的作用通路,但是Leukamenin E和Ag+抑制根毛发育的具体方式存在着差异。
     ⑦Ag+对乙烯抑制根的生长这一反应同样具有拮抗特性,而Leukamenin E对这一乙烯反应不具有拮抗特性。可能的一种解释是,Leukamenin E是在乙烯通路中特异性调控根毛顶端生长的下游支路中起作用,而对于乙烯调控根的生长的支路则不起作用,该化合物在较高浓度条件下对根的生长的抑制作用主要是由于根尖分生区有丝分裂行为受到抑制所引起的;而Ag+则可能与乙烯受体发生相互作用,即在乙烯通路中的上游位点起作用,从而对乙烯调控的根毛顶端生长和根的生长均表现出拮抗特性。
     我们的研究首次证实了对映-贝壳杉烷二萜化合物对莴苣幼苗根的生长及根毛发育过程具有较强的植物毒性。Leukamenin E在较低浓度条件下就能够抑制莴苣幼苗的根毛发育过程,其对根毛发育的抑制作用可能与影响乙烯作用通路有关系,而在较高浓度条件下对根的生长的抑制作用则主要是由于根尖分生区有丝分裂行为受到抑制所引起的。该类化合物较强的植物毒性预示着它们很有可能在自然生境中发挥着重要的生态作用,系统开展该类化合物化感作用的研究具有理论依据和重要的生态学意义。
Isodon plants are labiatae perennial herbs, shrubs, or sub-shrubs. The genus is composed of approximately 150 species that are widely distributed in tropical and subtropical regions. Ent-kaurene diterpenoids are the main natural products in this genus from which more than 400 have been extracted. Such abundant and varied secondary metabolites formed during the long evolutionary process may have special meaning to the survival of species themselves. However, whether these diterpenoids possess certain ecological role in natural surroundings is still unknown.
     In order to evaluate the phytotoxicity of ent-kaurene diterpenoids, determine whether they may play important ecological roles in natural surroundings and provide foundations for the further systematic allelopathic research of these compounds, four abundant and structurally representative ent-kaurene diterpenoids were adopted and their phytotoxicity on lettuce, a commonly used test organism, was investigated by bioassay method. Possible modes of action of the most phytotoxic compound leukamenin E was also explored in this paper. The results are given as follows:
     ①All of the four diterpenes including Leukamenin E, Weisiensin B, Rabdosin B and Epinodosin did not affect germination rate, hypocotyl length, fresh weight and dry weight of lettuce in the short term experiment, but both primary root length and root hair development were prominently affected. Root hair development could be blocked to different degrees when treated with either of the four diterpenes at the concentration of 160μM. All of the four diterpenes except Rabdosin B inhibited the root growth significantly at the higher concentrations (120-160μM). Rabdosin B at the concentrations of 40-160μM stimulated the root growth significantly. The results indicated that the compounds can specifically affect the root growth and the root hair development of lettuce seedlings, possibly playing important ecological role in natural surroundings.
     ②Root hair development of lettuce seedlings was strongly inhibited even at the lower concentrations (10-80μM) of Leukamenin E and 80μM Leukamenin E could completely block it. At the higher concentrations (50-200μM), the NGR of primary root was also significantly inhibited.
     ③Root vitality of lettuce seedlings decreased significantly when treated with 100 and 200μM Leukamenin E, indicating that the higher concentrations of Leukamenin E reduced the root metabolic ability. However, reduction of root vitality might be a comprehensive response at the higher concentrations instead of the direct reason of root growth inhibition.
     ④Mitotic index of root apical meristem was significantly inhibited in a pattern similar to the NGR after Leukamenin E treatments. Linear regression analysis revealed a positive correlation between NGR and mitotic index, suggesting that inhibition of root growth may result from suppressed mitotic activity. Reduction of MI was mainly due to the decreased percentage of prophase cells, which may be related to cell cycle arrest.
     ⑤Some aberrant mitosis occurred in the root apical meristem treated with higher concentrations (100 and 200μM) of Leukamenin E, some of which may be related to chromosome damage and alterations in spindle microtubules. It was supposed that altered spindle microtubles might delay chromosome segregation and thus increase the percentageof metaphases relative to the mitotic cells.
     ⑥Both Leukamenin E and an ethylene antagonist Ag+ inhibited root hair development of lettuce seedlings and showed antagonistic activity to ethephon enhanced root hair length. Seedlings with suppressed root hairs that were treated with Leukamenin E could not be reversed by exogenous application of ethephon, suggesting that Leukamenin E may interfere with the ethylene response pathway instead of ethylene biosynthesis as with Ag+. Differences between the interfering mechanism of Ag+ and Leukamenin E are apparent.
     ⑦Addition of Leukamenin E did not overcome the inhibitory effect on root growth caused by ethephon as Ag+ did. It is possible that Leukamenin E interferes with the downstream portion of the ethylene pathway, thus, specifically controlling root hair development instead of affecting root growth. Its inhibitory effects on root growth at the higher concentrations are largely attributed to the decreased mitotic index in the root apical meristem, while Ag+ may interact with an ethylene receptor at a point upstream in the ethylene pathway, thus, both affecting root hair development and root growth.
