多晶透明氧化铝陶瓷材料的研究与制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多晶透明氧化铝陶瓷材料是应用于光学、照明、激光等行业的优秀基质材料。本课题研究多晶透明氧化铝的原料-高纯度氧化铝粉的制备及性能,并在此基础上以固相反应烧结法为前提,研究多晶透明氧化铝陶瓷晶相结构的影响因素并以此制作具有均匀晶相结构的透明氧化铝的产品,最终实现高纯度的氧化铝粉和透明氧化铝陶瓷产品的工业化生产。
     1.通过对硫酸铝铵热解制备高纯氧化铝粉的动力学和热力学的分析以及对所制备的氧化铝粉的前期试验和性能分析,提出和制定了无压三段式热解控制前驱核化速度和晶体长大的速度的新工艺,并通过产业化的规模生产,成功获得了活性高、粒径分布窄、类球形、纯度为99.99%的高纯氧化铝粉。
     2.通过采用XRD的定性分析,扫描电镜的形貌观察及比表面积的测试等手段,对规模化生产硫酸铝铵热解制备的高纯氧化铝粉进行了全面分析和表征,提出硫酸铝铵热解温度相变的新过程:
     并提出高纯度的类球形的氧化铝粉的团聚现象为分子间范德华引力引起的软团聚。但原晶粒度大于450nm时(比表面积在小于3.33m~2/g)的氧化铝粉,为球形颗粒粉体的分散区。
     3.通过对该氧化铝粉的不同温度的实际烧结测试,发现其烧结特点是前期的致密化和晶粒长大同时进行,而在后期1420℃-1600℃是粉体烧结致密化的决定阶段,超过1700℃以后是晶粒急剧生长阶段,并拟合给出线形致密化曲线。
     4.通过研究氧化铝粉的表观性能对多晶透明氧化铝陶瓷晶相结构的影响发现,使用原晶形貌为类球形的氧化铝粉体,有利于六边形氧化铝晶体形貌的形成,其晶体尺寸和粉体的比表面积成反比线形关系;使用低比表面积的粉体有利于其晶体形状和结构的稳定;制备分散性能良好的呈牛顿型流变特征的悬浮体是取得透明氧化铝陶瓷的均匀晶相结构的必须条件。
     5.通过研究烧结外加剂对透明氧化铝陶瓷的晶相结构的影响发现,MgO在小于1700℃时在晶界能比较高的非{0001}面生成异相镁铝尖晶石,从而在高温时对具有最低界面能的{0001}六边形晶体形状起到钉扎作用,有利于形成均匀六边形的晶相结构,其含量对晶体尺寸大小具有明显的控制作用;ZrO_2和TiO_2均能和氧化铝形成低溶固溶体,促进烧结,在含量一定的条件下,也能形成均匀的晶相结构,但在一定程度上会降低陶瓷的强度和光透过率;而Y_2O_3、La_2O_3由于存在的浓度偏析,对晶体结构容易产生扰乱作用,但可以促进气孔的排除,提高透过率。
     6.在工业化生产中,通过使用类球形亚微米的氧化铝粉,选择合适的工艺制备路线和工艺参数,在无压气氛烧结中,可以获得晶粒平均尺寸为25μm均匀的晶相结构的透明陶瓷产品,其600nm的单光透过可达50%,达到目前采用固相反应烧结法制作透明氧化铝产品的最好水平。
Polycrystal transparent alumina is the better base material used in the fields of optics and illumination and laser etc. In the work, the performance of the high purity alumina powders as material making for transparent alumina are researched and prepared; By adopting solid-state sinter method, the factors effecting on the crystal structures of the transparent alumina are also investigated and the transparent alumina productions with uniform crystal structures are developed successfully; Finally the high purity alumina powders and transparent alumina productions are produced in the industrialization.
     1 Through research on dynamics and thermodynamic of the process of vitriol salt decomposed in the heating for prepared the alumina powder, the new technics of control crystallization and grain growth speeds by three heating procedures in the non-pressure air is offered and worked out, the 99.99% purity's powder with characteristic of activity and round-like and grain distributing narrow is obtained in the industrialization.
     2 The properties of the high purity powder prepared of vitriol salt decomposed in the industrialization is researched and token by X-ray diffraction qualitative analysis and scanning electron microscope and specific surface area test etc., the new phases transfer equation is offered as follows:
     The soft agglomerates caused by gravitation existing among molecules is the main badly phenomenon in the purity alumina powder, But the alumina powder of original grains' size over 450nm (specific surface area less than 3.33m~2/g) is dispersal area.
     3 The firing characteristic is that the densification and grain growth are carried out simultaneity less than 1420℃and the densification is sharp in the 1420-1600℃range , the grain growth is mainly over 1700℃. Based on data of firing densification , the densification curves and equations are described.
     4 By analysis on the apparent properties of alumina powder effecting on the crystal structures of the transparent alumina ceramics, it is founded that the round-like powders is benefit of making the hexagon crystals, its size is inverse ratio with the specific surface area; the alumina powder of lower specific surface area is more in favor of the stabilization of the crystal shape and structures; Al_2O_3 slurry of the Newton type with better dispersing properties is the need condition of forming the uniform crystal structures of the transparent alumina ceramics.
     5 By Research on different additives effecting on the crystal structures of transparent alumina ceramics, it is founded that MgO-doped is in favor of forming the uniform crystal structures due to the Al_2MgO_4 phase restraining to non-{0001} side with higher interface energy , and it's content can control the size of the crystals; ZrO_2 and TiO_2 -doped can promote solid-state reaction and form uniform structures , but may reduce the strength and optical transmittance of ceramics in a certain due to forming solid-solutions with lower melting point; Y_2O_3 and La_2O_3-doped may disturb crystal structures due to chroma's non-equably, but may increase optical transmittance due to enhancing the the green body's pores eliminating.
     6 By adopting the high purity alumina powder with like-round grain and appropriate the technics routes and parameters, and sintering in the kiln with non-pressure hydrogen gas, the transparent alumina productions with uniform crystal structures are obtained in the industrialization. The optical transmittance of single light in 600nm is up to 50% and is the best level of used solid-state sinter method .
引文
[1]Wedelik.透明陶瓷[M].陈婉华译,高陇桥校.北京:轻工业出版社,1987.55 63.
    
