Zr/Al基非晶合金的电阻及内耗行为与熔体状态的相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非晶合金通常需快速冷却获得,其短程有序而长程无序的结构与液态合金结构有很大的相似性,因此非晶态组织在很大程度上是母合金熔体的“冻结”,母合金熔体的结构变化必然影响到非晶的形成和性能。本文采用电阻法和内耗法,系统地研究了非晶的形成能力(GFA)、力学弛豫以及晶化行为与熔体状态的关系。论文工作所获得的主要研究成果与认知如下:
     (1)选取Al_(86)Ni_9La_5合金作为研究对象,通过电阻法发现其熔体在1320K~1490K温度范围内出现了异常温度变化行为,提示此合金熔体发生了温度诱导的液-液结构转变,这一现象和推测得到了DTA热分析结果的验证。根据不同熔体状态的区间选择合适的温度制备了一系列非晶薄带,连续升温及等温实验研究表明,虽然最终晶化产物并无差异,熔体状态对合金不同阶段的晶化行为却产生了显著的影响。具体表现为:高温熔体制备的非晶,其初生相α-Al的析出温度略有提前,而二级晶化相Al_(11)La_3、Al_3Ni、Al_4La及Al_3Ni_2的析出温度则显著推迟。这些结果对Al基非晶/纳米晶复合材料的制备方法及性能提高有重要意义,也间接印证了在1320K~1490K范围发生液液结构转变的推测。分析认为,熔体状态改变后形成非晶的二级晶化相析出推迟,可归因于其熔体中对应于这些金属间化合物结构和成分的化学短程序得以消散,故这些金属间化合物相从非晶中形核析出更加困难。
     (2)对于技术上难以测定熔体电阻率的锆基Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5)合金,采用不同熔体温度制备其非晶合金,间接探索了不同熔体结构与性质的状态变化及其对其晶化行为的影响。研究表明,低于1573K温度制备的非晶,其初生相是Ni_2Zr_3;而高于1573K温度制备的非晶,初生相主要是f.c.c NiZr_2,且电阻及DSC实验表明其晶化开始温度Tx提高。更为有趣的是,熔体温度还导致其非晶最终晶化产物的不同。这些结果不仅澄清了文献报道中关于Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5)晶化相不一致的原因,同时可推测,当熔体温度超过某一临界值时(介于1573K与1673K之间),Ni-Zr类型的团簇的打破使得熔体结构改变,间接证明了合金熔体中温度诱导液液结构转变的发生。
     (3)研究结果揭示,随合金系统的差异,不同熔体温度及其状态变化可导致对GFA的完全相反的影响。对于上述两种合金,Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5)合金随制备温度的上升(尤其温度高于1573K之后),表征GFA的特征参数ΔTx、Trg以及γ都明显增大,表明其非晶形成能力增大;而对于Al_(86)Ni_9La_5合金,表征GFA的特征参数以及实际形成非晶临界尺寸均表明,高温熔体(状态改变后)的非晶形成能力有一定程度的下降。
     (4)关于非晶制备熔体温度对GFA的作用,对于高温所致氧化及冷速变慢的负面作用,以及高温使得熔体中异质形核基底消散等正面作用,无疑需根据合金系统、制备工艺条件、原材料等方面进行综合分析。而作者基于研究结果分析强调认为:就熔体结构状态本身而言,液液结构转变导致熔体某些原有团簇的消失,若这些团簇的局域结构和成分对应于熔体冷却过程的先析出相(结晶),则必然提高GFA,如Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5)合金,推断高温下对应于Ni_2Zr_3的化学短程序的打破;相反地,若消散的局域有序团簇并不对应于晶化和结晶过程的先析出相,且反而在热力学和/或动力学方面有利于先析相的晶核形成,则必然降低GFA,如Al_(86)Ni_9La_5合金,分析认为熔体转变导致化学短程序的消散释放出更多Al原子,从而富Al的原子团簇增多,且熔体的自由体积增大(密度降低)有益于扩散,两方面促进合金先析相α-Al的形核。
     (5)采用内耗法探索熔体温度对Zr_(55)Al_(10)Ni_5Cu_(30)大块非晶力学弛豫行为影响的结果表明,随着熔体温度的升高,对应非晶试样的内耗峰向高温移动,且内耗峰值增大。通过比较内耗-频率谱可知,在从室温到晶化开始温度之前,内耗频率关系分别呈现为线性正比、复杂过渡及单调减小,表现出滞弹性和粘弹性两种力学弛豫行为。制备非晶时的熔体温度越高,由滞弹性弛豫转变为粘弹性弛豫的开始温度以及结束温度越低。为了分析玻璃转变温度附近的内耗行为,根据Perez理论和与主弛豫相关的低频内耗表达式,比较了表征非晶物质中短程有序度的参数,发现不同温度制备的非晶其确定的关联参数大小不同,1603K制备的非晶合金的关联参数最大,且由关联参数确定的临界温度点Ti随着制备非晶温度的升高而升高,表明制备非晶的熔体温度越高,非晶越无序,试样热稳定性最好。
     (6)选择具有不同非晶形成能力的锆基非晶,研究了非晶形成能力和内耗的关系。通过比较内耗温度曲线发现不同非晶形成能力在内耗峰峰高上有显著区别,GFA越大,内耗峰峰值越高,从而提出了一个表征GFA的新参数—内耗峰峰值。通过对背底内耗拟合获得了激活能,发现非晶形成能力越大,在玻璃转变之前以及过冷液相区的激活能越大。
The amorphous alloys are generally obtained by rapidly cooling. The short-range order andlong-range disorder of amorphous alloy has similarity with the melt structure. So the amorphousalloy might be considered as the solids with the frozen-in liquid structure and some features of meltstructure could be inherited by the resultant amorphous alloy. In the present work, by the methods ofelectrical resistance (ER) and internal friction, the influences of melt temperature on the glassforming ability (GFA), crystallization behavior and mechanical relaxation of the amorphous alloyswere systematically studied. The innovative points and main results of this paper are listed below.
     (1) The structure change of the Al_(86)Ni_9La_5liquid was examined by means of ER duringcontinuous heating. Abnormal behaviors with temperature of the melts were observed within therange from1320K to1490K, indicating the change of the liquid state and the possible temperatureinduced liquid-liquid structure transition (LLST). The results also have been verified by DTA. Basedon the anomalous behavior of temperature-induced liquid-liquid structure transition observed in themelt, different melt temperatures were chosen to prepare the amorphous samples and then they wereannealed at the same conditions. It is found that the final crystallization phases are the same, but thecrystallization behavior during different crystallization stages are significantly different among thesamples. For the crystallization behavior of the sample prepared above the LLST temperature range,the precipitation temperature of primary phase α-Al is earlier, but the formation of intermetalliccompounds is later than that of the sample prepared below the LLST temperature. These conclusionscould improve the preparation and performance of Al-based amorphous/nanocrystalline compositematerial, and also indirectly confirm the speculation of liquid-liquid structural change. The resultthat the precipitation of second crystallization of amorphous sample prepared above the LLSTtemperature range, may be attributed to the dissolved short-range order corresponding to theseintermetallic compounds. Therefore, the nucleation and precipitation of the intermetallic compoundsis more difficult.