     Our research demonstrated for the first time the strong phytotoxic effects of ent-kaurene diterpenoids on root growth and root hair development in lettuce seedlings. Leukamenin E at the lower concentrations could inhibit root hair development possibly through interfering with ethylene response pathway, while its inhibitory effects on root growth at the higher concentrations were largely due to the suppressed mitotic activity in root apical meristems. The strong phytotoxicity of these compounds suggested their possible important ecological role in natural surroundings. Systematic research into the allelopathic effects of these compounds are of theoretical foundations and important ecological meanings.
引文
[1]曹潘荣,骆世明.柠檬桉的他感作用研究[J].华南农业大学学报, 1996, 17(2): 7-11.
    [2]陈汝民.一种起促进作用的化感物质—Lepidimoide的生物活性学特性[J].华南师范大学学报, 1999, 1: 110-119.
    [3]崔磊,赵秀梅,张春雨.化感作用研究动态及展望.渐江林业科技, 2006, 26(1): 65-70.
    [4]付佳,王洋,阎秀峰.萜类化合物的生理生态功能及经济价值.东北林业大学学报, 2003, 31(6): 59-62.
    [5]谷文祥,段舜山,骆世明.萜类化合物的生态特性及其植物的化感作用.华南农业大学学报, 1998, 19(4): 108-110.
    [6]胡飞,孔垂华. Allelopathic potentials of Arachis hypogaea on crops.华南农业大学学报, 2002, 23: 9-12.
    [7]胡教孝等译. Rice E. L.天然化学物质与有害生物的防治.北京:科学技术出版社, 1956, 1-10.
    [8]贾黎明,翟明普,尹伟伦等.油松白桦混交林中生化他感作用的生物测定[J].北京林业大学学报, 1996, 8(4): 1-8.
    [9]江贵波,曾任森.化感物质及其收集方法综述.河南农业科学, 2006, (6): 24-27.
    [10]孔垂华.植物化感作用研究中应注意的问题.应用生态学报. 1998, 9(3): 332-336.
    [11]孔垂华,徐涛,胡飞.胜红蓟化感作用研究Ⅱ.主要化感物质的释放途径和活性[J].应用生态学报, 1998, 9(3): 257-260.
    [12]孔垂华.植物化感(相生相克)作用及其应用[M].中国农业出版社, 2001, 126-129.
    [13]孔垂华,黄寿山,胡飞.胜红蓟化感作用研究V.挥发油对真菌、昆虫和植物的生物活性及其化学成份[J].生态学报, 2001, 21(4): 584-587.
    [14]孔垂华,徐效华,梁文举.水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性[J].生态学报, 2004, 24(7): 1317-1322.
    [15]李寿田,周健民,王火焰,陈小琴.植物化感作用研究概况.中国生态农业学报, 2002, 10(4): 68-70.
    [16]李志红.化感作用的生物活性测定及其影响因素[J].生态科学, 1999, 18(1): 35-38.
    [17]林娟,殷全玉,杨丙钊等.植物化感作用研究进展.植物生理科学, 2007, 23(1): 68-72.
    [18]林思祖,杜玲,曹光球.化感作用在林业中的研究进展及应用前景[J].福建林学院学报, 2002, (2): 184-189.
    [19]刘秀芬等.根际他感化学物质的分离鉴定与生物活性的研究.生态学报, 1996, 16(1): 1-10.
    [20]刘秀芬,胡晓军.化感物质阿魏酸对小麦幼苗内源激素水平的影响[J].中国生态农业学报, 2001, 9(1): 86-88.
    [21]吕卫光,张春兰.化感物质抑制连作黄瓜生长的作用机制[J].中国农业科学, 2002, 35(1): 106-109.
    [22]骆世明,曹番荣,林象联.茶园生化他感作用的研究.华南农业大学学报. 1994, 15(2): 129-133.
    [23]骆世明,林象联,曾任森等.华南农区典型植物的他感作用研究[J].生态科学, 1995, (2): 114-128.
    [24]马瑞霞,刘秀芬,袁光林.小麦根区微生物分解小麦残体产生的化感物质及其生物活性的研究.生态学报, 1996, 16(6): 632-639.
    [25]莫竹承,范帆清. Allelopathy of Bruguiera gymnorrhiza and Kandelia cande1.广西科学, 2001, 8: 61-62.
    [26]聂呈荣,曾任森,黎华寿等.三裂叶蟛蜞菊对花生化感作用的生理生化机理[J].花生学报, 2002, 31(3): 1-5.
    [27]彭少麟.南亚热带森林动态学[M].北京:科学出版社, 1996.
    [28]彭少麟,邵华.化感作用的研究意义及发展前景.应用生态学报, 2001, 12 (5): 780-786.
    [29]施月红,谷文祥.生化他感作用研究中的生物测定方法.生态科学, 1998, 17(1): 84-89.
    [30]孙汉董,许云龙,姜北.香茶菜属植物二萜化合物[M].北京:科学出版社, 2001.
    [31]孙文浩等.凤眼莲根系分泌物中的克藻化合物.植物生理学报, 1993, 19(1): 92-96.
    [32]孙文浩,余叔文.相生相克效应及其应用[J].植物生理学通讯, 1992, 28(2): 81-87.
    [33]汤陵华,孙加祥. The allelopathy of rice accessions.江苏农业科学, 2002, (1): 13-14.
    [34]王大力,祝心如.豚草的化感作用研究.生态学报, 1996, 16(1): 11-19.
    [35]王璞,赵秀琴.几种化感物质对棉花种子萌发及幼苗生长的影响[J].中国农业大学学报, 2001, 6(3): 26-31.
    [36]韦琦,胜红蓟化感作用的研究[D]. [学位论文].广州:华南农业大学, 1994.