    [2]David W.Richerson,徐秀芳等译.现代陶瓷工程[M].北京:中国建筑工业出版社,1992.
    
    [3]高陇桥.高压钠灯用氧化铝透明陶瓷的进展[R].北京:北京硅酸盐学会.
    
    [4]沈季平.高强度气体放电灯的发展动态[J].光源研究2005,16:20
    
    [5]钟宇新.600瓦高压钠灯的设计与工艺[J].灯与照明.1992.2.:20:21
    
    [6]高鸿磊,诸定昌.陶瓷金卤灯的生产工艺(上)[J].中国照明电器,2006,1:11-22
    
    [7]吉亚明,蒋丹宇,冯涛,等.透明陶瓷材料现状与发展[J].无机材料学报.2004,3:.275:281
    
    [8] H.Yagi, J.F.Bisson, K.Ueda,etc.Y3Al5O12 ceramic absorbers for the suppression of parastic oscillation in high-power Nd: YAG lasers[J]. Joyral of Luminescence 2006,2:88-94
    
    [9] Jesus Djalma P, Evalutation of Er : YAG Laser and EDTAC on DENTIN Adhesion of Six Endodontic Sealers[J] Braz.Dent.,2001,12(1):27-30
    
    [10]马海霞,楼祁洪.陶瓷激光器的研究进展[J].激光与光电子进展.2003,40(2):45:50
    
    [11] IKESUE A, KINOSHITA T, KAMATA K et al. Fabrication and optical properties of high-performance polycrystalline NdYAG ceramics for solid-state lasers [J] Amer Ceram Soc,1995,78(4):1033-1040.
    
    [12]李会利,刘学键,黄莉萍.固相反应法制备Ce:LuAG透明陶瓷[J].无机材料学,2004, 24(6),p1245:1247
    
    [13]刘军芳,傅正义,张东明,等.透明陶瓷的研究现状和展望[J]. 陶瓷学报.2002,23(4):246:250 1999.300-301.
    
    [14] With GD E, Van Dijk HJ A.Translucent Y3Al5O12 ceramics[J]. Mater Res Bull, 1984, 19(2):1669-1673.
    