     (2) For the Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5)amorphous alloys, it is difficult to measure ER of melt because oftheir proneness to be easily oxidized. So based on the crystallization behavior of amorphous ribbonsprepared at different melt temperatures, the structural change in the melt is indirectly explored. Itwas found that primary phase is different among the samples. The primary phase is Ni_2Zr_3for thesample prepared below1573K, while that is f.c.c NiZr_2for the sample prepared at above1573K,and the begging crystallization temperature moves to higher temperature. The final crystallizationphases are also different for the two kinds of the samples. So based on the signficant differentcrystallization behaviors of amorphous Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5)ribbons prepared at different melt temperatures, the reason that crystallization phases reported in some literatures are inconsistentmight originate from the different structures of the amorphous ribbons resulting from different melttemperatures. Besides, it also suggested that the structure of melt changed above1573K.
     (3) For different alloy system, the melt structure has significant influence on GFA. Bycomparing the characteristic parameters of GFA Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5)ribbons, the GFA is improvedwith the increasing melt temperature, especially higher than1573K. But for Al_(86)Ni_9La_5alloy, basedon the characteristic parameters of GFA and the critical thickness of the wedge-shaped samplesprepared at diifferent melt temperature, the GFA is decreased due to the change of the melt structure.
     (4) For the influence of the quenching temperature on the GFA of the metallic glasses, it is nodoubt to conduct a comprehensive analysis of the negative effects, i.e. the high-temperatureoxidation and the cooling rate slowing down and the positive effects, i.e. high temperature meltmakes the heterogeneous nucleation substrate to dissipate, according to the aspects such as the alloysystem, preparation condition and raw materials. Based on the research results, the authorsemphasize that the liquid-liquid structure transition causes some of the pre-existing clustersdisappearing as the melt structure state itself. If the local structure and composition of the cluster arecorresponding to the primary phase during the rapid cooling of the melt, the GFA will be certainlyimproved. As an example of Zr_(65)Al_(7.5)Ni_(10)Cu_(17.5)alloy, it is corresponding to the chemical short rangeorder of Ni_2Zr_3which is broken under the high melt temperature. On the contrary, if the disappearedcluster is not corresponding to the primary phase during crystallization and instead of facilitating thenucleation of the primary phase in the aspects of thermodynamic and/or kinetic, the GFA will becertainly decreased. As an example of Al_(86)Ni_9La_5alloy, the liquid-liquid structure transition causethe disappearing of the chemical short-range order and much more Al atoms will be free resulting inthe increasing of the Al-rich cluster. Meantime, the increasing free volume of the melt (lower density)is favor of the atomic diffusion. Both of the factors promote the nucleation of the primary phasefcc-Al of the alloy.
     (5) By the method of internal friction, the influence of melt temperature on the mechanicalrelaxation of Zr_(55)Al_(10)Ni_5Cu_(30)bulk metallic glass was studied. By comparing the internal friction-temperature curves of different samples, the positions of peak move to higher temperature and thethe internal friction value increases with the melt temperature increasing. By comparing the internalfriction-frequency curves of different samples, BMGs structure relaxation can be divided into threeregions before Tx, which are the stages of linear increase, complicated transition and monotonereducing. The beginning and end temperature at which the anelastic behaviour change intoviscoelastic relaxation move toward the lower temperature for the BMG prepared at higher melttemperature. In order to analyze the IF behavior of BMG in the vicinity of the glass transition temperature, based on the theory of Perez, the correlation parameter is compared, which isdeduced from tan-f curves. The sample prepared at1603K has the largest. And the criticaltemperature determined by the correlation parameter increases with the quenching temperatureincerasing. The results show that the higher the melt temperature, the larger the degree of disorder ofthe sample and thus the higher the thermal stability.
     (6) Finally, the Zr-based BMGs with different glass forming ability were selected to study therelationship between GFA and internal friction. By comparing the internal friction-temperaturecurves of different samples, it is found that the higher the value of internal friction peak, the betterthe GFA. So a new criterion evaluating the GFA is proposed, i.e. internal friction peak. Comparingthe activation energy obtained from the fitted background internal friction, the higher the glassforming ability, the larger the activation energy before the glass transition temperature and in thesupercooled liquid region.
引文
[1]郭贻诚,王震西,非晶态物理学.北京:科学出版社,1984.
    [2] W.H. Wang, C. Dong, C.H. Shek. Bulk metallic glasses. Mater. Sci. Eng. R,2004,44:45-89.
    [3]汪卫华,金属玻璃研究简史.物理,2011,40:701-709
    [4]朱正旺,凝固过程控制对非晶态合金及其复合材料的结构和性能的影响.中国科学院研究生院博士论文,2009.
    [5] H.S. Chen. Metallic Glasses. Chinese J. Phys.,1990,28:407-425.
    [6] G. Falkenhagen, W. Hofmann. Z. Metall Kunde,1952,43:69.
    [7] W. Klement, R.H. Willens, P. Duwez. Non-crystalline structure in solidified gold–siliconalloys. Nature,1960,187:869-870.
    [8] P. Duwez. Metallic glasses-Historical background. In Glassy Metals I, eds,1981.
    [9] H.J. Güntherodt, H. Beck. Glassy Metals. Berlin, Germany: Springer-Verlag,1983.
    [10] P. Pietrokowsky. Novel mechanical device for producing rapidly cooled metals and alloys ofuniform thickness. Review of scientific Instruments,1963,34:445-446.
    [11] H.S. Chen, C.E. Miler. A rapid quenching technique for the preparation of thin uniformfilms of amorphous solids. Review of Scientific Instruments,1970,41:1237-1238.
    [12] J.J. Gilman. Flow via dislocations in ideal glasses. J. Appl. Phy.,1973,44:675-679.
    [13] A. Inoue, M. Kohinata, A. Tsai, T. Masumoto. Mg-Ni-La amorphous alloys with a widesuper-cooled liquid region. Mater. Trans. JIM,1989,30:378-381.
    [14] A. Inoue, K. Kita, T. Zhang, T. Masumoto. An amorphous La55Al25Ni20alloy prepared bywater quenching. Mater. Trans., JIM,1989,30:722-725.