    [37]吴俊民,礼波宁,刘广平等.混交林中落叶松挥发性物质对水曲柳生长的影响[J].东北林业大学学报, 2000, 28(1): 25-28.
    [38]吴立军.天然药物化学[M].北京:人民卫生出版社, 1988: 219-309.
    [39]阎飞,杨振明,韩丽梅.植物化感作用(Allelopathy)及其作用物的研究方法.生态学报, 2000, 20(4): 692-696.
    [40]杨本文译.植物化学[M],北京:科技出版社, 1985.
    [41]杨善元等.凤眼莲根系中抑藻物质分离与鉴定.植物生理学报, 1992, 18(4): 399-402.
    [42]喻景权.蔬菜生产中的化学他感作用问题及其研究[C].园艺学进展(第二辑).侯喜林主编.东南大学出版社,南京. 1998, 336-343.
    [43]张晓珂,姜勇等.小麦化感作用研究进展[J].应用生态学报, 2004, 15(10): 1969-1972.
    [44]翟明普. The survey of mixed forests and interactions of tree species.世界林业研究, 1993a, 1: 39-45.
    [45]翟明普,贾黎明. Allelopathy of forest plants.北京林业大学学报, 1993b, 15(3): 138-147.
    [46]张宝琛,白雪芳,顾立华等.生化他感作用与高寒草甸上人工草场自然退化现象的研究[J].生态学报, 1989, 9(2): 115-120.
    [47]张玉麟.生态生物化学导论[M].北京:农业出版社, 1989.
    [48]曾任森,林象联.蟛蜞菊根分泌物的异种克生作用及初步分离[J].生态学杂志, 1994, 13(1): 51-56.
    [49]曾任森,林象联,骆世明等.蟛蜞菊的生化他感作用及生化他感作用物的分离和鉴定[J].生态学报, 1996, 16(1): 20-27.
    [50]曾任森.化感作用研究中的生物测定方法综述.应用生态学报, 1999, 10 (1): 123-126.
    [51]张学文,刘亦学,刘万学等.植物化感物质及其释放途径.中国农学通报, 2007, 23 (7): 295-297.
    [52]周志红,骆世明,牟子平等.番茄的化感作用研究[J].应用生态学报, 1997, 8(4): 445-449.
    [53]祝心如.植物他感作用研究—化学生态的重要领域[C].见:马世骏主编.现代生态学透视.北京:科学出版社, 1990, 244-253.
    [54] Abrahim D, Braguini W L, Kekner-Bracht A M and Ishii-Iwamoto E L. Effects of four monoterpenes on germination, primary root growth, and mitochondrial respiration of maize [J]. J. Chem. Ecol., 2000, 26: 611-637.
    [55] Abrahim D, Francischini A C, Pergo E M, Kelmer-Bracht A M, Ishii-Iwamoto E L. Effects of alpha-pinene on the mitochondrial respiration of maize seedlings. Plant Physiol. Biochem., 2003, 41: 985-991
    [56] Ama S del and Anaya A L. Effect of some sesquiterpenic lactones on the growth of certain secondary tropical species [J]. J. Chem. Ecol., 1978, 4: 305-313.
    [57] Anaya A L, Mata M R and Miranda R. Allelopathic potential of compounds isolated from Ipomoea tricolor [J]. J. Chem. Ecol., 1990, 16: 2145-2152.
    [58] Asplund R O. Monoterpenes: Relationship between structure and inhibition of germination. Phtochemistry, 1968, 7: 1995-1997.
    [59] Bais H P, Vepachedu R, Gilroy S, Callaway R M and Vivanco J M. Allelopathy and exotic plant invasion: from molecules and genes to species interaction. Science, 2003, 301: 1377-1380.
    [60] Barnes J P, Putnam A R. Role of benzoxazinpnes in allelopathy of rye (Secale cereale L.) [J]. J. Chem. Ecol., 1987, 889-905.
    [61] Baziraakenga R, Leroux G O, Simard R R. Effects of benzoic and cinnamic acids on membrane permeability of soybean roots [J]. J. Chem. Ecol., 1995, 21(9): 1271-1285.
    [62] Bazivamakenga R R, Simard R R and Leroux G D. Determination of organic acids in soil extracts by ion chromatography [J]. Soil Biol. Biochem., 1995, 27(3): 349-356.
    [63] Baziramakenga R, Leroux G D, Simard R R, et al. Allelopathic effects of phenolic acids on nucleic acid and protein levels in soybean seedlings [J]. Canadian Journal of Botany, 1997, 75 (3): 445-450.
    [64] Ben-Hammouda M, Ghorbal H, Kremer R J, Oueslati O. Autotoxicity of barley. J Plant Nutr., 2002, 25: 1155-l161.
    [65] Blum U. Allelopathic interactions involving phenolic acids [J]. J. Nemat., 1996, 28: 259-267.
    [66] Bradow J M and Connick W J. Volatile seed germination inhibitors from plant residues. J. Chem. Ecol., 1990, 16 (5): 645-666.
    [67] Cangiano T, Dellagreca M, Fiorentino A et al. Effect of ent-labdane diterpenes from potamogetonaceae on Selenastrum capricornutum and other aquatic organisms. J. Chem. Ecol., 2002, 28(6): 1091-1102.
    [68] Chaves N, Sosa T, Alias J C, Escudero J C. Identification and effects of interaction phytotoxic compounds from exudate of cistus ladaniferleaves. J. Chem. Eco1., 2001, 27: 6l1-621.