    [15]卢利平,刘景和,孙晶.Nd.YAG激光透明陶瓷超细粉体的合成极其性能表征[J].光学技 术,2005,31(2).306:308
    
    [16]黄朝红,王爱华,殷绍唐,等.Nd:YAG透明陶瓷制备技术的研究发展[J].硅酸盐学报,2003 31(9).p23:25
    
    [17]金艳,周玉所.透明氧化铝陶瓷[J].河北陶瓷.2000,107:33-34
    
    [18]李世普.特种陶瓷工艺学[M].武汉:武汉工业大学出版社,1991:p90-p92
    
    [19]殷永泉,苏段新,崔得良.高纯超细氧化铝的清洁生产工艺[J],化工环保,2001,21(4), 238-241
    
    [20]张美鸽.高纯氧化铝制备技术的进展[J].功能材料,1993,24(2):187-191
    
    [21]诸培南,王政,丁国正.金属铝水解法制备超细α-Al2O3过程中物相与显微结构的变化[J].??化学通报.1986,5(4):1-3
    
    [22]牟季美,张立德,袁志聪.尺寸可控纳米\微米级氧化铝粉的制备方法[P].中国专 利,1079718A,1992.6.6
    
    [23]刘粤惠,苏雪筠,陈楷.喷雾热解法制备高纯氧化铝粉[J].中国陶瓷,1996,32(4):7-9
    
    [24]马兵,郑国荣,戴学刚.等离子体法制备超细氧化铝[J].化工进展,1996.,2.:28-31
    
    [25]张洁娆,祝丽华,何国新,杜海清.无机铝盐Sol-gel法制备超细氧化铝粉末[J].中国陶瓷,1996, 4:10-13
    
    [26] Barringer EA, et al. Formation, Packing and Sintering of Monodisperse TiO2 Powder[J],Journal of American ceramic Society, 1982, 65c-199
    
    [27] Fegley B et al. Synthesis and Characterization of monosizes doped titanium dioxide powders,Journal of American ceramic Society, 1984, 67c-1339
    
    [28]苗赫濯,李龙土,黄勇等.精密陶瓷及应用[M].北京:科学普及出版社,1993,p34-42
    
    [29]戴隆秀,段启伟,王如恩等.一种制备高纯氧化铝的方法.中国专利[P]:201014A
    
    [30]解晓斌,陆胜,方荣利.w/o型微乳液碳化法制备超细Al(OH)3与Al2O3粉体[J].中国粉体技术
    
    [31]曾汉明,李成功等.高技术新材料要览[[M].北京:中国科学出版社,1993
    
    [32] U. Popp R. Herbig G. Michel et. Properties of Nanocrystalline Ceramic Powders Prepared by Laser Evaporation and Recondensation[J]. Journal of the European Ceramic Society. Volum 18,lssue 9,1998, P: 1153-1160
    
    [33] Sotiris E. Pratsinis. Flame aerosol synthesis of ceramic powders[J]. Progress in Energy and Combustion Science. Volume 24, Issue 3,1998, Page 197-219
    
    [34]施剑林,单一尺寸球形氢氧化铝颗粒的形成及其机理[J],硅酸盐学报,1991,19(5)
    
    [35]L.C.Pathak,T.B.Singh,S.Das,etc.Effect of PH on the combustion synthesis of nano-crystalline alumina powder[J]. Materials Letters.volume 2002, 57(2):380:385
    
    [36]刘志强,高纯超细氧化铝粉的制备(Ⅱ)-燃烧过程对氧化铝粉性能的影响[J],广东有色金属 学报,2002,2(12)
    
    [37]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].化学工业出版社,2003,62-85
    
    [38]刘志强.湿化学法制备超细粉末过程中的团聚极力及消除方法[J].化学通报,1999,7.
    
    [39]李裕,刘有智,王燕萍.液相中超细Al(OH)3粒子的生长团聚机理[J],化学研究与应用,2003, 15(1)
    
    [40] KLIMPEL R R. Some industrial experiences in modifying fine grinding environments forimproved downstream product perfomance[J] .Int J Miner Process,1996, 44-45:133-142.
    
    [41] KAWATRA S K,BAKSHI A K ,EISELE T C.An on-line pressure vessel rheometer for slurries [J].Powder Technol, 1999,105(1 ):418-423.
    
    [42] KAWATRA S K, BAKSHI A K,MILLER T E. Rheological characterization of mineral suspensions using a vibrationg sphere and a rotational viscometer[J]. Int J Miner Process, 1996. 44-45:155-165.
    
    [43] KAWATRA S K, BAKSHI A K. on-line measurement of viscosity and detemination of flowtypes for mineral suspensions[J]. Int J Miner Process, 1996, 47:275-283.
    
    [44] SAYAVUR I, BAKHTIYAROV R A. Rheology of solid-liquid suspensions in reduced gravity[J].Powder Technol, 1996, 104(2): 151-156.
    
    [45] TURIAN R M, MA T W, HSU F L G, et al.Characterization, settling, and rheology of concentrated fine paniculate mineral slurries[J]. Powder Technol, 1997, 93(3):219-233.
    
    [46]曲远方主编.功能陶瓷材料[M].北京:化学工业出版社.2002,
    
    [47]林宗涛主编.无机非金属材料工学[M].武汉:武汉工业大学出版社.1999年
    
    [48]徐廷献等.电子陶瓷材料[M].天津:天津大学出版社,1993年.
    