    [15] A. Inoue, T. Zhang, T. Masumoto. Zr-Al-Ni amorphous alloys with high glass transitiontemperature and significant supercooled liquid region. Mater. Trans. JIM,1990,31:177-183.
    [16] A. Inoue, N. Nishiyama, T. Matsuda. Preparation of bulk glassy Pd40Ni10Cu30P20alloy of40mm in diameter by water quenching. Mater. Trans. JIM,1996,37:181-184.
    [17] R. Akarsuka, T. Zhang, H. Koshiba, A. Inoue. Preparation of new Ni-based amorphousalloys with a large supercooled liquid region. Mater. Trans. JIM,1999,40:258-261.
    [18] A. Inoue, T. Shibata, T. Zhang. Effect of additional elements on glass transition behaviorand glass formation tendency of Zr-Al-Cu-Ni alloys. Mater. Trans. JIM,1995,36:1420-1426.
    [19] A. Peker, W.L. Johnson. A highly processable metallic glass: Zr41.2Ti13.5Cu12.5Ni10Be22.5.Appl. Phys. Lett.,1993,63:2342-2345.
    [20] B. Zhang, D.Q. Zhao, M.X. Pan, W.H. Wang. Amorphous metallic plastic. Phys. Rev. Lett.,2005,94:205502.
    [21] H. Ma, L.L. Shi, J. Xu, Y. Li, E. Ma. Discovering inch-diameter metallic glasses inthree-dimensional composition space. Appl. Phys. Lett.,2005,87:181915.
    [22]惠希东,陈国良,块体非晶合金.北京:化学工业出版社,2007.
    [23] P.G.. Debenedetti, F.H. Stillinger. Supercooled liquids and the glass transition. Nature,2001,410:259-267.
    [24] D. Turnbull, M.H. Cohen. Modern aspects of the vitreous state, Butterworths London,1960.
    [25] D.R. Uhlmann. A kinetic treatment of glass formation. J. Non-Cryst. Solids,1972,7:337-348.
    [26] A. Inoue, B.L. Shen, C.T. Chang. Super-high strength of over4000MPa for Fe-based bulkglassy alloys in FeCoBSiNb system. Acta Mater.,2004,52:4093-4099.
    [27] A. Inoue, B.L. Shen, H. Koshiba, H. Kato, A.R. Yanari. Ultra-High Strength above5000MPa and soft magnetic properties of Co-Fe-Ta-B bulk glassy alloys. Acta Mater.,2004,52:1631-1637.
    [28] A. Inoue, T. Masumoto. Mg-based amorphous alloys. Mater. Sci. Eng. A,1993,173:1-8.
    [29] W.L. Johnson. Fundamental aspects of bulk metallic glass formation in multicomponentalloys. Mater. Sci. Forum,1996,225-227:35-49.
    [30] A. Inoue. Stabilization of metallic supoercooled liquid and bulk amorphous alloys. ActaMater.,2000,48:279-306.
    [31] J. Schroers. Processing of bulk metallic glass. Adv. Mater.2009,21:1-32.
    [32] A. Inoue, X.M. Wang, W. Zhang. Developments and applications of bulk metallic glasses.Rev. Adv. Mater. Sci.,2008,18:1-9.
    [33] A.Inoue, J.S. Gook. Fe-based ferromagnetic glassy alloys with wide supercooled liquidregion. Mater. Trans. JIM.,1995,36:1180-1183.
    [34] A. Inoue, A. Katsuya. Multicomponent Co-based amorphous alloys with wide supercooledliquid region. Mater. Trans. JIM,1996,37:1332-1336.
    [35] Y. Yoshizawa, S. Oguma, K. Yamauchi. New Fe-based soft magnetic alloys composed ofultrafine grain structure. J. Appl. Phys.,1988,64:6044-6046.
    [36] A. Inoue, N. Nishiyama. New bulk metallic glasses for applications as magnetic-sensing,chemical and structural aaterials. Mrs. Bull.,2008,32:651.
    [37]胡汉起,金属凝固原理.机械工业出版社,2000.
    [38]程素娟,金属熔体原子团簇的微观热收缩现象.山东大学博士学位论文,2004.
    [39] S. Steeb, H. Entress. Atom distribution and electrical resistivtiy of molten magnesium-tinalloys. Z. Metallkunde,1966,57:803-807.
    [40]滕新营,刘含莲,铈对液态共晶Fe-C合金粘度的影响.中国稀土学报,2001,19:435-438.
    [41]洪新国,熔体性质与策略方法的研究.中国科学院博士学位论文,1994.
    [42] J.M. Ziman. A theory of the electrical properties of liquid metals. Phil. Mag.,1961,6:1013-1034.
    [43] P.M. Nasch, S.G. Steinemann. Density and Thermal Expansion of Molten Manganese, Iron,Nickel, Copper, Aluminum and Tin by Means of the Gamma-Ray Attenuation Technique.Phys. Chem. Liq.,1995,29:43-58.
    [44] P.M. Smith, J.W. Elmer, G.F. Gallegos. Measurement of the density of liquid aluminumalloys by an X-ray attenuation technique. Scripta Mater.,1999,40:937-941.
    [45] Y. Yagodzinskyy, L. Straka, H. H nninen. Forced torsion pendulum for studies ofinteractions at solid-liquid interface. Mater. Sci. Eng. A.2006,442:538-542.
    [46] L.J. Guo, A.Q. Wu, Z.G. Zhu. Internal friction behavior of liquid AsxTe1-x mixtures. J.Non-Cryst. Solid,2007,353:1631-1634.
    [47] A.Q. Wu, L.J. Guo, C.S. Liu, E. Jia, Z. Zhu. Internal friction behavior of liquid Bi-Sn alloys.Phys. B.2005,369:51-55.
    [48] F. Q. Zu, Z. G. Zhu, L. J. Guo, B. Zhang, J.P. Shui, C.S. Liu. Liquid-liquid phase transitionin Pb-Sn melts. Phys. Rev. B,2001,64:180-203.
    [49] P. Vashishta, R.K. Kalia, I. Ebbsj. Structure correlations and phonon density of states inGeSe2: A molecular-dynamics study of molten and amorphous states. Phys. Rev. B,1989,39:6034-6047.
    [50] G.A. De Wijs, G. Pastore, A. Selloni, W. Van der Lugt. First-principles molecular-dynamicssimulation of liquid CsPb. J. Chem. Phys.,1995,103:5031-5040.
    [51] H.S. Nam, N.M. Hwang, B.D. Yu, J.K. Yoon. Formation of an icosahedral structure duringthe freezing of gold nanoclusters: surface-induced mechanism. Phys. Rev. Lett,2002,89:275502-4.