    [69] Chou C H and Lin H J. Autointoxication mechanisms of oryza sativa. I phytotoxic effects of decomposing rice residues in soil [J]. J. Chem. Ecol., 1976, 2: 353-367.
    [70] Chou C H. Allelopathy in subtropica vegetation and soils in Taiwan. Allelochemical, 1987, 102-117.
    [71] Chou C H. Allelopathy and sustainable agriculture [A]. In: Allelopathy: Organisms, processes, and applications [M]. Inderjit K M and Einhellig F A, eds., ACS Symposium Series 582, American Chemical Society, Washington, D C, 1995, 211-223.
    [72] Chung I M and Miller D A. Difference in autotoxicity among seven alfalfa cultivars [J]. Agron. J., 1995, 87: 596-600.
    [73] Cruz-Ortega R, Anaya A L, Gavilanes-Ruiz M, et al. Effect of diacetyl piquerol on hydrogen ion ATPase activity of microsomes from Ipomoea purpurea. J. Chem. Ecol., 1990, 16: 2253-2261.
    [74] Cruz R, Anaya A L, Hernandez B E, et al. Effect of allelochemical stress produced by Sicyos deppei on seedling root ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia [J]. J. Chem. Ecol., 1998, 24(12): 2039-2057.
    [75] Delmoral R, Muller C H. The allelopathy effect of Eucalyptus camaldensis Am [J]. Midland Nat., 1970, 83: 254-283.
    [76] Devi R S and Prasad M N V. Effects of ferulic acid on growth and hydrolytic enzyme activities of germinating maize seeds [J]. J. Chem. Ecol., 1992, 18: 1981-1990.
    [77] Devine M D, Duke S O, Fedtke K. Physiology of Herbicide action. P T R Prentice-Hall, Inc., Englewood Cliffs, 1993.
    [78] Dias A S, Dias L S. Effects of drought on allelopathic activity of Datura stramonium L. Allelopathy J., 2000, 7: 273-277.
    [79] Duke S O and Dayan F E. Mode of action of phytotoxins from plants. In Reigosa M J, Pedrol N, and Gonzalez, (eds.), Allelopathy: A Physiological process with Ecological Implications.Springer, printed in the Netherlands. 2006, 511-536.
    [80] Eevin G N and Wetze1 R G. AIlelochemical autotoxicity in the emergent wetland macrophyte Juncus effusus (Juncaceae) [J]. Am. J. Bot., 2000, 87(6): 853-860.
    [81] Einhellig F A. Mechanisms and modes of action of allelochemicals [M]. In: The Science of Allelopathy. Putnam A R and Tang C S (eds.). John Wiley & Sons. New York. 1986, 171-188.
    [82] Einhellig F A. Allelopathy: Current status and future goal. In: Allelopathy: Organisms, processes, and applications. Inderjit et al. (eds.). ACS Symp. Ser. 582. Am [J]. Chem. Soc., Washington, D C. 1995, 1-24.
    [83] Einhellig F A. Interaction involving allelopathy in cropping system [J]. Agron. J., 1996, 88: 886-893.
    [84] Eskelsen S R, Crabtree G D. The role of allelopathy in buckwheat (Fagopyron sagittatum) inhibition of Canada thistle (Cirsium arvense) [J]. Weed Sci., 1995, 43: 70-74.
    [85] Fischer N H, Williamson G B, Weidenhamer J D, et al. In search of allelopathy in the Florida scrub. The role of terpenoids. J. Chem. Ecol., 1994, 20: 135-138.
    [86] Fitter A. Making allelopathy respectable. Science, 2003, 301, 1337–1338.
    [87] Fuerst E P, Putnaw A R. Seperating the competitive and allelopathic components of interference: theoretical principles. J. Chem. Ecol., 1983 (9): 937-944.
    [88] Galindo J, Hernandez A, Dayan F E, et al. Dehydrozaluzanin C, a natural sesquiterpenolide, causes rapid plasma membrane leakage [J]. Phytochemistry, 1999, 52 (5): 805-813.
    [89] Gerig T M and Blum U. Effects of four phenolic acids on leaf area expansion of cucumber seedlings grown in Portsmouth B2 soil materials [J]. J. Chem. Ecol., 1991, 17: 29-40.
    [90] Gonzalez de, Parra M, Anaya A L, Espinosa F et al. Allelopathic potential of poqueria trinervia (Aomposite) and piquerola A and B. J.Chem. Ecol., 1981, 7: 209-215.
    [91] Grierson P F. Organic acids in the rhizosphere of Banksia integrifolia L. F. Plant and Soil, 1992, 144: 259-265.
    [92] Guenzi W D and T M Mc Calla. Phenolic acids in oats, wheat, sorghum and corn residues and their phytotoxicity [J]. Agron. J., 1966, 58: 303-304.
    [93] Han Q B, Zhang J X, Lu Y, et al. A novel cytotoxic oxetane ent-kauranoid from Isodon japonicus. Planta Med., 2004, 70: 581-584.
    [94] Harper J L. Allelopathy. Q. Rev. Biol., 1975, 50: 493-495.
    [95] Hartung A C, Putnam A R, Stephens C T. Inhibition activity of asparagus root tissue and extracts on asparagus seedlings [J]. Journal of American Society for Horticultural Science, 1989, 114: 144-148.