    [49]陈祖熊,王坚.精细陶瓷[M].北京:化学工业出版社,2005年.
    
    [50]HUANG yong , ZHANG Liming ,YANG Jinlong etc. Research progress of new colloidalforming processes for advanced ceramics[J].硅酸盐学报,2007,35(2):129-136
    
    [51]高濂,李蔚.纳米陶瓷.化学工业出版社[M],2002,P31
    
    [52]钦征骑 新型陶瓷材料手册[M].江苏科学技术出版社.南京:1996,103-113
    
    [53]李长青,张明福,左洪波,等.影响透明陶瓷透光性能的因素[J].兵器材料科学与工 程.2006,3.26:27
    
    [54]田雨霖.半透明氧化铝瓷的透光率与其显微结构的关系[J].硅酸盐通报9(5):20-25
    
    [55] R. L.COBLE.Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models[J].Journal of applied physics Volume 32( 5), 1961:787-792
    
    [56] Johnson W C, Coble R L. A test of the second phase and impurity segregation models forMgO enhanced densification of sintered alumina[J]. J Am Ceram Soc, 1978;61(3-4):110
    
    [57]杨秋红,曾智江,徐军等.La2O3对氧化铝透明陶瓷显微结构和透光性能的影响[J]. 中国稀土学报.2005,23(6):713-716
    
    [58]周艳平,王岱峰,奚益明,等.透明氮化铝陶瓷的制备.硅酸盐学报1999,14(4)
    
    [59] Ikesue A, Kinoshita T. Fabrication and optical properties of high performance poly-crystalline Nd:YAG ceramics for solid-state laser [J] .J Amceram Soc,1995, 78(4):1033-1038.
    
    [60] YANG Qiuhong,DINGJun .Microstructure of transparent alumina ceramic by the stereology method[J]. Journal of the Chinese Ceramics Society.2006, 34(10):30-32
    
    [61]郑斯桐,王保奎.铝酸盐水解制备高纯氧化铝粉,大连铁道学报,1993,3
    
    [62]谢玉群 超细氧化铝粉末的制备,现代化工,1998,18(4):p43
    
    [63]天津大学物理化学教研室编.物理化学(上册).北京:高等教育出版社.2003
    
    [64]天津大学物理化学教研室编.物理化学(下册).北京:高等教育出版社.2003
    
    [65]北京师范大学.简明化学手册.1980,180-184.
    
    [66]陆建刚.重结晶法合成硫酸铝铵的研究.硫酸工业,1994,(2)p:22-24
    
    [67]任岳荣,朱自康,徐瑞莲等.硫酸铝铵热分解法制备高纯氧化铝的研究,无机盐工业, 199123(6):21-25[1]
    
    [68]杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000..
    
    [69]冯拉俊,曹凯博,雷阿利.热分解法制备α-Al_2O_3超细粉末.中国粉体技术.2006,4:8:10
    
    [70]翁臻培,周志朝,李中和.结晶学[M].北京:中国建筑工业出版社,1986
    
    [71] J.H,Cannon and J.Untte,Trans.Brit.Ceram ,Soc.1956.55:88-111
    
    [72] ABROIDO,J.Polymer,Sei Az(7). 1968. 1761 -1773
    
    [73]杨国庆,严东生.氧化铝相变动力学[J].硅酸盐学报.1966,5(1):1-10
    
    [74]Bae I,Baik S.Abnomal grain grow growth of alumina[J].J.Am.Ceram Soc,1997,80(5):1149-1156
    
    [75]陆厚根.粉体技术导论[M].上海:同济大学出版社.1998
    
    [76]Kingery W D, Francois B.Grain growth in porous compacts.[J] Am Ceram Soc,1965;48(10):546
    
    [77] Coble R L. Sintering crystalline solides Ⅱ. Experimental tesr of diffusion models in powdercompacts. JAppl Phys, 1961,32(5):793
    
    [78] Pejovnik S, SmolejV, Susnik D,et al. Statistical analysis of the validity of sintering equation.Powder Metall Int, 1979; 11; 22
    
    [79] Tikkanen M H, Makipirtti S A. A new phenomenological sintering equation. Int J PowderMetall, 1965; 1(1): 15
    
    [80] Exner H E, Petzow G A. Ceitical evoluation of shrinkage equation. Materials Science Research,Vol 13, New York: Plenum Press, 1980,107-120
    
    [81] Xu D,Xue D.Chemical Bonding Theory of the Crystal Growth [J].Joural of synthetcCrystal,2006,35(3):598-603.
    