    [52] B. Sadigh, M. Dzugutov, S. R. Elliott. Vacancy ordering and medium-range structure in asimple monatomic liquid. Phys. Rev. B,1999,59:1-4.
    [53] M. Dzugutov, B. Sadigh, S.R. Elliott. Medium-range order in a simple monatomic liquid. J.Non-Cryst. Solids,1998,232-234:20-24.
    [54] A.R. Ubbelohde. The molten state of matter: melting and crystal structure. New York: Wiley,1978.
    [55] P.G. Debendedtti. Metastable Liquids, Princeton University Press, Princeton,1997.
    [56] C.A. Angell. Formation of glasses from liquids and biopolymers. Science,1995,267:1924-1935.
    [57] P.H. Poole, T. Grande, C.A. Angell. Polymorphic phase transition of liquids and glasses.Science,1997,275:322-323.
    [58] Y. Katayama, T. Mizutani, W. Utsumi. A first-order liquid-liquid phase transition inphosphorus. Nature,2000,403:170-173.
    [59] S. Sastry, C. Austen. Liquid-liquid phase transition in supercooled silicon. Nature Mater.,2003,2:739-743.
    [60] C.J. Roberts, A.Z. Panagiotopoulos, P.G. Debenedetti. Liquid-liquid immiscibility in purefluids: polyamorphism in simulations of a network-forming fluid. Phys. Rev. Lett,1996,77:4386-4389.
    [61] S. Harrington, R. Zhang, P.H. Poole. Liquid-liquid phase transition: evidence fromsimulations. Phys. Rev. Lett,1997,78:2409-2412
    [62] O. Mishima, L.D. Calvert, E. Whalley. An apparently first-order transition between twoamorphous phases of ice induced by pressure. Nature,1985,314:76-78.
    [63] C.L. Xu, Q.C. Jiang. Morphologies of primary silicon in hypereutectic Al-Si alloys withmelt overheating temperature and cooling rate. Mater. Sci. Eng. A,2006,437:451-455.
    [64] L. Wang, X.F. Bian, J.T. Liu. Discontinuous structural phase transition of liquid metal andalloys. Phys. Lett. A,2004,326:429-435.
    [65] Q. Wang, X.M. Chen, C.X. Chen, K.Q. Lu. Electrical resistivity of molten indium-antimonyalloys. J. Appl. Phys.,2000,87:4623-4625.
    [66] S. Strassler, C. Kittel. Degeneracy and the order of the phase transformation in themolecular-field approximation. Phys. Rev. A,1965,139: A758-A760.
    [67] A.C. Mitus, A.Z. Patashinskii, B.I. Shumilo. The liquid-liquid phase transition. Phys. Lett.A,1985,113:41-44.
    [68] H. Tanaka. General view of a liquid-liquid phase transition. Phys. Rev. E.,2000,62:6968-6976.
    [69]陈光,傅恒志等,非平衡凝固新型金属材料.北京科学出版社,2004.
    [70] W. Hoyer, R. Jodicke. Short-range and medium-range order in liquid Au---Ge alloys. J.Non-Cryst. Solids,1995,102:192-193.
    [71] H.H. Liberman. Warm consolidation and cladding of glassy alloy ribbons. Mater. Sci. Eng.,1980,46:241-248.
    [72] E.E. Luborsky, H.H. Liberman. Effect of melt temperature on some properties ofFe80.5B15Si4Co0.5and Fe40Ni40B20amorphous alloys. Mater. Sci. Eng.,1981,49:257-261.
    [73] E. William, J. Brower, Steven C. Megli. Influence of superheat and hammer speed on theformation of metallic glasses. Mater. Sci. Eng. A,1991,133:846-849.
    [74] G.E. Abrosimova, A.S. Aronin, S.P. Pankratov, A.V. Serebrjakov. Crystallization of the Fe-Bsystem amorphous alloys. Metallofizika,1980,2:96-101.
    [75] L. Novak, L. Potochy, A. Lovas, Korp. Riz. Kut. Int. Publ.,1975,88:8.
    [76] P.S. Popel, E.L. Arkhangelsky, V.V. Makejev, Vysokotemp. Rasplavy (USSR),1995,1:85.
    [77] V. Manov, A. Rubshtein, A. Voronel, P. Popel, A. Vereshagin. Effect of melt temperature onthe electrical resistivity and crystallization temperature of Al91La5Ni4and Al91Ce5Ni4amorphous alloys. Mater. Sci. Eng.,1994, A179/A180:91-96.
    [78] J. Wu, H.M. Fu, Z.W. Zhu, H.F. Zhang. The effect of melt treatment on glass forming abilityand thermal stability of Al-based amorphous. Adv. Eng. Mater.,2010,12,1127-1130.
    [79] J. Mao, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, Z.Q. Hu. Influence of casting temperatureon the thermal stability of Zr-based metallic glasses. J. Alloys Compd.,2010,496:595-599.
    [80] J. Mao, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, Z.Q. Hu. Effects of casting temperature onmechanical properties of Zr-based metallic glasses. Mater. Sci. Eng. A,2010,527:981-985.
    [81] Z.W. Zhu, H.F. Zhang, H. Wang, B.Z. Ding, Z.Q. Hu, H. Huang. Influence of castingtemperature on microstructures and mechanical properties of Cu50Zr45.5Ti2.5Y2metallic glassprepared using copper mold casting. J. Mater. Res.,2009,24:3108-3115.
    [82] Z.W. Zhu, S.J. Zheng, H.F. Zhang, B.Z. Ding, Z.Q. Hu. Plasticity of bulk metallic glassesimproved by controlling the solidification condition. J. Mater. Res.,2008,23:941-948.
    [83] S.R. Nagel. Temperature dependence of the resistivity in metallic glasses. Phys. Rev. B,1977,16:1694-1698.
    [84] O. Haruyama, H. Kimura, N. Nishiyama, A. Inoue. Change in electron transport propertyafter glass transition in several Pd-based metallic glasses. J. Non-Cryst. Solids,1999,250-252:781-785.
    [85] O. Haruyama, H. Kimura, N. Nishiyama, A. Inoue. Behavior of electrical resistivity throughglass transition in Pd40Cu30Ni10P20metallic glass. Mater. Sci. Eng. A,2001,A304-306:740-742.
    [86] H.Y. Bai, C.Z. Tong, P. Zheng. Electrical resistivity in Zr48Nb8Cu12Fe8Be24glassy andcrystallized alloys. J. Appl. Phys.,2004,95:1269-1273.
    [87] O. Haruyama, N. Annoshita, H. Kimura, N. Nishiyama, A. Inoue. Anomalous behavior ofelectrical resistivity in glass transition region of a bulk Pd40Ni40P20metallic glass. J.Non-Cryst. Solids,2002,312-314:552-556.