    [96] Hejl A M, Einhellig F A, Rasmussen J A. Effects of juglone on growth, photosynthesis, and respiration. J. Chem. Ecol., 1993, 19 (3): 559-568.
    [97] Hejl A M and Koster K L. Juglone disrupts root plasma membrane H+-ATPase activity and impairs water uptake, root respiration, and growth in soybean (Glycine max) and corn (Zea mays). J. Chem. Ecol., 2004, 30(2): 453-471.
    [98] Hollapa L D, Blum U. Effects of exogenously applied ferulic acid, a potential allelopathic compound, on leaf growth, water utilization, and endogenous abscisic acid levels of tomato, cucumber and bean [J]. J. Chem. Ecol., 1991, 17: 865-886.
    [99] Ibrahim N A, Ei-Gengaihi S, Motawe H, et al. Phytochemical and biological investigation of Stevia rebaudiana Bertoni; 1-labdane-type diterpene. Eur. Food Res. Technol., 2007, 224: 483-488.
    [100] Inderjit D, Dakshini K M M. Investigations on some aspects of chemical ecology of cogongrass, Imperata cylindrical(L.) Beauv [J]. J. Chem. Ecol., 1991, 17: 343-352.
    [101] Inderjit, Dakshini K M. Interference potential of the weed Pluchea Lanceolata (Asteraceae): Growth and physiological responses of asparagus bean, Vigna unguiculata var. sesquipedalis. Am. J. Bot., 1992, 79: 977-981.
    [102] Inderjit. Plant phenolics in allelopathy [J]. Bot. Rev., 1996, 62(2): 186-202.
    [103] Inderjit and Del Moral R. Is separating resource competition from allelopathy realistic? Biol. Rev., 1997, 63, 221–230.
    [104] Jiang B, Lu Z Q, Hou A J, et al. ent-kaurane diterpenoids from Isodon lungshengensis. J. Nat. Prod., 1999, 62: 941-945.
    [105] Jimenez-Osomio, Sckultz J, Anaya K, et a1. Allelopathic potential of corn pollen. J. Chem. Ecol., 1983, 9: 101l-1025.
    [106] Kidd P S and Proctor J. The growth response of ecotypes of Holcus lanatus L. from different soil types in northwestern Europe to phenolic acids. Plant Bio1., 2000, 2: 335-343.
    [107] Komai K, Iwamrua J, Ueki K. Plant growth inhibitor in the seed of catchweed [J]. Weed Res., 1983, 28: 205-209.
    [108] Kuwatsuka S and Shindo H. Behavior of phenolic substances in the decaying process of plants (I). Soil Sci. Plant Nutr., 1973, 19: 219-227.
    [109] Laterra P, Brazzalo. Seed-to-seed allelopathyic effects between two invaders of burned Pampa grasslands [J]. Weed Res., 1999, 39: 297-308.
    [110] Leather G R, Einhelling F A. Bioassays in the study of allelopathy [A], Putnam A R, Tang C S (eds.). The Science of allelopathy [C]. New York: John willey & Sons, 1986, 133-145.
    [111] Leslie C A, Romani R J. Inhibition of ethylene biosynthesis by salicylic acid [J]. Plant Physiol., 1988, 88: 833-837.
    [112] Li F M, Hu M Y. Isolation and characterization of a novel antialgal allelochemical from phragmites communis. Appl. Environ. Microbiol. 2005, 71(11): 6545-6553.
    [113] Liu D L and Loveit J V. Biologically active secondary metabolites of barley.Ⅱ.Phototoxiciting of barley allelochemical [J]. J. Chem. Ecol., 1993, 19: 221-224.
    [114] Lobon N C, Gallego J C A, Diaz T S, Garcia J C E. Allelopathic potential of Cistus ladanifer chemicals in response to variations of light and temperature. Chemoecology, 2002, 12: 139-l45.
    [115] Macías F A, Molinillo J M G, Galindo J C G, et al. Terpenoids with potential use as natural herbicide templates, pp. 15-31, in Cutler H G and Cutler S J (eds.). Biologically active natural products: agrochemicals. 1999. CRC press, Florida, USA.
    [116] Macías F A, Varela R M, Simonet A M, et al. (+)-Brevione A. The first member of a novel family of bioactive spiroditerpenoids isolated from Penicillium brevicompactum Dierckx. Tetrahedron Lett., 2000, 41: 2683-2686.
    [117] Macías F A, Varela R M, Torres A, Cross E. Potential allelopathic activity of natural plant heliannanes: a proposal of absolute configuration and nomenclature. J. Chem. Ecol., 2000, 26: 2l73-2186.
    [118] Macías F A, López A, Varela R M, et al. Helikauranoside A, a new bioactive diterpene. J. Chem. Ecol., 2008, 34: 65-69.
    [119] Mallik A U. Challenges and opportunities in allelopathy research: a brief overview. J. Chem. Ecol., 2000, 26(9): 2007-2009.
    [120] May F E and Ash J E. An assessment of allelopathic potential of Eucalyptus. Austral. J. Bot., 1990, 38: 245-254.
    [121] Merisie W, Singh M. Phenolic acid affect photosynthesis and protein synthesis by isolated leaf cells of volvet-leaf. J. Chem. Ecol., 1993, 19: 1293-1301.
    [122] Miller D A. Allelopathy in forage crop systems. Agron. J., 1996, 88: 854-859.
    [123] Miller D A. Allelopathic effects of alfalfa. J. Chem. Ecol., 1983, 9: 1059-1072.