    [82] Xu D,Xue D.Chemical Bonding Analysis of the crystal Growth of KDP and ADP[J].J Crystalgrowth,2006,286(1):108-113
    
    [83] Mark Fox. Optical Properties of Solids[M].OXFORD:oxford University Press,2001:70-75
    
    [84] Coble R L. (a) Sintering crystalline solids---I intermediate and final state diffusionmodels;(b)Sintering ceystalline solids---I experimental test of diffusion models in powdercompacts. J Appl Phys,1961;32 (a)787-792; (b)793-799
    
    [85]施剑林,固相烧结---I气孔呈微结构模型及热力学稳定性,致密化方程。硅酸盐学报, 1997;25(5):499
    
    [86] Kuczynski G C. Model experiments and the theory of sintering. In:SomiyaS,Moriyoshi Y eds.Sintering---Key Papers, London: Elsevier Applied Science, 1987: 501-508
    
    [87] Kingery W D,Berg M. Study of the initial stage of sintering by viscous flow,evaporation-condensation, and self-diffusion. J Appl Phys, 1955; 26; 1205
    
    [88] Kuczynski G C. Self-diffusion in sintering of metallic particles. AIME, 1949; 85; 169
    
    [89] Lange F F. Sinterability of agglomerated powders. J Am Ceram Soc, 1984; 67; 83
    
    [90]施剑林,超细氧化锆粉料制各与性质:[博士论文]。上海:中国科学院上海硅酸盐研究所, 1989。
    
    [91] Lange F F, Kellet B J. Thermodynamics of densification---part Ⅰ grain growth in porouscompacts and relation to densification. J AM Ceram Soc, 1989; 72 (5):735
    
    [92] Johnson D L. A general model for the intermediate stage of sintering. J Am Ceram Soc 1970; 53;574
    
    [93]李玲 表面活性剂与纳米技术.北京:化学工业出版社,2004,154:167
    
    [94] ZHOU Z W, SCALES P J, BOGER D V. Chemical and physical control of the rheology of concentrated metal oxide suspensions[J].Chem Eng Sci,2001.56(9):2901 -2902.
    
    [95]陈大明.影响氧化铝水基料浆流变学特性的关键因素,硅酸盐学报,2007,10:1324:1326
    
    [96]张浩,王哓莉,郭露村.PAA-PEO和PAA对α-Al_2O_3-H_2O悬浮液流变性能的硬性,硅酸盐 学报,2007,10:1317:1321
    
    [97]沈钟,王果庭.胶体与表面化学{M}.北京:化学工业出版社.1997,86-87
    
    [98] KAWATRA S K, EISELE T C. Rheological effects in grinding circuits[J].Int J Miner Process, 1997,50(3): 187-201.
    
    [99]王燕民,李新衡.湿法超细研磨中无机材料浆体的流变性研究.硅酸盐学报,2006(34)5: 585-590
    
    [100] KLIMPEL R R. Laboratory studies of the grinding and rheology of coal-water slurries[J].Powder Technol,1982 ,32(4):267-277
    
    [101]TANGSATHITKULCHAL C.The effect of slurry rheology on fine grinding in a laboratory
    
    [102] KLIMPEL R R. Some industrial experiences in modifying fine grinding environments forimproved downstream product perfomance[J]. Int J Miner Process,1996,44-45:133-142.
    
    [103] Harmer M P. Use of solid solution additives in ceramic processing. In: Kingery W D ed.Advances in Ceramics, Vol.
    
    [104]苏春辉,隋质通.氧化铝透明陶瓷烧结过程缺陷热力学.中国金属学会冶金物理化学学会 会编.全国冶金物理化学学术会
    
    [105]乔瑞庆,肖丽.板片状Al_2O_3晶粒三维形状的评估方法.无机材料学报.2007,22(5):979-984.
    
    [106]尹衍升,张景德.氧化铝陶瓷及其复合材料.北京:化学工业出版社,2001 p:73-80
    
    [107]苏春辉,端木庆铎,王艳.稀土氧化物在氧化铝透明陶瓷晶界界浓度分布的非平衡态热力 学分布,硅酸盐学报,1998,12,:802:806
    
    [108]李如生.非平衡态热力学和耗散结构.北京:清华大学出版社,1986:84-86
    
    [109]孙旭东,闻雷,修稚萌等.添加剂对YAG透明陶瓷显微组织的影响.Journal of Rare Earths,2005,23(3):288
    
    [110]陈昌平,高景霞,杨会智等.复合添加剂对纳米氧化铝陶瓷致密化的影响.硅酸盐学报,2007, 35(7):861-865.
    
    [111]浙江大学.硅酸盐物理化学.北京:中国建筑工业出版社,1987:470-475

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700