    [88] A. Inoue, T. Zhang. Enhancement of strength and ductility in Zr-based bulk amorphousalloys by precipitation of quasicrystalline phase. Mater. Trans. JIM.,2000,41:1511-1520.
    [89]郭晶,Zr基大块非晶合金玻璃转变特性及GFA的电阻法探索.合肥工业大学硕士学位论文,2005.
    [90] H.W. Yang, J. Gong, R.D. Li, J.Q. Wang. Thermal variation of electrical resistance of anAl85Ni5Y8Co2metallic glass free of quenched-in nuclei. J. Non-Cryst. Solids,2009,355:2205-2208.
    [91]王亚平,卢柯,非晶态合金晶化过程的高精度电阻监测研究.中国科学(E辑),2000,30:193-199.
    [92]葛庭燧,固体内耗理论基础,晶界弛豫与晶界结构.北京:科学出版社,2000.
    [93] A.S. Nowick, B. S. Berry. Anelastic Relaxation in Crystalline Solids, Academic Press, Inc.,New York,1972.
    [94]冯端等著,金属物理学-第三卷金属力学性质.北京:科学出版社,1999.
    [95]张进修,固体中的滞弹性和内耗.中山大学讲义,1986.
    [96] Y.M. Soifer, N.P. Kobelev, L.G. Brodova, A.N. Mannkhin, E. Korin, L. Soifer. Internalfriction and the Young’s modulus change associated with amorphous to nanocrystallinephase transition in Mg-Ni-Y alloy. NanoStructured Mater.,1999,12:875-878.
    [97] Q. Wang, J.M. Pelletier, Y.D. Dong. Correlation between microstructure and internal frictionin a Zr41.2Ti13.8Cu12.5Ni8Be22.5Fe2bulk metallic glass. Mate. Sci. Eng. A,2004,379:197-203.
    [98] Y. Hiki, R. Tamura, S. Takeuchi. Internal friction of metallic glass measured as function ofstrain amplitude at various temperatures. Mater. Sci. Eng. A,2009,521-522:228-231.
    [99] Q. Wang, J. Lu, F.J. Gu, H. Xu, Y.D. Dong. Isothermal internal friction behavior of a Zrbased bulk metallic glass with large supercooled liquid region. J. Phys. D: Appl. Phys.,2006,39:2851-2855.
    [100] Y. Hiki, T. Yagi, T. Aida, S. Takeuchi. Low-frequency high-temperature internal friction ofbulk metallic glasses. J. Alloy Compd.,2003,355:42-46.
    [101] P. Wen, D.Q. Zhao, M.X. Pan, W.H. Wang, Y.P. Huang, M.L. Guo. Relaxation behaviors ofbulk metallic glass forming Zr46.75Ti8.25Ni10.0Be27.5alloy. Intermetallics,2004,12:1245-1249.
    [102] B. Cai, L.Y. Shang, P. Cui. Mechanism of internal friction in bulk Zr65Cu17.5Ni10Al7.5metallic glass. Phys. Rev. B,2004,70:184208-1-5.
    [103]闻平,Zr-基大块金属玻璃的玻璃态、热玻璃转变特征和过冷液体相变的研究.中国科学院博士学位论文,2003.
    [104] C. Wang, Q.F. Fang, Y. Shi. Internal friction study on oxygen va-cancies and domain wallsin Pb (Zr, Ti) O3ceramics. Mater. Res. Bull.,2001,36:2657-2665.
    [105] I. Yoshida, T. Ono, M. Asai. Internal friction of Ti-Ni alloys. J. Alloys Compd.,2000,310:339-343.
    [106] B. Minov, L. Dupré, M.J. Konstantinovi. Magnetic after-effect study of dislocationrelaxation in Fe-based alloys. J. Phys D: Appl. Phys,2011,44:495302.
    [107]杨开巍,一级固态相变内耗峰形成机制的研究.中国科学院研究生院博士学位论文,2008.
    [108]张博,ZrAlNiCu(Nb)大块非晶的内耗行为.合肥工业大学硕士学位论文,2003.
    [109] Y. Hiki, M. Tanahashi, S. Takeuchi. Stabilization of metallic glass studied by internalfriction measurement. J. Non-Cryst. Solids,2008,354:1780-1785.
    [110] O.P. Bobrov, V.A. Khonik, S.N. Laptev, M.Yu. Yazvitsky. Comparative internal frictionstudy of bulk and ribbon glassy Zr52.5Ti5Cu17.9Ni14.6Al10. Scripta Mater.,2003,49:255-260.
    [111]陈镜泓,李传儒.热分析及其应用.北京:科学出版社,1985.
    [112] N.F. Mott, E.A. Davis. Electronic processes in Non-crystalline Materials. Oxford, NewYork,1979.
    [113]段成银,黄光杰,铝基非晶合金的研究进展.轻合金加工技术,2007,8:11-17.
    [114] P. Predecki, B.C. Giessen, N.J. Grant. New metastable alloy phases of gold, silver andaluminum. Trans. Metall. Soc. AIME,1965,233:1438.
    [115] P. Ramachandrarao, M. Laridjani, R.W. Cahn. Diamond as a splat-cooling substrate. Z.Metallkd.,1972,63:43.
    [116] H.A. Davies, J.B. Hull. A non-crystalline phase in splat-quenched germanium. ScriptMetall.,1972,6:241.
    [117] K. Chattopadyay, R. Ramachandrarao, S. Lele, T.R. Anantharaman, in: N.J. Grant, B.C.Giessen (Eds.), Proceedings of2nd International Conference on Rapidly Quenched Metals,Cambridge, MA: MIT Press,1975.
    [118] H.A. Davies. Trans. Indian Inst. Met.,1981,31:292.
    [119] Y. He, S.J. Poon, G.J. Sheiflet. Synthesis and Properties of metallic glasses that containaluminum. Science,1988,241:1640-1642.
    [120] W.S. Sanders, J.S.Warner, D.B.Miracle. Stability of Al rich glasses in the Al-La-Ni system.Intermetallics,2006,14,348-351.
    [121]王建强,马长松,张甲,候万良,常新春,Al基合金体系非晶形成能力的相关理论进展.材料研究学报,2008,22:113-119.
    [122] V. Manov, P. Popel, E. Brook-Levinson, V. Molokanov, M. Calvo-Dahlborg, U. Dahlborg.Influence of the treatment of melt on the properties of amorphous materials: ribbons, bulksand glass coated microwires. Mater. Sci. Eng. A,2001,304-306:54-60.
    [123] X.F. Bian, M.H. Sun. Thermal-rate treatment and critical thickness for formation ofamorphous Al85Ni10Ce5alloy. Mater. Lett.,2003,57:2460-2465.