    [124] Molisch H. Der Einfluss einer pflanze auf die - andere allelopathie [J]. Fisher Jena, 1937, 13-20.
    [125] Moncef B H, Robert J K, Harry C M, et al. A chemical basis for differential allelopathic potential of sorghum hybrids on wheat. J. Chem. Ecol., 1995, 21(6): 775-780.
    [126] Monley D G. Biocompatibility of sweet-potato and peanut in a hydroponic system [J]. Hortscience, 1998, 33: 1147-1149.
    [127] Morales-Flores F, Aguilar M I, King-Díaz B, et al. Natural diterpenes from Croton ciliatoglanduliferus as photosystemⅡand photosystemⅠinhibitors in spinach chloroplasts. Photosynth. Res., 2007, 91: 71-80.
    [128] Muller C H, Muller W H and Haines B L. Volatile Growth inhibitors Production by Shrubs [J]. Science, 1964, 143: 471-473.
    [129] Muller C H. Inhibitory terpenses volatilized from Salvia shrubs Bull [J]. Torrey Bot. Club, 1965, 92: 38.
    [130] Muller C H. Allelopathy as a factor in ecological process [J]. Vegetatio, 1969, 18: 348~357.
    [131] Murphy S D. Pollen Allelopathy. In: Principles and practices in plant ecology: Allelochcmical interactions (eds. by Inderjit et a1.) [M]. CRC Press, 1999, 129-146.
    [132] Niemeyer H M, Perez F J. Potential of hydroxamic acids in the control of cereal pests, diseases, and weed [J]. ACS Symp. Ser., 1995, 582: 260-270.
    [133] Nishida N, Tamotsu S, Nagata N, Saito C and Sakai A. Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J. Chem. Ecol., 2005, 31: 1187-1203.
    [134] Ortega R C, Anaya A L and Ramos L. Effects of allelopathic compounds of corn pollen on respiration and cell division of watermelon [J]. J. Chem. Ecol., 1988, 14: 71-86.
    [135] Padhy B, Patnaik P K, Tripathy A K. Allelopathic potential of Eucalyptus leaf litter leachates on germination and seedling growth of fingermiller [J]. Allelopathy Journal, 2000, 7(1): 69-78.
    [136] Pandey D K, Kauraw L P, Bhan V M. Inhibitory effect of parthenium (Parthenium hysterophorus L.) resudue on growth of water hyacinth.Ⅰ. Effect of leaf resudue [J]. J. Chem. Ecol., 1993, 19(11): 2651-2662.
    [137] Patterson S S. Effects of allelopathic chemicals growth and physiological responses of soybean (Glycine max). Weed Science, 1981, 29(1): 53-59.
    [138] Peng S L, Wen J, and Guo Q F. Mechanism and active variety of allelochemicals. Acta Botanica Sinica, 2004, 46(7): 757-766.
    [139] Penuelas J, Ribas-Carbo M, Giles L. Effects of allelochemicals on plant respiration and oxygen isotope fractionation by the alternative oxidase [J]. J. Chem. Ecol., 1996, 22(4): 801-805.
    [140] Picman J P, Picman A K. Autotoxicity in Parthernium hysterophorus and its possible role in control of germination. Biochem. Syst. Ecol., 1984, 12: 287-292.
    [141] Politycka B. Free and glucosylated phenolics, phenol-beta-glucosyltransferase activity and membrane permability in cucumber roots affected by derivatives of cinnamic and benzoic acids [J]. Acta Physiologiae Plantarum, 1997, 19(3): 311-317.
    [142] Politycka B. Phenolics and the activities of phenylalanine ammonialyase, phenol-beta-glucosyltransferase and beta-glucosidase in cucumber roots as affected by phenolic allelochemicals [J]. Acta Physiologiae Plantarum, 1998, 20(4): 405-410.
    [143] Pramanik M H R, Nagai M, Asao T, Matsui Y. Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Eco1., 2000, 26: l953-l967.
    [144] Putnam A R and Duke W B. Biological suppression of weeds: Evidance for allelopathy inaccessions of cucumber [J]. Science, 1974, 185: 370-372.
    [145] Rasmussen J A, Hejl A M, Einhellig F A, et al. Sorgoleone from root exudate inhibits mitochondrial functions. J. Chem. Ecol., 1992, 18: 197-207.
    [146] Ray S D and Laloraya M M. Interaction of gibberellic acid, abscisic acid, and phenolic compounds in the control of hypocotyl growth of Amaranthus caudatus seedlings. J. Bot., 1984, 62: 2047-2052.
    [147] Rice E L. Allelopathy (2nd Ed) [M]. Orlando: Academic Press, 1984.
    [148] Rice E L. Pest Control with Nature’s Chemicals [M]. New York: Academic Press, 1988, 46-65.
    [149] Rocio C O, Ana L A, Blanca E H B and Guillermo L H. Effects of allelochemical stress produced by Sicos deppei on seedling root ultrasucture of Phaseolus vulagaris and Cucurbita ficifolia [J]. J. Chem. Ecol., 1998, 24: 2039-2057.
    [150] Romagni J G, Allen S N, Dayan F E. Allelopathic effects of volatile cineoles on two weedy plant [J]. J. Chem. Ecol., 2000, 26(1): 303-314.
    [151] Romeo J T. Raising the beam: moving beyond phytotoxicity. J. Chem. Ecol., 2000, 26: 2011-2014.