    [124] P.S. Popel, O.A. Chikova, V.M. Matveev. Metastable colloidal states of liquid metallicsolutions. High Temp. Mater. Pr.,1995,14:219-233.
    [125] U. Dahlborg, M. Calvo-Dahlborg, P.S. Popel, V.E. Sidorov. Structure and properties ofsome glass-forming liquid alloys. Eur. Phys. J. B,2000,14:639-648.
    [126] C. Hausleitner, G. Kahl, J. Hafner. Liquid structure of transition metals: invertigationsusing molecular dynamics and perturbation-and integral-equatin techniques. J. Phys.:Condens. Matter,1991,3:1589-1591.
    [127] S. Mudry, I. Shtablavyi. The influence of doping with tin on the structure of Cu0.70Si0.30eutectic melt. J. Non-Cryst. Solids,2006,352:4287-4291.
    [128] M. Dutkiewicz, E. Dutkiewicz. Study of microheterogeneous structure of non-aqueousmixed solvents by non-linear dielectric and viscometric methods. Electrochim. Acta.,2006,51:2346-2350.
    [129] U. Dahlborg, M. Besser, M. Calvo-Dahlborg, G. Cuello, C.D. Dewhurst, M.J. Kramer, J.R.Morris, D.J. Sordeletl. Structure of molten Al–Si alloys. J. Non-Cryst. Solids,2007,353:3005-3010.
    [130] P.S. Popel, M. Calvo-Dahlborg, U. Dahlborg. Metastable microheterogeneity of melts ineutectic and monotectic systems and its influence on the properties of the solidified alloy. J.Non-Cryst. Solids,2007,353:3243–3253.
    [131] K. Hono, Y. Zhang, A.P. Tsai, A. Inoue, T. Sakurai. Solute partitioning in partiallycrystallized Al-Ni-Ce (-Cu) metallic glasses. Scripta Metall.,1995,32(2):191-196.
    [132]黄正华,Al-TM-RE系非晶合金形成及其晶化行为的研究.上海交通大学博士学位论文,2008.
    [133] J. Mao, H.F. Zhang, H.M. Fu, A.M. Wang, H. Li, Z.Q. Hu. The effects of castingtemperature on the glass formation of Zr-based metallic glasses. Adv. Eng. Mater.,2009,11:1-6.
    [134] O.N. Senkov, D.B. Miracle. A topological model for metallic glass formation. J. Non-Cryst.Solids,2003,317:34-39.
    [135] D.B. Miracle. A structural model for metallic glasses. Nature Mater.,2004,3:697-702.
    [136] D.B. Miracle. The efficient cluster packing model-An atomic structural model for metallicglasses. Acta Mater.,2006,54:4317-4336.
    [137] Z.H. Chen, F.Q. Zu, X.F. Li, J. Yu, Y. Xi, R.R. Shen. Temperature-induced liquid-liquidtransition process in eutectic Pb-Sn melt explored from kinetic view point. J. Physic.:condensed matter,2007,19:116106(6pages).
    [138] F.Q. Zu, Z.G. Zhu, L.J. Guo, B. Zhang. Post-melting anomaly of Pb-Bi melts observed byinternal friction technique. J. Phys.: Condens. Matt.,2001,13:11435-11442.
    [139] F.Q. Zu, Z.G. Zhu, L.J. Guo, H. Yang, X.B. Qing, H. Yang. Observation of an anomalousdiscontinuous liquid structural change with temperature. Phys. Rev. Lett.,2002,89:125505.
    [140] F.Q. Zu, X.F. Li, L.J. Guo, H. Yang, X.B. Qing, Z.G. Zhu. Temperature dependence ofliquid structures in In–Sn20: diffraction experimental evidence. Phys. Lett. A,2004,324:472–478.
    [141] Y. Xi, F.Q. Zu, X.F. Li. High-temperature abnormal behavior of resistivities for Bi-Inmelts. Phys. Lett. A,2004,329:221-225.
    [142] Z.G. Zhu, F.Q. Zu, L.J. Guo. Internal friction method: suitable also for structural changesof liquids. Mater. Sci. Eng. A,2004,370:427-430.
    [143]秦敬玉,液体Al-Fe合金的微观不均匀结构研究.山东工业大学博士学位论文,1998.
    [144]李培杰,桂满昌,Al-16%Si合金的液态相结构转变.铸造,1995,23:15-20.
    [145]田学雷,陈熙堔,Llinsky A.G.,过冷状态下的Cu70Ni30合金的液态结构.中国科学,A辑,2000,30:842-846.
    [146] Z.Y. Huang, Y. Xi, F.Q. Zu, X.F. Li, G.H. Ding, J. Chen. On the correlation betweensolidified microstructures and liquid structural states in Bi-40wt%Te alloy. J. Cryst. Growth,2009,311:4129-4133.
    [147] Y. Zhang, K. Hono,A. Inoue, A. Makino, T. Sakurai. Nanocrystalline structural evolutionin Fe90Zr7B3soft magnetic material. Acta Mater.,1996,44:1497-1510.
    [148] C.Fan,D.V. Louzguine,C.F. Li,A. Inoue. Nanocrystalline composites with high strengthobtained in Zr-Ti-Ni-Cu-Al bulk amorphous alloys. Appl. Phys. Lett.,1999,75:340-342.
    [149] H. Chiriac,M. Tomut,M. Neagu. Improving the magnetic properties of nanocrystalline byheat teatment of the melt. Nanostruct. Mater.,1999,12:851-854.
    [150] Z. Altounian, J.O. Strom-Olsen, J.L. Walter. A search for phase separation in amorphousNiZr2. J. Appl. Phys.,1984,55:1566-1571.
    [151] H.S. Chen. Evidence of a glass-liquid transition in a gold-germanium-silicon alloy. J ChemPhys,1968,48:2560-2571.
    [152]周效峰,陶淑芬,陶昌,刘佐权,李德修,非晶态金属高温段-T曲线与Mie理论的新用.材料热处理学报,2002,23:66-69.
    [153]周效峰,陶淑芬,刘佐权,李德修,非晶中的cluster团簇结构与Mie理论.武汉理工大学学报,2003,25:59-61.
    [154] C.H. Shek, Y.M. Wang, C. Dong. The e/a-constant Hume-Rothery phases in an As-castZr65Al7.5Ni10Cu17.5alloy. Mater. Sci. Eng. A,2000,291:78-85.
    [155] P.S. Frankwicz, S.Ram, H.J. Fecht. Observation of a metastable intermediate phase inwater quenched Zr65Al7.5Ni10Cu17.5cylinders. Mater. Lett.,1996,28:77-82.
    [156] N. Mattern, J, Eckert, M. Seidel, U. K ü hn, S. Doyle, I. B cher. Relaxation andcrystallization of amorphous Zr65Al7.5Ni10Cu17.5. Mater. Sci. Eng. A,1997,226-228:468-473.
    [157]雷奕,王英敏,董闯,Zr65Al7.5Ni10Cu17.5块状非晶晶化过程的电镜研究.中国有色金属学报,2002,12:1136-1142.
    [158] C. Fan, M. Imafuku, H. Kurokawa, A. Inoue. Investigation of short-range order innanocrystal-forming Zr60Cu20Pd10Al10metallic glass and the mechanism of nanocrystalformation. Appl. Phys. Lett.,2001,79:1792-1794.
    [159] John J.Z. Li, W.K. Rhim, C.P. Kim, K. Samwer, W.L. Johnson. Evidence for aliquid-liquid phase transition in metallic fluids observed by electrostatic levitation. ActaMater.,2011,59:2166-2171.
    [160] H.L. Peng, M.Z.Li, W.H. Wang, et al. Effect of local structures and atomic packing onglass forming ability in CuxZr100-xmetallic glasses. Appl. Phys. Lett.,2010,96:021901.
    [161]阎志杰,Zr-基大块非晶合金的微观结构及其对晶化行为的影响.上海交通大学博士学位论文,2004.
    [162] D.W. Henderson. Thermal analysis of non-isothermal crystallization kinetics in glassforming liquids. J. Non-Cryst. Solids,1979,30:301.
    [163] H.S. Chen. A method for evaluating viscosities of metallic glasses from the rates ofthermal transformations. J. Non-Cryst. Solids,1978,27:257.
    [164] B.J. Mccoy. Cluster kinetics for glass forming materials. J. Phys. Chem. Solids,2002,63:1967.
    [165] M. Barmatz, H.J. Leamy, H.S. Chen. A method for the determination of Young’s modulusand internal friction in metallic glasses. The Review of Scientific Instrumets,1971,42:885-887
    [166]吴修胜,氧分离膜材料的输运性能及低频内耗研究.中国科技大学博士学位论文,2007.
    [167] B.S. Berry, W.C. Pritchet. Some physical properties of two amorphous metallic alloys. J.Appl. Phys.,1973,44:3122-3126
    [168] Y. Hiki, T. Aida, S.Takeuchi. High-temperature internal friction of metallic glasses withwidely different glass-forming ability. J. Phys. Soc. Jpn.,2007,76:114601(5pages).
    [169] O.P. Bobrov, V.A. Khonik, K. Kitagawa, S.N. Laptev. Isothermal stress relaxation of bulkand ribbon Zr-based metallic glass. J. Non-Cryst. Solids,2004,342:152-159.
    [170] A.E. Berlev, O.P. Bobrov, V.A. Khonik, K. Csach, A. Jurikova, J. Miskuf, H. Neuhauser,M.Y. Yazvitsky. Visosity of bulk and ribbon Zr-based glasses well below and in the vicintityof Tg: A comparative study. Phys. Rev. B.,2003,68:132203-132204.
    [171] R. Raghavan, P. Murali, U. Ramamurty. Influence of cooling rate on the enthalpyrelaxation and fragility of a metallic glass. Metall. Mater. Trans. A.,2008,39:1573-1577.
    [172].C. Massobrio, A. Pasquarello, R. Car. Short and intermediate range structure of liquidGeSe2. Phys. Rev. B,2001,64:144205.
    [173] I. Kaban, T. Halm, W. Hoyer. Structure of molten copper-germanium alloys. J. Non-Cryst.Solids,2001,288:96-102.
    [174] E.G. Jia, A.Q. Wu, L.J. Guo. Experimetal evidence f the transformation frommicroheterogeneous to microhmogeneous states in Ga-Sn melts. Phys. Lett. A,2007,364:505-509.
    [175] M. Togaya. Pressure dependences of the melting temperature of graphite and the electricalresistivity of liquid carbon. Phys. Rev. Lett.,1997,79:2474-2477.
    [176] K. Koga, H. Tanaka, X. C. Zeng. First-order transition in confined water betweenhigh-density liquid and low-density amorphous phases. Nature,2000,408:564-567.
    [177] K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T.J. RatHz, J.R. Rogers, M.B.Robinson, D.S. Robinson. First X-ray scattering studies on electrostatically levitatedmetallic liquids: demonstrated influence of local icosahedral order on the nucleation barrier.Phys. Rev. Lett.,2003,90:195504(4pages).
    [178] H.R. Sinning, F. Haessner. Determination of the glass transition temperature of metallicglasses by low-frequency internal friction measurements. J. Non-Cryst. Solids,1987,93:53-66.
    [179] R. Luck. Magnetothermal analysis of the decagonal phases Al65Cu20Co15and Al70Ni15Co15.J. Non-Cryst. Solids,1993,153-154:329-333.
    [180] S.V. Prokhorenko. The structure-thermodynamic state and the mechanism ofcrystallization of Gallium-based melts. High Temp.,2005,43:700-705.
    [181]郑采星,刘让苏,董科军,液态金属急冷过程中原子团簇结构形成与转变特性模拟.中国科学(A)辑,2001,31:754-760.
    [182] J. Pérez-rigueiro, C. Viney, J. Llorca, M. Elices. Silkworm silk as an engineering material.J. Appl. Polym. Sci.,1998,70:2439-2447.
    [183] C. Gauthier, J.M. Pelletier, L. David, G. Vigier, J. Perez. Relaxation of non-crystallinesolids under mechanical stress. J. Non-Cryst. Solids,2000,274:181-187.
    [184] P. Gadaud, S. Pautrot. Characterization of the elasticity and anelasticity of bulk glasses bydynamical subresonant and resonant techniques. J. Non-Cryst. Solids,2003,316:146-152.
    [185] B. Doen, M. Padaud, A. Riviere. Silicon nitrides studied by isothermal mechanicalspectroscopy. J.Alloys Compd.,2000,310:36-38.
    [186] Q. Wang, J.M. Pelletier, J. Lu, Y.D. Dong. Study of internal friction behavior in a Zr baseamorphous alloy around the glass transition. Mat. Sci. Eng. A,2005,403:328-333.
    [187]王庆,大块非晶合金的力学行为及其微观机理研究.上海交通大学博士论文,2006.
    [188]张勇,非晶和高熵合金.北京:科学出版社,2010.
    [189] D. Turnbull. Under what conditions can a glass be formed? Contemp. Phys.,1969,10:473–488.
    [190] A. Inoue, W. Zhang, T. Zhang, K. Kurosaka. Formation and mechanical properties ofCu-Hf-Ti bulk glassy alloys. J. Mater. Res.,2001,16:2836-2844.