    [152] Rudrappa T, Bonsall J, Gallagher J L, Seliskar D M and Bais H P. Root-secreted allelochemical in the noxious weed Phragmites australis deploys a reactive oxygen species response and microtubule assembly disruption to execute rhizotoxicity. J. Chem. Ecol., 2007, 33: 1898-1918.
    [153] Saario M, Koivusalo S, Laakso I, Autio J. Allelopathic potential of Lingonberry (Vaccinium vitisidaea L.) litter for weed contro1. Biol. Agric. Hortic., 2002, 20: 11-28.
    [154] Shao H, Peng S L, Wei X Y, Zhang D Q and Zhang C. Potential allelochemicals from an invasive weed Mikania micrantha H.B.K. J. Chem. Ecol., 2005, 31(7): 1657-1668.
    [155] Shibu J, Andrew R G. Allelopathy in black walnut (Juglans nigra L) alley cropping. II, Effects of juglone on hydroponically grown corn (Zea mas L) and soy bean (Glycine max L Merr) growth and physiology [J]. Plant and soil, 1998, 203: 199-205.
    [156] Suzuki K, Kawabata J and Mizitani J. New 3,5,4'-trihydroxystibene (resveratrol) oligomers from Carex fedia Var. miyabei (Franchet) T. Koyama (Cyperaceae) [J]. Agric. Boil. Chem., 1987, 52: 2947-2948.
    [157] Suzuki I, Kondoh M, Nagashima F, et al. A comparison of apoptosis and necrosis induced by ent-kaurene type diterpenoids in HL-60 cells. Planta Med., 2004, 70: 401-406.
    [158] Tang C S, Young C C. Collection and identification of allelopathic compuonds from the undisturbed root system of bigalta 1impograss(Hemarthria altissima) [J]. Plant Physiol., 1982, 69: 155-160.
    [159] Tang C S, Cai W F, Kohl K, et al. Plant stress and allelopathy [J]. ACS. Symp. Ser, 1995,582: 142-147.
    [160] Tengchaisri T, Chawengkirttikul R, Rachaphaew N, et al. Antitumor activity of triptolide against cholangiocarcinoma growth in vitro and in hamsters. Cancer Lett., 1998, 133: 169-175.
    [161] Urzúa A, Jara F, Tojo E, et al. A new antibacterial clerodane diterpenoid from the resinous exudate of Haplopappus uncinatus. J. Ethnopharmacol., 2006, 103: 297-301.
    [162] Vance G F, et al. Extraction of phenolic compounds from a spodosol profile: an evaluation of three extractants. Soil Sci., 1985, 140 (6): 412-420.
    [163] Waller G R, Kumari D, Friendman N. Caffeine autotoxicity in coffea arabical [J]. In the Science of Allelopathy (Ed by Putnam A R, Tang C S, John Wiley & Sons), New York, 1986, 243-265.
    [164] Weir T L, Park S-W, and Vivanco J M. Biochemical and physiological mechanisms mediated by allelochemicals. Current opinion in plant biology, 2004, 7: 472-479.
    [165] Willis R J. The historical basis of the concept of allelopathy. J. Hist. Biol., 1985, 18, 71-102.
    [166] Willis R J. Justus Ludewig von Uslar, and the First Book on Allelopathy. 2004, Springer, New York.
    [167] Wink M and Latz-bruning B. Allelopathic properities of alkaloids and other natural produces[A]. In: Allelopathy: Organisms, processes, and applications [M]. Inderjit et al.(ed.). ACS Symp. Ser. 582. Am. Chem. Soc. Washington, D C. 1995, 117-126.
    [168] Wink M. Introduction: biochemistry, role and biotechnology of secondary metabolites [M]. In: Functions of Plant Secondary Metabolites and Their Exploitation in Biotechnology, ed. M. Wink. CRC Press, Boca Raton FL. Annual Plant Reviews, 1999, (3): 1-16.
    [169] Wu H W, Haig T, Pratley J, Lemerle D, An M. Allelochemicals in wheat (Triticum aestivum L.): variation of phenolic acids in root tissues. J. Agr. Food Chem., 2000, 48: 5321-5325.
    [170] Yakle G A and Cruse R M. Effects of fresh and decomposing corn plant residues extracts on corn seedling development [J]. Soil Sci. Soc. Am. J., 1984, 48: 1143-1146.
    [171] Yu J Q and Yoshihisa M. Extraction and identification of phytotoxic substances accumulated in nutrient solution for hydroponic culture of tomato. Soil Sci. Plant Nutr., 1993, 39(4): 691-700.
    [172] Yu J Q and Yoshihisa M. Effects of root exudates of cucumber (Cucumis sativus L.) and allelochemicals on ion uptake by cucumber seedlings. J. Chem. Ecol., 1997, 23 (3): 817-827. 39
    [1]丁兰,王炜,汪涛等.甘肃产兰萼香茶菜二萜化学成分研究[J].广西植物, 2008, 28: 265-268.
    [2]谷文祥,段舜山,骆世明.萜类化合物的生态特性及其对植物的化感作用[J].华南农业大学学报, 1998, 19(4): 108-112.
    [3]孙汉董,许云龙,姜北.香茶菜属植物二萜化合物[M].北京:科学出版社, 2001.
    [4]曾任森,林象联等.蟛蜞菊的生化他感作用及生化他感作用物的分离鉴定.生态学报, 1996, 16(1): 20-27.