    [191] D. Turnbull, M.H. Cohen. Reconstructive transformation and formation of glass. J. Chem.Phys.,1958,29:1049-1052.
    [192] Z.P. Lu, C.T. Liu. A new glass-forming ability criterion for bulk metallic glasses. ActaMater.,2005,50:3501-3512.
    [193] T.A. Waniuk, J.Schwarz, W.L. Johnson. Critical cooling rate and thermal stability ofZr-Ti-Cu-Ni-Be alloys. Appl. Phys. Lett.,2001,78:1213-1215.
    [194] T.D. Shen, Y. He, R.B. Schwarz. Bulk amorphous Pd-Ni-Fe-P alloys: preparation andcharacterization. J. Mater. Res.,1999,14:2107-2115.
    [195] B.S. Murty, K. Hono. Formation of nanocrystalline particles in glassy matrix in melt-spunMg-Cu-Y based alloys. Mater. Trans. JIM.,2000,41:1538-1544.
    [196] M.X. Xia, S.G. Zhang, C.L. Ma. Evaluation of glass-forming ability for metallic glassesbased on order-disorder competition. Appl. Phys. Lett.,2006,89:091917-1.
    [197] E.S. Park, D.H, Kim, W.T. Kim. Parameter for glass forming ability of ternary alloysystems. Appl. Phys. Lett.,2005,86:061907-1.
    [198] A.H. Cai, H. Chen, W.K. An, J.Y Tan, Y. Zhou, Y. Pan, G.X. Sun. Melting enthalpy fordescribing glass forming ability of bulk metallic glasses. J. Non-Cryst. Solids,2008,354:1808-1816.
    [199] J.P. Shui, Y.Z. He. Crystallization behavior near the high temperature internal friction peakof a-Pd80Si20alloy. Chinese Phys. Lett.,1986,3:69-72.
    [200] Y.Z. He, X.G. Li. A new type of internal friction peak of metallic glasses near Tg. Phys.Stat. Sol.(a),1987,99:115-120.
    [201] L.P. Yue, Y.Z. He. Correlation between the microstructure and internal friction peaks ofmetallic glass Pd77.5Ni6.0Si16.5near TgandTx. J. Non-Cryst. Solids,1988,105:33-38.
    [202] C.M. Mo, J.P. Shui, Y.Z. He. Internal friction peaks in amorphous Pd80Si20alloys. J.dePhysique,1981,42:C5-523-C5-528.
    [203] B. Zhang, F.Q. Zu, K. Zhen, J.P. Shui, P. Wen. Internal friction behaviours inZr57Al10Ni12.4Cu15.6Nb5bulk metallic glass. J. Phys.: Condens. Matter,2002,14:7461-7470.
    [204] K.H.J. Buschow. Thermal stability of amorphous Zr-Cu alloys. J. Appl. Phys.,1981,52:3319-3323.
    [205] D. Wang, H. Tan, Y. Li. Multiple maxima of GFA in three adjacent eutectics in Zr-Cu-Alalloy system-A metallographic way to pinpoint the best glass forming alloys. Acta Mater.,2005,53:2969-2979.
    [206] T. Shindo, Y. Waseda. A. Inoue. Prediction of glass-forming composition ranges inZr-Ni-Al alloys. Mater. Trans.,2002,43:2502-2508.
    [207] W. Chen, Y. Wang, J. Qiang, C. Dong. Bulk metallic glasses in the Zr-Al-Ni-Cu system.Acta Mater.,2003,51:1899-1907.
    [208] W.H. Wang, Z. Bian, P. Wen, Y. Zhag, M.X. Pan, D.Q. Zhao. Role of addition in formationand properties of Zr-based bulk metallic glasses. Intermetallics,2002,10:1249-1257.
    [209] J.B. Qiang, W. Zhang, G.Q. Xie, A. Inoue. The effect of Ti, Nb, and Ta additions toZrAlCu metallic glass on the crystallization and formation of the icosahedral phase. J. Mater.Res.,2007,22:1093-1097.
    [210] A. Inoue, T. Zhang, Y.H. Kim. Synthesis of high strength bulk amorphous Zr-Al-Ni-Cu-Agalloys with a nanoscale secondary phase. Mater. Trans. JIM.,1997,38:749-755.
    [211] Y.H. Lai, C.J. Lee, Y.T. Cheng, H.S. Chou, H.M. Chen, X.H. Du, C.I. Chang, J.C. Huang,S.R. Jian, J.S.C. Jang, T.G. Nieh. Bulk and microscale compressive behavior of a Zr-basedmetallic glass. Scripta Mater.,2008,58:890-893.
    [212] S.X. Song, H. Bei, J. Wadsworth, T.G. Nieh. Flow serration in a Zr-based bulk metallicglass in compression at low strain rates. Intermetallics,2008,16:813-818.
    [213] Y.H. Liu, G. Wang, R.J. Wang, D.Q. Zhao, W.H. Wang. Super plastic bulk metallic glassesat room temperature. Science,2007,315:1385-1388.
    [214] J. Lu, G. Ravichandran, W.L. Johnson. Deformation behavior of theZr41.2Ti13.8Cu12.5Ni10Be22.5bulk metallic glass over a wide range of strain-rates andtemperatures. Acta Mater.,2003,51:3249-3443.
    [215] D. Sai, J. Jun. Nanoscale multistep shear band formation by deformation-inducednanocrystallization in Zr-Al-Ni-Pd bulk metallic glass. Appl. Phys. Lett.,2005,87:151907-151901-3.
    [216] A. Inoue, Y. Kawamura, T. Shibata, K. Sasamori. Viscous flow deformation in supercooledliquid state of bulk amorphous Zr55Al10Ni5Cu30alloy. Mater. Trans. JIM,1996,37:1337-1341.
    [217] L.Q. Xing, P. Ochin. Bulk glass formation in the Zr-Ti-Al-Cu-Ni system. J. Mater. Sci.Lett.,1997,16:1277-1280.
    [218] T. Zhang, A. Inoue,T. Masumoto. Amorphous Zr-Al-TM (TM-Co,Ni,Cu) alloys withsignificant super-cooled liquid region of over100K.Mater. Trans. JIM,1991,32:1005-1010.
    [219] Z.L. Long, H.Q. Wei, Y.H. Ding, P. Zhag, P. Zhang, G.Q. Xie, A. Inoue. A new criterion forpredicting the glass-forming ability of bulk metallic glasses. J. Alloy Compd.,2009,475:207-219.
    [220] W.H. Wang. The elastic properties, elastic models and elastic perspectives of metallicglasses. Prog. in Mater. Sci.,2012,57:487-656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700