    [5] Aerts R, Boot R G A, Van Der Aart P J M. The relation between above- and belowground biomass allocation patterns and competitive ability [J]. Oecologia, 1991, 87(4): 551-559.
    [6] Bibikova T, Gilroy S. Root hair development [J]. Journal of Plant Growth Regulation, 2003, 21: 383-415.
    [7] Ding L, Zhang Z J, Liu G A, et al. Three new Cytotoxic ent-kaurane diterpenoid from Isodon weisiensis C. Y. Wu [J]. Helvetica Chimica Acta, 2005, 88: 2502-2507.
    [8] Kato-Noguchi H and Macías F. Effects of 6-methoxy-2-benzoxazolinone on the germination andα-amylase activity in lettuce seeds [J]. J. Plant Physio., 2005, 162: 1304-1307.
    [9] Levizou E, Karageorgou P, psaras G K, and Manetas Y. Inhibitory effects of water soluble leaf leachates from Dittrichia viscose on lettuce root growth, statocyte development and graviperception [J]. Flora, 2002, 197: 152-157.
    [10] Parker J S, Cavell A C, Dolan L, et al. Genetic interactions during root hair morphogenesis in Arabidopsis [J]. Plant Cell, 2000, 12: 1961-1974.
    [11] Peng S L, Wen J, Guo Q F. Mechanism and active variety of allelochemicals [J]. Acta Botanica Sinica, 2004, 46 (7): 757-766.
    [12] Rasmussen J A, Einhellig F A. Inhibitory effects of combinations of three phenolic acids on grain sorghum germination [J]. Plant Sci. Lett., 1979, 14: 69-74.
    [13] Ryan E, Steer M, Dolan L. Cell biology and genetics of root hair formation in Arabidopsis thaliana [J]. Protoplasma, 2001, 215: 140-149.
    [14] Shao H, Peng S L, Wei X Y, Zhang D Q, and Zhang C. Potential allelochemicals from an invasive weed Mikania micrantha H.B.K. [J] J. Chem. Ecol., 2005, 31: 1657-1668.
    [1]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000, 119-120.
    [2] Akinboro A and Bakare A A. Cytotoxic and genotoxic effects of aqueous extracts of five medicinal plants on Allium cepa Linn. Journal of Ethnopharmacology, 2007, 112: 470-475.
    [3] Bibikova T and Gilroy S. Root hair development. Journal of Plant Growth Regulation. 2003, 21: 383-415.
    [4] Borboa L and De Latorre C. Adaptation to Cd (II) and Zn (II), and the caffeine-potentiated override of the G2 block induced by the checkpoint activated by DNA damage. Plant Biosyst., 2000, 134: 3-9.
    [5] Cao X F, Linstead P, Berger F, Kieber J, and Dolan L. Differential ethylene sensitivity of epidermal cells is involved in the establishment of cell pattern in the Arabidodsis root. Physiol. Plant., 1999, 106: 311-317.
    [6] Den Boer B G W and Murray J A H. Triggering the cell cycle in plants. Trends Cell Biol., 2000, 10: 245-250.
    [7] Dolan L. The role of ethylene in root hair growth in Arabidopsis. J. Plant Nutr. Soil Sci., 2001, 164: 141-145.
    [8] Fusconi A, Gallo C, and Camusso W. Effects of cadmium on root apical meristems of Pisum sativum L.: cell viability, cell proliferation and microtubule pattern as suitable markers for assessment of stress pollution. Mutat. Res., 2007, 632: 9-19.
    [9] Grichko V P, Sisler E C, Serek M. Anti-ethylene properties of monoterpenes and some other naturally occurring compounds in plants. SAAS Bull Biochem. Biotech., 2003, 16: 20-27.
    [10] Kamaluddin M and Zwiazek J J. Ethylene enhances water transport in hypoxic aspen. Plant Physiol., 2002, 128: 962-969.
    [11] Li H J and Guo H W. Molecular basis of the ethylene signaling and response pathway in Arabidopsis. J. Plant Growth Regul., 2007, 26: 106-117.
    [12] Michael G. The control of root hair formation: suggested mechanisms. J. Plant Nutr. Soil Sci., 2001, 164: 111-119.
    [13] Pan J W, Zhu M Y, Chen H. Aluminum-induced cell death in root-tip cells of barley. Environmental and Experimental Botany, 2001, 46: 71-79.
    [14] Parker J S, Cavell A C, Dolan L, Roberts K, and Grierson C S. Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell, 2000, 12: 1961-1974.
    [15] Rodríguez F I, Esch J J, Hall A E, et al. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis. Science, 1999, 283: 996-998.
    [16] Romagni J G, Allen S N and Dayan F E. Allelopathic effects of volatile cineoles on two weedy plant species. J. Chem. Ecol., 2000, 26: 303-313.
    [17] Sisler E C, Grichko V P, Serek M. Interaction of ethylene and other compounds with theethylene receptor: Agonists and antagonists, in N.A. Khan (eds.). Ethylene Action in Plants. 2006. Springer-Verlag, Heidelberg, Berlin, Germany.
    [18] Takeda Y, Fujita T, and Ueno A. Structure of Leukamenins. Chem. Lett., 1981, 10: 1229-1232.
    [19] Tanimoto M, Roberts K, and Dolan L. Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. Plant J., 1995, 8: 943-948.
    [20] Yang X H, Owens T G, Scheffler B E, Weston L A. Manipulation of root hair development and sorgoleone production in sorghum seedlings. J. Chem. Ecol., 2004, 30(1): 199-213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700